GnuTLS

Transport Layer Security Library for the GNU system
for version 3.5.1, 4 March 2015

Nikos Mavrogiannopoulos
Simon Josefsson (bugs@gnutls.org)

mailto:bugs@gnutls.org

This manual is last updated 4 March 2015 for version 3.5.1 of GnuTLS.

Copyright (©) 2001-2015 Free Software Foundation, Inc.\\ Copyright (© 2001-2015 Nikos
Mavrogiannopoulos

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Preface........... 1
2 Introduction to GnuTLS....................... 2
2.1 Downloading and installing..............., 2
2.2 OVEIVIEW ..ttt 3

3 Introduction to TLS and DTLS 4
3.1 TLS Iayers . o .ov e 4
3.2 The transport layer 4
3.3 The TLS record protocol...... ..., 5
3.3.1 Encryption algorithms used in the record layer............. 5)

3.3.2 Compression algorithms used in the record layer........... 7

3.3.3 Weaknesses and countermeasures 7

3.34 Onrecord padding ..o, 7

3.4 The TLS alert protocol.......... oo, 8
3.5 The TLS handshake protocol........... o .. 9
3.5.1 TLS ciphersuites 9

3.5.2 Authentication............. ... 10

3.5.3 Client authentication................coiiiiiiiiiii... 10

3.5.4 Resuming Sessions..........ccouuiiiiiiiiiiiiiiieennnnnn. 10

3.6 TLS eXtensionsttt 10
3.6.1 Maximum fragment length negotiation.................... 10

3.6.2 Server name indicationoiiiiiiiaa.... 11

3.6.3 Session tickets........ ... 11

3.6.4 HeartBeat.........oooii 11

3.6.5 Safe renegotiation.......... o i 12

3.6.6 OCSP status requestoovireniiniiiii e 13

3.6.7 SR P .. 14

3.6.8 Application Layer Protocol Negotiation (ALPN).......... 15

3.7 How to use TLS in application protocols....................... 15
3.7.1 Separate portsoiiiii 15

3.7.2 Upward negotiation, 16

3.8 On SSL 2 and older protocolsc.ooiiiiiiiiiiia... 17

4 Authentication methods...................... 18
4.1 Certificate authenticationccooiiiiiieian. 18
4.1.1 X.509 certificates ... 19
4.1.1.1 X.509 certificate structure.............. 20

4.1.1.2 Importing an X.509 certificate 23

4.1.1.3 X.509 distinguished names........................... 23

4.1.1.4 Accessing public and private keys.................... 25

4.1.1.5 Verifying X.509 certificate paths...................... 25

4.1.1.6 Verifying a certificate in the context of TLS session .. 30

4.1.2 OpenPGP certificates ..., 31
4.1.2.1 OpenPGP certificate structure........................ 33
4.1.2.2 Verifying an OpenPGP certificate 34
4.1.2.3 Verifying a certificate in the context of a TLS session

... 34

4.1.3 Advanced certificate verification 35

4.1.3.1 Verifying a certificate using trust on first use
authentication........... ... o i 35
4.1.3.2 Verifying a certificate using DANE (DNSSEC)....... 35

4.1.4 Digital signatureso 36

4.1.4.1 Trading security for interoperability 37
4.2 More on certificate authentication..............., 37

4.2.1 PKCS #10 certificate requests 37

4.2.2 PKIX certificate revocation lists.......................... 40

4.2.3 OCSP certificate status checking.................. 43

4.2.4 Managing encrypted keys......... il 48

4.2.5 Invoking certtool....... 53

4.2.6 Invoking ocsptool i 63

4.2.7 Invoking danetool........ i 67

4.3 Shared-key and anonymous authentication..................... 71

4.3.1 SRP authentication 71
4.3.1.1 Authentication using SRP, 71
4.3.1.2 Invoking srptool......... i i 72

4.3.2 PSK authentication i 74
4.3.2.1 Authentication using PSK, 74
4.3.2.2 Invoking psktool......... il 75

4.3.3 Anonymous authentication 76

4.4 Selecting an appropriate authentication method 7

4.4.1 Two peers with an out-of-band channel 77

4.4.2 Two peers without an out-of-band channel................ 77

4.4.3 Two peers and a trusted third party................... ... 7

Hardware security modules and abstract key
By PES oo 79
5.1 Abstract key types.o 79

