

Introduction to the Boost C++ Libraries
for KDE developers

Volker Krause
volker@kdab.com

What is Boost?

● Comprehensive set of platform-independent C++ libs
● http://www.boost.org
● Free Software
● About 100 modules, 80% header-only
● Staging ground for the next C++ standard library
● Pushes C++ to its limits

http://www.boost.org/

Whirlwind Tour through Boost

● Containers

● Data Structures

● Iterators

● Algorithms

● Function Objects

● Higher Order Programming

● Generic Programming

● Template Metaprogramming

● Preprocessor
Metaprogramming

● Text Processing

● Parser Generation

● Concurrency

● Math and Statistics

● Image Processing

● Platform Abstraction

● Python Binding Generation

● Unit testing

● ...

Boost vs. Qt/KDE

● No GUI components

● Some overlap with Qt/KDE (~ 20 modules):

– Platform abstraction

– Signals

– Date/Time, RegExp, Serialization

– Smart Pointers (since Qt 4.6)
● Ease of use vs. flexibility

● Documentation

● STL-style naming

#1 usage in KDE: Smart Pointers

● Feature equivalent smart pointers in Qt since 4.6

● Widely known concept and widely used in KDE already

– Shared Pointer

– Scoped Pointer

– Weak Pointer
● More powerful than you might think...

Custom Deleter

QMutex *mutex = ...;

{

 boost::shared_ptr<QMutex> mutex_releaser(mutex,
 std::mem_fun(&QMutex::unlock));

 mutex->lock();

 ...

}

#2 usage in KDE: boost::bind

● Many STL and Qt algorithms require a function pointer
or function object as argument

● Cumbersome when done manually:

static void laterDeleter(QObject *obj) {

 obj->deleteLater();

}

// possible lots of other code

QList<QObject*> l = ...;

std::for_each(l.begin(), l.end(), laterDeleter);

Define function objects in-place

In-place member call:

std::for_each(l.begin(), l.end(),
boost::bind(&QObject::deleteLater, _1));

In-place member call with arguments:

QObject *parent = ...;

std::for_each(l.begin(), l.end(),
boost::bind(&QObject::setParent, _1, parent));

Lame, show me something useful!

Sort by arbitrary properties of an object:

QList<QObject*> l = ...;

qSort(l.begin(), l.end(),
boost::bind(&QObject::objectName, _1) <
boost::bind(&QObject::objectName, _2));

So, how does this work exactly?

● boost::bind() returns a function object

● Number of arguments depend on number of used
placeholders (_X)

● boost::bind(&f, a, _2, b, _1)(x, y) → f(a, y, b, x)

● Works for global and member functions (ie. no
std::mem_fun needed, first argument is the object)

● There are overloaded operators for these function
objects: !, ==, !=, <, <=, >, >=, &&, ||

● Cascading is possible as well

Slightly more complex: boost::graph

● We work a lot with tree/graph structures, mostly without
realizing that though

● We rarely use graph algorithms though

● Boost has a comprehensive graph library

● Requires slightly more work to use, due to lack of
explicit graph data structures and/or standardized
interfaces (like we have for lists)

● Example: Find the most specific type from a set of
mime-types

Create a graph...

QVector<PluginInfo> plugins;

const PluginInfo& findBestMatch(KmimeType::Ptr mimeType) {

 boost::adjacency_list<> graph(matchingIndexes.size());

 for (int i = 0, end = plugins.size() ; i != end ; ++i) {

 for (int j = 0; j != end; ++j) {

 if (i != j && mimeType->is(plugins[j].mimeType()))

 boost::add_edge(j, i, graph);

 }

 }

 ...

... and sort it

 ...

 QVector<int> order;

 order.reserve(plugins.size());

 try {

 boost::topological_sort(graph,
 std::back_inserter(order));

 } catch (boost::not_a_dag &e) {

 kWarning() << "Mimetype tree is not a DAG!";

 }

 return plugins[order.first()];

}

Compatibility with Qt

● Qt containers are STL compatible

● #undef QT_NO_STL

● Container-like structures such as QString and
QByteArray have STL support for reading but not for
writing:

 QList<QByteArray> list = ...;

 QByteArray result = boost::join(list, “, “);

Conclusions

● Do not reinvent the wheel! *)

● Steep learning curve, but it will pay off nevertheless

But also keep in mind:

● Prefer equivalent Qt classes

● Limit use in public API (no BC guarantees)

*) Unless when having a strong NIH policy

Thanks for listening!

Questions?

Special thanks to my colleagues Marc Mutz, Stephen Kelly and Kevin Ottens for
voluntarily or involuntarily providing content for this talk :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

