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• NVIDIA (currently)

• Microsoft

• European Organization for Nuclear Research (CERN)

• Hispasec Sistemas

• Wroclaw Centre for Networking and Supercomputing

• Cigital

• Bughunting (Hyper-V, KVM vGPU, Linux kernel, OpenSSH, gcc

SSP/ProPolice, Apache, xpdf, more…) – CVEs

• Phrack magazine (Scraps of notes on remote stack overflow exploitation)

• The ERESI Reverse Engineering Software Interface

Private contact:

http://pi3.com.pl

pi3@pi3.com.pl

Twitter: @Adam_pi3

http://pi3.com.pl/
http://pi3.com.pl/
mailto:pi3@pi3.com.pl
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WHAT IS LKRG?

❖ LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)

❖ Open Source project under GPLv2 License

LKRG
Integrity checking 

& anti-exploitation

System integrity Task integrity

x86(-64) ARM ARM64

Detects kernel exploitation process

Default response: kill the task

Detects unsupported kernel modifications 

Default response: panic the kernel (milder 

response would be ineffective)
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WHAT IS LKRG?
❖ Officially, LKRG is distributed as source code:

❖ https://www.openwall.com/lkrg/

❖ https://github.com/openwall/lkrg

https://www.openwall.com/lkrg/
https://github.com/openwall/lkrg
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WHAT IS LKRG?
❖ Officially, LKRG is distributed as source code:

❖ https://www.openwall.com/lkrg/

❖ https://github.com/openwall/lkrg

❖ LKRG as a package:

❖ ALT Linux

❖ Arch Linux (aur)

❖ Astra Linux

❖ Debian and Ubuntu (reusing the Whonix/Kicksecure package)

❖ Gentoo Linux (Pentoo Overlay)

❖ Whonix and Kicksecure

❖ + a few other less known

❖ LKRG-aware exploitation frameworks:

❖ Metasploit bails out

❖ Exploit-suggester bails out

https://www.openwall.com/lkrg/
https://github.com/openwall/lkrg
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ANTI-EXPLOITATION
❖ The aim of it is to detect kernel exploitation process by detecting specific data 

corruption in the kernel
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ANTI-EXPLOITATION
❖ The aim of it is to detect kernel exploitation process by detecting specific data 

corruption in the kernel

Critical process’ and 

system’s attributes

Poor man's Control 

Flow Integrity 

(pCFI)

• Illegal Elevation of Privileges (EoP):

• Token / pointer swapping

• Illegal call to commit_creds()

• Overwriting the cred / real_cred structures

• Sandbox escapes (e.g. Chrome sandbox):

• Overwriting seccomp configuration

• Overwriting seccomp rules

• Various namespace escapes

• Various container escapes (e.g.Docker / 

Kubernetes / etc.)

• Illegal changes of:

• CPU state e.g. SMAP / SMEP / WP / MSR

• Any part of the kernel or modules

• It might detect (and block)

• Return-Oriented-Programming (ROP)

• Stack-pivoting attacks

• It might detect illegal control flow:

• From non .text section pages

• From dynamically generated executable 

pages

• From pages not belonging to the kernel 

(e.g. user-mode pages)

• When attacker bypasses SMEP protection



18

ANTI-EXPLOITATION
❖ Examples

❖ Detection of calls into kernel APIs from non-code pages (CVE-2017-1000112)
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ANTI-EXPLOITATION
❖ Examples

❖ ROP detection
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ANTI-EXPLOITATION
❖ Examples

❖ ROP detection
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ANTI-EXPLOITATION
❖ Examples - metasploit

Terminal: LKRG

Terminal: Metasploit
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ANTI-EXPLOITATION

❖ Limitations – Bypassable by design (for now) – difficult to protect 

from the same trust level

▪ Fly under LKRG’s radar:

✓ Overwrite critical metadata not guarded by LKRG

✓ Try to win races

✓ Move attack to userspace

▪ Attack (disable) LKRG and continue normal work:

✓ Try to win races (corrupting LKRG’s database)

✓ Attack LKRG’s internal synchronization / locking

✓ Find all LKRG’s running contexts and disable them + block a new one

▪ Directly attack the userspace via kernel (e.g. DirtyCOW)
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SYSTEM INTEGRITY
❖ Calculate hash from the critical [meta]data – SipHash

❖ Guarded regions:

▪ Critical (V)CPU/core data – Inter-Processor-Interrupt (IPI) is sent to the individual core in all 

(V)CPUs to exclusively run LKRG’s guard function (IDT/MSR/CRx/etc.)