5.1.1 Publickeyso 79

5.1.2 Private keys. ... 81

5.1.3 Operations....... ..o 83

5.2 Smart cards and HSMs....... ... i 85

5.2.1 Initializationcoooiiiiiiii i 86

5.2.2 Accessing objects that require a PIN 87

5.2.3 Reading objects...... ..o 88

5.2.4 Writing objects. ... 91

5.2.5 Using a PKCS #11 token with TLS....................... 92

5.2.6 Invoking plltool......... .. oo 93

5.3 Trusted Platform Module (TPM).................oooiiiiiat 96

5.3.1 Keysin TPM ..o 96

ii

5.3.2 Key generation............ooiiiiiiiiiii 97
5.3.3 Using keys ..o 98
5.3.4 Invoking tpmtool........ 99

6 How to use GnuTLS in applications......... 102
6.1 Introduction........... ..o 102
6.1.1 General idea ... 102
6.1.2 Error handling.........o i i 103
6.1.3 Common tyPeSouettet it 103
6.1.4 Debugging and auditing............... L 104
6.1.5 Thread safetyo 104
6.1.6 Callback functionso i, 105
6.2 Preparation.............ooiiiiiiiii 105
6.2.1 Headers. ... 105
6.2.2 Initialization.......... ... 106
6.2.3 Version check ... 106
6.2.4 Building the source i 106
6.3 Session initialization 107
6.4 Associating the credentials............... L. 108
6.4.1 Certificates ... 108
6.4.2 SRP .. 113
6.4.3 PSK ..o 115
6.4.4 ANONYMOUS . ..ottt ittt 116
6.5 Setting up the transport layer........... 116
6.5.1 Asynchronous operation.................ccoiiiiiaiii... 119
6.5.2 DTLS SESSIONS . .. v vttt e 120
6.6 TLS handshake......... i i 121
6.7 Data transfer and termination................... 122
6.8 Buffered data transfer.......... L. 125
6.9 Handling alertso 125
6.10 Priority strings ... e 127
6.11 Selecting cryptographic key sizes.................cooiii.. 132
6.12 Advanced tOPICS ... vvtt it e 134
6.12.1 Session resumption.............c.eeiiiiiiiiiie i, 134
6.12.2 Certificate verification............. oL 136
6.12.2.1 Trustonfirst use...........ccooiiiiiiiiiiL, 136
6.12.2.2 DANE verification 138
6.12.3 Parameter generation i 139
6.12.4 Keying material exporters................ 140
6.12.5 Channel bindingso i 140
6.12.6 Interoperability i i 141

6.12.7 Compatibility with the OpenSSL library................ 141

iii

7 GnuTLS application examples 143
7.1 Client examples.oou i e 143
7.1.1 Simple client example with X.509 certificate support 143
7.1.2 Simple client example with SSH-style certificate verification
... 147
7.1.3 Simple client example with anonymous authentication ... 150
7.1.4 Simple datagram TLS client example 152
7.1.5 Obtaining session information........................... 155
7.1.6 Using a callback to select the certificate to use........... 158
7.1.7 Verifying a certificate i 164
7.1.8 Using a smart card with TLS............................ 167
7.1.9 Client with resume capability example................... 171
7.1.10 Simple client example with SRP authentication......... 174
7.1.11 Simple client example using the C++ APL.............. 177
7.1.12 Helper functions for TCP connections 179
7.1.13 Helper functions for UDP connections.................. 181
7.2 Server eXamples. 182
7.2.1 Echo server with X.509 authentication................... 182
7.2.2 Echo server with OpenPGP authentication............... 186
7.2.3 Echo server with SRP authentication 190
7.2.4 Echo server with anonymous authentication 194
7.2.5 DTLS echo server with X.509 authentication............. 197
7.3 OCSP example 207
7.4 Miscellaneous examples ... 214
7.4.1 Checking for an alert............. ... i, 214
7.4.2 X.509 certificate parsing example 215
7.4.3 Listing the ciphersuites in a priority string............... 217
7.4.4 PKCS #12 structure generation example 219
7.5 XSSL examples ...ttt e 222
7.5.1 Example client with X.509 certificate authentication..... 222
7.5.2 Example client with X.509 certificate authentication and
TOFU o 224

