
IN A NUTSHELL

https://www.openwall.com/lkrg

Twitter: @Openwall

Twitter: @Adam_pi3

https://www.openwall.com/lkrg


/USR/BIN/WHOAMI

• Adam ‘pi3’ Zabrocki

2

• NVIDIA (currently)

• Microsoft

• European Organization for Nuclear Research (CERN)

• Hispasec Sistemas

• Wroclaw Centre for Networking and Supercomputing

• Cigital

• Bughunting (Hyper-V, KVM vGPU, Linux kernel, OpenSSH, gcc

SSP/ProPolice, Apache, xpdf, more…) – CVEs

• Phrack magazine (Scraps of notes on remote stack overflow exploitation)

• The ERESI Reverse Engineering Software Interface

Private contact:

http://pi3.com.pl

pi3@pi3.com.pl

Twitter: @Adam_pi3

http://pi3.com.pl/
http://pi3.com.pl/
mailto:pi3@pi3.com.pl


ACKNOWLEDGMENT

Alexander Peslyak (Александр Песляк) a.k.a. Solar Designer

3

Special thanks to the following people for the constructive criticism and brainstorming 

in the past stages of the project development:

• Rafał“n3rgal” Wojtczuk

• Brad “spender” Spengler

• PaX Team… I mean “pipacs”

The following people also had impact on LKRG:

• Mariusz Zaborski – code cleanups (and hopefully more in the future)

• Ilya Matveychikov – bypass techniques, which shaped up protections

• Michael Larabel (Phoronix) – benchmarks, which led to optimizations

• Patrick Schleizer (Whonix) – packaging with DKMS for Debian-compatibles

• Everyone who supported the project on Patreon



4

WHAT IS LKRG?

❖ LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)



5

WHAT IS LKRG?

❖ LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)

❖ Open Source project under GPLv2 License



6

WHAT IS LKRG?

❖ LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)

❖ Open Source project under GPLv2 License

LKRG
Integrity checking 

& anti-exploitation

System integrity Task integrity

x86(-64) ARM ARM64

Critical CPU 

metadata

Critical kernel 

variables
.text section 

(kernel + modules)

Critical 

attributes
Control flow



7

WHAT IS LKRG?

❖ LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)

❖ Open Source project under GPLv2 License

LKRG
Integrity checking 

& anti-exploitation

System integrity Task integrity

x86(-64) ARM ARM64

Critical 

attributes
Control flow



8

WHAT IS LKRG?

❖ LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)

❖ Open Source project under GPLv2 License

LKRG
Integrity checking 

& anti-exploitation

System integrity Task integrity

x86(-64) ARM ARM64

Critical 

attributes
Control flowDetects unsupported kernel modifications 

Default response: panic the kernel (milder 

response would be ineffective)



9

WHAT IS LKRG?

❖ LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)

❖ Open Source project under GPLv2 License

LKRG
Integrity checking 

& anti-exploitation

System integrity Task integrity

x86(-64) ARM ARM64

Detects unsupported kernel modifications 

Default response: panic the kernel (milder 

response would be ineffective)



10

WHAT IS LKRG?

❖ LKRG – Linux Kernel Runtime Guard (self-explanatory ;p)

❖ Open Source project under GPLv2 License

LKRG
Integrity checking 

& anti-exploitation

System integrity Task integrity

x86(-64) ARM ARM64

Detects kernel exploitation process

Default response: kill the task

Detects unsupported kernel modifications 

Default response: panic the kernel (milder 

response would be ineffective)



11

WHAT IS LKRG?
❖ Officially, LKRG is distributed as source code:

❖ https://www.openwall.com/lkrg/

❖ https://github.com/openwall/lkrg

https://www.openwall.com/lkrg/
https://github.com/openwall/lkrg


12

WHAT IS LKRG?
❖ Officially, LKRG is distributed as source code:

❖ https://www.openwall.com/lkrg/

❖ https://github.com/openwall/lkrg

❖ LKRG as a package:

❖ ALT Linux

❖ Arch Linux (aur)

❖ Astra Linux

❖ Debian and Ubuntu (reusing the Whonix/Kicksecure package)

❖ Gentoo Linux (Pentoo Overlay)