▪ LKRG keeps information about how many (V)CPU/cores are „online” / „offline” / „possible”

▪ Entire Linux kernel .text section

▪ This covers almost entire Linux kernel itself, like syscall tables, all procedures, all function, all 

IRQ handlers, etc.

▪ Entire Linux kernel .rodata section

▪ Entire Linux kernel exception table

▪ Critical global system variables, like:

▪ selinux_enabled

▪ selinux_enforcing / selinux_state

▪ Supervisor Mode Execution Protection (SMEP) and Supervisor Mode Access Prevention (SMAP)

▪ CR4.WP

▪ All dynamically loaded modules AND their order in the internal structures

▪ Optionally, it is possible to enable guard of the entire IOMMU table
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SYSTEM INTEGRITY
❖ Calculate hash from the critical [meta]data – SipHash

❖ Guarded regions:

▪ Critical (V)CPU/core data – Inter-Processor-Interrupt (IPI) is sent to the individual core in all 

(V)CPUs to exclusively run LKRG’s guard function (IDT/MSR/CRx/etc.)

▪ LKRG keeps information about how many (V)CPU/cores are „online” / „offline” / „possible”

▪ Entire Linux kernel .text section

▪ This covers almost entire Linux kernel itself, like syscall tables, all procedures, all function, all 

IRQ handlers, etc.

▪ Entire Linux kernel .rodata section

▪ Entire Linux kernel exception table

▪ Critical global system variables, like:

▪ selinux_enabled

▪ selinux_enforcing / selinux_state

▪ Supervisor Mode Execution Protection (SMEP) and Supervisor Mode Access Prevention (SMAP)

▪ CR4.WP

▪ All dynamically loaded modules AND their order in the internal structures

▪ Optionally, it is possible to enable guard of the entire IOMMU table

SELinux escape

Often changed by rootkits

Detects SMAP / SMEP

bypasses
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COMMUNICATION CHANNEL

❖ Through the sysctl interface:

root@pi3-ubuntu:~/p_lkrg-main# sysctl -a|grep lkrg

lkrg.block_modules = 0

lkrg.heartbeat = 0

lkrg.hide = 0

lkrg.interval = 15

lkrg.kint_enforce = 2

lkrg.kint_validate = 3

lkrg.log_level = 3

lkrg.msr_validate = 1

lkrg.pcfi_enforce = 1

lkrg.pcfi_validate = 2

lkrg.pint_enforce = 1

lkrg.pint_validate = 3

lkrg.profile_enforce = 2

lkrg.profile_validate = 9

lkrg.smap_enforce = 2

lkrg.smap_validate= 1

lkrg.smep_enforce = 2

lkrg.smep_validate = 1

lkrg.trigger = 0

lkrg.umh_enforce = 1

lkrg.umh_validate = 1
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PERFORMANCE AND SCALABILITY

❖ LKRG with default protections enabled:

CPU: Intel Xeon E-2176G @ 4.70GHz (6 Cores / 12 Threads)

OS: Ubuntu 18.04

• The newest version (0.8) has overhead around ~2.5%

All details are available in PERFORMANCE file

• Performance impact was also comprehensively evaluated by Phoronix:

https://www.phoronix.com/scan.php?page=article&item=lkrg-08-linux&num=1

❖ Scalability:

• We do NOT expect a significant increase in LKRG's overhead with a higher number 

of concurrently running processes. LKRG's process tracking database uses a hash 

table of RB trees with per-hash-bucket read/write-locks.

https://www.phoronix.com/scan.php?page=article&item=lkrg-08-linux&num=1
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https://www.openwall.com/lkrg

Q&A?

http://www.openwall.com/lkrg