Using GnuTLS as a cryptographic library

... 227

8.1 Symmetric algorithms.......... 227
8.2 Public key algorithms............c. .o i 227
8.3 Hash and HMAC functions............ ... 227
8.4 Random number generation............... ... il 228
Other included programs.................... 229
9.1 Invoking gnutls-cli 229
9.2 Invoking gnutls-serv........ ... 234

9.3 Invoking gnutls-cli-debug........... il 238

iv

10 Internal Architecture of GnuTLS.......... 242

10.1 The TLS Protocolo 242
10.2 TLS Handshake Protocol 242
10.3 TLS Authentication Methods 243
10.4 TLS Extension Handling............... ..o o it 244
10.5 Cryptographic Backend oL 250

Appendix A Upgrading from previous versions

... 253
Appendix B Support.......................... 255
B.1 Getting Help . ..o 255
B.2 Commercial SUpportcooiiiiiiiii i 255
B.3 Bug Reports ... 255
B.4 Contributingo 256
B.5 Certification.c.ouiiiiiii 256

Appendix C Error Codes and Descriptions.. 258

Appendix D Supported Ciphersuites......... 265
Appendix E API reference.................... 271
E.1 Core TLS APIL. 271
E.2 Highlevel TLS APL o 351
E.3 Datagram TLS API 351
E.4 X.509 certificate APIL. 354
E5 OCSP API. ... o 432
E.6 OpenPGP APIL.... ..o e 442
E.7 PKCS 12 APL ... 462
E.8 Hardware token via PKCS 11 APL........................... 468
E.9 TPM APL. ... 480
E.10 Abstract key APL 482
E.11 DANE API. ... 506
E.12 Cryptographic API 510
E.13 Compatibility APT 517
Appendix F Copying Information............ 527
Bibliography............ 535
Function and Data Index........................ 539

Concept Index.............. ... i, 548

Chapter 1: Preface 1

1 Preface

This document demonstrates and explains the GnuTLS library API. A brief introduction to
the protocols and the technology involved is also included so that an application programmer
can better understand the GnuTLS purpose and actual offerings. Even if GnuTLS is a typical
library software, it operates over several security and cryptographic protocols which require
the programmer to make careful and correct usage of them. Otherwise it is likely to only
obtain a false sense of security. The term of security is very broad even if restricted to
computer software, and cannot be confined to a single cryptographic library. For that
reason, do not consider any program secure just because it uses GnuTLS; there are several
ways to compromise a program or a communication line and GnuTLS only helps with some
of them.

Although this document tries to be self contained, basic network programming and public
key infrastructure (PKI) knowledge is assumed in most of it. A good introduction to
networking can be found in [STEVENS], to public key infrastructure in [GUTPKI] and to
security engineering in [ANDERSON].

Updated versions of the GnuTLS software and this document will be available from http://
www.gnutls.org/.

http://www.gnutls.org/
http://www.gnutls.org/

Chapter 2: Introduction to GnuTLS 2

2 Introduction to GnuTLS

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed
to prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the protocols
ranging from SSL 3.0 to TLS 1.2 (see Chapter 3 [Introduction to TLS], page 4, for a detailed
description of the protocols), accompanied with the required framework for authentication
and public key infrastructure. Important features of the GnuTLS library include:

e Support for TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 protocols.

e Support for Datagram TLS 1.0 and 1.2.

e Support for handling and verification of X.509 and OpenPGP certificates.
e Support for password authentication using TLS-SRP.

e Support for keyed authentication using TLS-PSK.

e Support for TPM, PKCS #11 tokens and smart-cards.

The GnuTLS library consists of three independent parts, namely the “TLS protocol part”,
the “Certificate part”, and the “Cryptographic back-end” part. The “TLS protocol part” is
the actual protocol implementation, and is entirely implemented within the GnuTLS library.
The “Certificate part” consists of the certificate parsing, and verification functions and it
uses functionality from the libtasnl library. The “Cryptographic back-end” is provided by
the nettle and gmplib libraries.