❖ Whonix and Kicksecure

❖ + a few other less known

https://www.openwall.com/lkrg/
https://github.com/openwall/lkrg


13

WHAT IS LKRG?
❖ Officially, LKRG is distributed as source code:

❖ https://www.openwall.com/lkrg/

❖ https://github.com/openwall/lkrg

❖ LKRG as a package:

❖ ALT Linux

❖ Arch Linux (aur)

❖ Astra Linux

❖ Debian and Ubuntu (reusing the Whonix/Kicksecure package)

❖ Gentoo Linux (Pentoo Overlay)

❖ Whonix and Kicksecure

❖ + a few other less known

❖ LKRG-aware exploitation frameworks:

❖ Metasploit bails out

❖ Exploit-suggester bails out

https://www.openwall.com/lkrg/
https://github.com/openwall/lkrg


14

ANTI-EXPLOITATION
❖ The aim of it is to detect kernel exploitation process by detecting specific data 

corruption in the kernel



15

ANTI-EXPLOITATION
❖ The aim of it is to detect kernel exploitation process by detecting specific data 

corruption in the kernel

Critical process’ and 

system’s attributes

Poor man's Control 

Flow Integrity 

(pCFI)



16

ANTI-EXPLOITATION
❖ The aim of it is to detect kernel exploitation process by detecting specific data 

corruption in the kernel

Critical process’ and 

system’s attributes

Poor man's Control 

Flow Integrity 

(pCFI)

• Illegal Elevation of Privileges (EoP):

• Token / pointer swapping

• Illegal call to commit_creds()

• Overwriting the cred / real_cred structures

• Sandbox escapes (e.g. Chrome sandbox):

• Overwriting seccomp configuration

• Overwriting seccomp rules

• Various namespace escapes

• Various container escapes (e.g.Docker / 

Kubernetes / etc.)

• Illegal changes of:

• CPU state e.g. SMAP / SMEP / WP / MSR

• Any part of the kernel or modules



17

ANTI-EXPLOITATION
❖ The aim of it is to detect kernel exploitation process by detecting specific data 

corruption in the kernel

Critical process’ and 

system’s attributes

Poor man's Control 

Flow Integrity 

(pCFI)

• Illegal Elevation of Privileges (EoP):

• Token / pointer swapping

• Illegal call to commit_creds()

• Overwriting the cred / real_cred structures

• Sandbox escapes (e.g. Chrome sandbox):

• Overwriting seccomp configuration

• Overwriting seccomp rules

• Various namespace escapes

• Various container escapes (e.g.Docker / 

Kubernetes / etc.)

• Illegal changes of:

• CPU state e.g. SMAP / SMEP / WP / MSR

• Any part of the kernel or modules

• It might detect (and block)

• Return-Oriented-Programming (ROP)

• Stack-pivoting attacks

• It might detect illegal control flow:

• From non .text section pages

• From dynamically generated executable 

pages

• From pages not belonging to the kernel 

(e.g. user-mode pages)

• When attacker bypasses SMEP protection



18

ANTI-EXPLOITATION
❖ Examples

❖ Detection of calls into kernel APIs from non-code pages (CVE-2017-1000112)



19

ANTI-EXPLOITATION
❖ Examples

❖ Detection of calls into kernel APIs from non-code pages (CVE-2017-1000112)



20

ANTI-EXPLOITATION
❖ Examples

❖ Detection of calls into kernel APIs from non-code pages (CVE-2017-1000112)



21

ANTI-EXPLOITATION
❖ Examples

❖ Detection of calls into kernel APIs from non-code pages (CVE-2017-1000112)



22

ANTI-EXPLOITATION
❖ Examples

❖ Detection of calls into kernel APIs from non-code pages (CVE-2017-1000112)



23

ANTI-EXPLOITATION
❖ Examples

❖ ROP detection



24

ANTI-EXPLOITATION
❖ Examples

❖ ROP detection



25

ANTI-EXPLOITATION
❖ Examples - metasploit

Terminal: LKRG

Terminal: Metasploit



26

ANTI-EXPLOITATION

❖ Limitations – Bypassable by design (for now) – difficult to protect 

from the same trust level

▪ Fly under LKRG’s radar:

✓ Overwrite critical metadata not guarded by LKRG

✓ Try to win races

✓ Move attack to userspace

▪ Attack (disable) LKRG and continue normal work:

✓ Try to win races (corrupting LKRG’s database)

✓ Attack LKRG’s internal synchronization / locking

✓ Find all LKRG’s running contexts and disable them + block a new one

▪ Directly attack the userspace via kernel (e.g. DirtyCOW)



27

SYSTEM INTEGRITY
❖ Calculate hash from the critical [meta]data – SipHash

❖ Guarded regions:

▪ Critical (V)CPU/core data – Inter-Processor-Interrupt (IPI) is sent to the individual core in all 

(V)CPUs to exclusively run LKRG’s guard function (IDT/MSR/CRx/etc.)