2.1 Downloading and installing

GnuTLS is available for download at: http://www.gnutls.org/download.html

GnuTLS uses a development cycle where even minor version numbers indicate a stable
release and a odd minor version number indicate a development release. For example,
GnuTLS 1.6.3 denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a devel-
opment release since 7 is odd.

GnuTLS depends on nettle and gmplib, and you will need to install it before installing
GnuTLS. The nettle library is available from http://www.lysator.liu.se/ nisse/
nettle/, while gmplib is available from http://www.gmplib.org/. Don’t forget to verify
the cryptographic signature after downloading source code packages.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the INSTALL file
that is part of the distribution archive. Typically you invoke ./configure and then make
check install. There are a number of compile-time parameters, as discussed below.

Several parts of GnuTLS require ASN.1 functionality, which is provided by a library called
libtasnl. A copy of libtasnl is included in GnuTLS. If you want to install it separately
(e.g., to make it possibly to use libtasnl in other programs), you can get it from http://
www.gnu.org/software/libtasnl/.

The compression library, 1ibz, the PKCS #11 helper library p11-kit, the TPM library
trousers, as well as the IDN library libidn' are optional dependencies. Check the
README file in the distribution on how to obtain these libraries.

I Needed to use RFC6125 name comparison in internationalized domains.

http://www.gnutls.org/download.html
http://www.lysator.liu.se/~nisse/nettle/
http://www.lysator.liu.se/~nisse/nettle/
http://www.gmplib.org/
http://www.gnu.org/software/libtasn1/
http://www.gnu.org/software/libtasn1/

Chapter 2: Introduction to GnuTLS 3

A few configure options may be relevant, summarized below. They disable or enable
particular features, to create a smaller library with only the required features. Note however,
that although a smaller library is generated, the included programs are not guaranteed to
compile if some of these options are given.

--disable-srp-authentication
--disable-psk-authentication
--disable-anon-authentication
--disable-openpgp-authentication
--disable-dhe

-—-disable-ecdhe
--disable-openssl-compatibility
--disable-dtls-srtp-support
--disable-alpn-support
--disable-heartbeat-support
--disable-libdane
--without-pl1l-kit

--without-tpm

--without-zlib

For the complete list, refer to the output from configure --help.

2.2 Installing for a software distribution

When installing for a software distribution, it is often desirable to preconfigure GnuTLS
with the system-wide paths and files. There two important configuration options, one sets
the trust store in system, which are the CA certificates to be used by programs by default
(if they don’t override it), and the other sets to DNSSEC root key file used by unbound for
DNSSEC verification.

For the latter the following configuration option is available, and if not specified GnuTLS
will try to auto-detect the location of that file.

--with-unbound-root-key-file

To set the trust store the following options are available.

—--with-default-trust-store-file
—--with-default-trust-store-dir
--with-default-trust-store-pkcsll

The first option is used to set a PEM file which contains a list of trusted certificates, while
the second will read all certificates in the given path. The recommended option is the last,
which allows to use a PKCS #11 trust policy module. That module not only provides
the trusted certificates, but allows the categorization of them using purpose, e.g., CAs can
be restricted for e-mail usage only, or administrative restrictions of CAs, for examples by
restricting a CA to only issue certificates for a given DNS domain using NameConstraints.
A publicly available PKCS #11 trust module is p11-kit’s trust module?.

2 http://pll-glue.freedesktop.org/doc/pli-kit/trust-module.html

http://p11-glue.freedesktop.org/doc/p11-kit/trust-module.html

Chapter 2: Introduction to GnuTLS 4

2.3 Overview

In this document we present an overview of the supported security protocols in Chapter 3
[Introduction to TLS], page 4, and continue by providing more information on the certifi-
cate authentication in Section 4.1 [Certificate authentication|, page 18, and shared-key as
well anonymous authentication in Section 4.3 [Shared-key and anonymous authentication],
page 71. We elaborate on certificate authentication by demonstrating advanced usage of
the API in Section 4.2 [More on certificate authentication|, page 37. The core of the TLS
library is presented in Chapter 6 [How to use GnuTLS in applications|, page 102 and ex-
ample applications are listed in Chapter 7 [GnuTLS application examples|, page 143. In
Chapter 9 [Other included programs|, page 229 the usage of few included programs that
may assist debugging is presented. The last chapter is Chapter 10 [Internal architecture of
GnuTLS], page 242 that provides a short introduction to GnuTLS’ internal architecture.

Chapter 3: Introduction to TLS and DTLS 5

3 Introduction to TLS and DTLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [SSL3] designed by Netscape. TLS is an Internet protocol, defined by IETF?,
described in [RFC5246]. The protocol provides confidentiality, and authentication layers
over any reliable transport layer. The description, above, refers to TLS 1.0 but applies to
all other TLS versions as the differences between the protocols are not major.

The DTLS protocol, or “Datagram TLS” [RFC/347] is a protocol with identical goals as
TLS, but can operate under unreliable transport layers such as UDP. The discussions below
apply to this protocol as well, except when noted otherwise.

3.1 TLS Layers

TLS is a layered protocol, and consists of the record protocol, the handshake protocol and
the alert protocol. The record protocol is to serve all other protocols and is above the
transport layer. The record protocol offers symmetric encryption, data authenticity, and
optionally compression. The alert protocol offers some signaling to the other protocols.
It can help informing the peer for the cause of failures and other error conditions. See
[The Alert Protocol], page 8, for more information. The alert protocol is above the record
protocol.

The handshake protocol is responsible for the security parameters’ negotiation, the initial
key exchange and authentication. See [The Handshake Protocol|, page 9, for more informa-
tion about the handshake protocol. The protocol layering in TLS is shown in (undefined)
[fig-tls-layers|, page (undefined).

— —

'FI;LStHar;dshake TLS Alert Application
& i ;
TLS Record
Protocol

S ————

Transport Layer

— -

Figure 3.1: The TLS protocol layers.

IETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

Chapter 3: Introduction to TLS and DTLS 6

3.2 The Transport Layer

TLS is not limited to any transport layer and can be used above any transport layer,
as long as it is a reliable one. DTLS can be used over reliable and unreliable transport
layers. GnuTLS supports TCP and UDP layers transparently using the Berkeley sockets
API. However, any transport layer can be used by providing callbacks for GnuTLS to access
the transport layer (for details see Section 6.5 [Setting up the transport layer|, page 116).

3.3 The TLS record protocol

The record protocol is the secure communications provider. Its purpose is to encrypt,
authenticate and —optionally— compress packets. The record layer functions can be called
at any time after the handshake process is finished, when there is need to receive or send
data. In DTLS however, due to re-transmission timers used in the handshake out-of-order
handshake data might be received for some time (maximum 60 seconds) after the handshake
process is finished.

The functions to access the record protocol are limited to send and receive functions, which
might, given the importance of this protocol in TLS, seem awkward. This is because the
record protocol’s parameters are all set by the handshake protocol. The record protocol
initially starts with NULL parameters, which means no encryption, and no MAC is used.
Encryption and authentication begin just after the handshake protocol has finished.

3.3.1 Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption al-
gorithms like 3DES, AES or stream algorithms like ARCFOUR_128. Ciphers are encryption
algorithms that use a single, secret, key to encrypt and decrypt data. Block algorithms in
CBC mode also provide protection against statistical analysis of the data. Thus, if you're
using the TLS protocol, a random number of blocks will be appended to data, to prevent
eavesdroppers from guessing the actual data size.

The supported in GnuTLS ciphers and MAC algorithms are shown in Table 3.1 and Table 3.2.

Chapter 3: Introduction to TLS and DTLS

Algorithm
AES_CBC

AES_GCM

AES_CCM

AES_CCM_8

CAMELLIA _-

CBC

CHACHA20--
POLY1305

3DES_CBC

ARCFOUR_128

Description
AES or RIJNDAEL is the block cipher algorithm that replaces
the old DES algorithm. Has 128 bits block size and is used in
CBC mode.