▪ LKRG keeps information about how many (V)CPU/cores are „online” / „offline” / „possible”

▪ Entire Linux kernel .text section

▪ This covers almost entire Linux kernel itself, like syscall tables, all procedures, all function, all 

IRQ handlers, etc.

▪ Entire Linux kernel .rodata section

▪ Entire Linux kernel exception table

▪ Critical global system variables, like:

▪ selinux_enabled

▪ selinux_enforcing / selinux_state

▪ Supervisor Mode Execution Protection (SMEP) and Supervisor Mode Access Prevention (SMAP)

▪ CR4.WP

▪ All dynamically loaded modules AND their order in the internal structures

▪ Optionally, it is possible to enable guard of the entire IOMMU table



28

SYSTEM INTEGRITY
❖ Calculate hash from the critical [meta]data – SipHash

❖ Guarded regions:

▪ Critical (V)CPU/core data – Inter-Processor-Interrupt (IPI) is sent to the individual core in all 

(V)CPUs to exclusively run LKRG’s guard function (IDT/MSR/CRx/etc.)

▪ LKRG keeps information about how many (V)CPU/cores are „online” / „offline” / „possible”

▪ Entire Linux kernel .text section

▪ This covers almost entire Linux kernel itself, like syscall tables, all procedures, all function, all 

IRQ handlers, etc.

▪ Entire Linux kernel .rodata section

▪ Entire Linux kernel exception table

▪ Critical global system variables, like:

▪ selinux_enabled

▪ selinux_enforcing / selinux_state

▪ Supervisor Mode Execution Protection (SMEP) and Supervisor Mode Access Prevention (SMAP)

▪ CR4.WP

▪ All dynamically loaded modules AND their order in the internal structures

▪ Optionally, it is possible to enable guard of the entire IOMMU table

SELinux escape

Often changed by rootkits

Detects SMAP / SMEP

bypasses



29

COMMUNICATION CHANNEL

❖ Through the sysctl interface:

root@pi3-ubuntu:~/p_lkrg-main# sysctl -a|grep lkrg

lkrg.block_modules = 0

lkrg.heartbeat = 0

lkrg.hide = 0

lkrg.interval = 15

lkrg.kint_enforce = 2

lkrg.kint_validate = 3

lkrg.log_level = 3

lkrg.msr_validate = 1

lkrg.pcfi_enforce = 1

lkrg.pcfi_validate = 2

lkrg.pint_enforce = 1

lkrg.pint_validate = 3

lkrg.profile_enforce = 2

lkrg.profile_validate = 9

lkrg.smap_enforce = 2

lkrg.smap_validate= 1

lkrg.smep_enforce = 2

lkrg.smep_validate = 1

lkrg.trigger = 0

lkrg.umh_enforce = 1

lkrg.umh_validate = 1



30

PERFORMANCE AND SCALABILITY

❖ LKRG with default protections enabled:

CPU: Intel Xeon E-2176G @ 4.70GHz (6 Cores / 12 Threads)

OS: Ubuntu 18.04

• The newest version (0.8) has overhead around ~2.5%

All details are available in PERFORMANCE file

• Performance impact was also comprehensively evaluated by Phoronix:

https://www.phoronix.com/scan.php?page=article&item=lkrg-08-linux&num=1

❖ Scalability:

• We do NOT expect a significant increase in LKRG's overhead with a higher number 

of concurrently running processes. LKRG's process tracking database uses a hash 

table of RB trees with per-hash-bucket read/write-locks.

https://www.phoronix.com/scan.php?page=article&item=lkrg-08-linux&num=1


31

https://www.openwall.com/lkrg

Q&A?

http://www.openwall.com/lkrg