This is the AES algorithm in the authenticated encryption
GCM mode. This mode combines message authentication and
encryption and can be extremely fast on CPUs that support
hardware acceleration.

This is the AES algorithm in the authenticated encryption
CCM mode. This mode combines message authentication and
encryption and is often used by systems without AES or GCM
acceleration support.

This is the AES algorithm in the authenticated encryption
CCM mode with a truncated to 64-bit authentication tag.
This mode is for communication with restricted systems.

This is an 128-bit block cipher developed by Mitsubishi and
NTT. It is one of the approved ciphers of the European
NESSIE and Japanese CRYPTREC projects.

CHACHA20-POLY 1305 is an authenticated encryption algo-
rithm based on CHACHAZ20 cipher and POLY1305 MAC.
CHACHA20 is a refinement of SALSA20 algorithm, an
approved cipher by the FEuropean ESTREAM project.
POLY1305 is Wegman-Carter, one-time authenticator. The
combination provides a fast stream cipher suitable for systems
where a hardware AES accelerator is not available.

This is the DES block cipher algorithm used with triple en-
cryption (EDE). Has 64 bits block size and is used in CBC
mode.

ARCFOUR-128 is a compatible algorithm with RSA’s RC4
algorithm, which is considered to be a trade secret. It is a fast
cipher but considered weak today, and thus it is not enabled
by default.

Table 3.1: Supported ciphers in TLS.

Chapter 3: Introduction to TLS and DTLS 8

Algorithm Description
MAC_MD5 This is an HMAC based on MD5 a cryptographic hash algo-
rithm designed by Ron Rivest. Outputs 128 bits of data.

MAC_SHA1 An HMAC based on the SHA1 cryptographic hash algorithm
designed by NSA. Outputs 160 bits of data.

MAC_SHA256 An HMAC based on SHA2-256. Outputs 256 bits of data.
MAC_SHA384 An HMAC based on SHA2-384. Outputs 384 bits of data.

MAC_AEAD This indicates that an authenticated encryption algorithm,
such as GCM, is in use.

Table 3.2: Supported MAC algorithms in TLS.

3.3.2 Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS
can be found in the table below. The included algorithms perform really good when text,
or other compressible data are to be transferred, but offer nothing on already compressed
data, such as compressed images, zipped archives etc. These compression algorithms, may
be useful in high bandwidth TLS tunnels, and in cases where network usage has to be
minimized. It should be noted however that compression increases latency.

The record layer compression in GnuTLS is implemented based on [RFC3749]. The sup-
ported algorithms are shown below.

GNUTLS_COMP_UNKNOWN
Unknown compression method.

GNUTLS_COMP_NULL
The NULL compression method (no compression).

GNUTLS_COMP_DEFLATE
The DEFLATE compression method from zlib.

GNUTLS_COMP_ZLIB
Same as GNUTLS_COMP_DEFLATE .

Figure 3.2: Supported compression algorithms

Note that compression enables attacks such as traffic analysis, or even plaintext recovery
under certain circumstances. To avoid some of these attacks GnuTLS allows each record
to be compressed independently (i.e., stateless compression), by using the "%STATE-
LESS_COMPRESSION" priority string, in order to be used in cases where the attacker
controlled data are pt in separate records.

Chapter 3: Introduction to TLS and DTLS 9

3.3.3 Weaknesses and countermeasures

Some weaknesses that may affect the security of the record layer have been found in TLS
1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts
that

1. TLS has separate alerts for “decryption_failed” and “bad_record_mac”
2. The decryption failure reason can be detected by timing the response time.

3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.

Those weaknesses were solved in TLS 1.1 [RFC4346] which is implemented in GnuTLS. For
this reason we suggest to always negotiate the highest supported TLS version with the
peer?. For a detailed discussion of the issues see the archives of the TLS Working Group

mailing list and [CBCATT].

3.3.4 On record padding

The TLS protocol allows for extra padding of records in CBC ciphers, to prevent statistical
analysis based on the length of exchanged messages (see [RFC52/6] section 6.2.3.2).
GnuTLS appears to be one of few implementations that take advantage of this feature:
the user can provide some plaintext data with a range of lengths she wishes to hide, and
GnuTLS adds extra padding to make sure the attacker cannot tell the real plaintext
length is in a range smaller than the user-provided one. Use [gnutls_record_send_range],
page 326 to send length-hidden messages and [gnutls_record_can_use_length_hiding],
page 324 to check whether the current session supports length hiding. Using the standard
[gnutls_record_send], page 326 will only add minimal padding.

The TLS implementation in the Symbian operating system, frequently used by Nokia and
Sony-Ericsson mobile phones, cannot handle non-minimal record padding. What happens
when one of these clients handshake with a GnuTLS server is that the client will fail to
compute the correct MAC for the record. The client sends a TLS alert (bad_record_mac)
and disconnects. Typically this will result in error messages such as A TLS fatal alert has
been received’, 'Bad record MAC’, or both, on the GnuTLS server side.

If compatibility with such devices is a concern, not sending length-hidden messages solves
the problem by using minimal padding.

If you implement an application that has a configuration file, we recommend that you make
it possible for users or administrators to specify a GnuTLS protocol priority string, which
is used by your application via [gnutls_priority_set], page 318. To allow the best flexibility,
make it possible to have a different priority string for different incoming IP addresses.

3.4 The TLS alert protocol

The alert protocol is there to allow signals to be sent between peers. These signals are
mostly used to inform the peer about the cause of a protocol failure. Some of these signals
are used internally by the protocol and the application protocol does not have to cope with
them (e.g. GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely
(e.g. GNUTLS_A_USER_CANCELLED). An alert signal includes a level indication which may be
either fatal or warning. Fatal alerts always terminate the current connection, and prevent

2 If this is not possible then please consult Section 6.12.6 [Interoperability], page 141.

Chapter 3: Introduction to TLS and DTLS 10

future re-negotiations using the current session ID. All alert messages are summarized in
the table below.

The alert messages are protected by the record protocol, thus the information that is in-
cluded does not leak. You must take extreme care for the alert information not to leak to
a possible attacker, via public log files etc.

Alert ID Description
GNUTLS_A_CLOSE_NOTIFY 0 Close notify
GNUTLS_A_UNEXPECTED_MESSAGE 10 Unexpected message
GNUTLS_A_BAD_RECORD_MAC 20 Bad record MAC
GNUTLS_A_DECRYPTION_FAILED 21 Decryption failed
GNUTLS_A_RECORD_OVERFLOW 22 Record overflow
GNUTLS_A_DECOMPRESSION_FAILURE 30 Decompression failed
GNUTLS_A_HANDSHAKE_FAILURE 40 Handshake failed
GNUTLS_A_SSL3_NO_CERTIFICATE 41 No certificate (SSL 3.0)
GNUTLS_A_BAD_CERTIFICATE 42 Certificate is bad
GNUTLS_A_UNSUPPORTED_CERTIFICATE 43 Certificate is not
supported
GNUTLS_A_CERTIFICATE_REVOKED 44 Certificate was revoked
GNUTLS_A_CERTIFICATE_EXPIRED 45 Certificate is expired
GNUTLS_A_CERTIFICATE_.UNKNOWN 46 Unknown certificate
GNUTLS_A_ILLEGAL_PARAMETER 47 Illegal parameter
GNUTLS_A_UNKNOWN_CA 48 CA is unknown
GNUTLS_A_ACCESS_DENIED 49 Access was denied
GNUTLS_A_DECODE_ERROR 50 Decode error
GNUTLS_A_DECRYPT_ERROR 51 Decrypt error
GNUTLS_A_EXPORT_RESTRICTION 60 Export restriction
GNUTLS_A_PROTOCOL_VERSION 70 Error in protocol version
GNUTLS_A_INSUFFICIENT_SECURITY 71 Insufficient security
GNUTLS_A_INTERNAL_ERROR 80 Internal error
GNUTLS_A_INAPPROPRIATE_FALLBACK 86 Inappropriate fallback
GNUTLS_A_USER_CANCELED 90 User canceled
GNUTLS_A_NO_RENEGOTIATION 100 No renegotiation is
allowed
GNUTLS_A_UNSUPPORTED_EXTENSION 110 An unsupported exten-

sion was sent

GNUTLS_A_CERTIFICATE_UNOBTAINABLE 111 Could not retrieve the
specified certificate

GNUTLS_A_UNRECOGNIZED_NAME 112 The server name sent
was not recognized
GNUTLS_A_UNKNOWN_PSK_IDENTITY 115 The SRP/PSK username

is missing or not known

GNUTLS_A_NO_APPLICATION_PROTOCOL 120 No supported applica-
tion protocol could be
negotiated

Chapter 3: Introduction to TLS and DTLS 11

3.5 The TLS handshake protocol

The handshake protocol is responsible for the ciphersuite negotiation, the initial key ex-
change, and the authentication of the two peers. This is fully controlled by the application
layer, thus your program has to set up the required parameters. The main handshake func-
tion is [gnutls_handshake], page 303. In the next paragraphs we elaborate on the handshake
protocol, i.e., the ciphersuite negotiation.

3.5.1 TLS ciphersuites

The handshake protocol of TLS negotiates cipher suites of a special form illustrated by the
TLS_DHE_RSA_WITH_3DES_CBC_SHA cipher suite name. A typical cipher suite contains these
parameters:

e The key exchange algorithm. DHE_RSA in the example.

e The Symmetric encryption algorithm and mode 3DES_CBC in this example.

e The MAC? algorithm used for authentication. MAC_SHA is used in the above example.
The cipher suite negotiated in the handshake protocol will affect the record protocol, by
enabling encryption and data authentication. Note that you should not over rely on TLS

to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that
you consider weak.

All the supported ciphersuites are listed in [ciphersuites], page 265.
3.5.2 Authentication

The key exchange algorithms of the TLS protocol offer authentication, which is a prerequisite
for a secure connection. The available authentication methods in GnuTLS follow.

e Certificate authentication: Authenticated key exchange using public key infrastructure
and certificates (X.509 or OpenPGP).

e SRP authentication: Authenticated key exchange using a password.
e PSK authentication: Authenticated key exchange using a pre-shared key.

e Anonymous authentication: Key exchange without peer authentication.

3.5.3 Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the
client is optional in TLS. A server may request a certificate from the client using the
[gnutls_certificate_server_set_request], page 278 function. We elaborate in Section 6.4.1
[Certificate credentials], page 108.

3.5.4 Resuming sessions

The TLS handshake process performs expensive calculations and a busy server might easily
be put under load. To reduce the load, session resumption may be used. This is a feature of
the TLS protocol which allows a client to connect to a server after a successful handshake,
without the expensive calculations. This is achieved by re-using the previously established
keys, meaning the server needs to store the state of established connections (unless session
tickets are used — Section 3.6.3 [Session tickets|, page 11).

3 MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

Chapter 3: Introduction to TLS and DTLS 12

Session resumption is an integral part of GnuTLS, and Section 6.12.1 [Session resumption],
page 134, (undefined) [ex-resume-client], page (undefined) illustrate typical uses of it.

3.6 TLS extensions

A number of extensions to the TLS protocol have been proposed mainly in [TLSEXT]. The
extensions supported in GnuTLS are discussed in the subsections that follow.

3.6.1 Maximum fragment length negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities.
The functions shown below can be used to control this extension.

size_t [gnutls_record_get_max_size], page 325 (gnutls_session_t session)
ssize_t [gnutls_record_set_max_size], page 327 (gnutls_session_t session,
size_t size)

3.6.2 Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason
the TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send
the HTTP hostname before the handshake begins within the first handshake packet. The
functions [gnutls_server_name_set|, page 330 and [gnutls_server_name_get|, page 329 can be
used to enable this extension, or to retrieve the name sent by a client.

int [gnutls_server_name_set], page 330 (gnutls_session_t session,
gnutls_server_name_type_t type, const void * name, size_t name_length)
int [gnutls_server_name_get], page 329 (gnutls_session_t session, void *
data, size_t * data_length, unsigned int * type, unsigned int indx)

3.6.3 Session tickets

To resume a TLS session, the server normally stores session parameters. This complicates
deployment, and can be avoided by delegating the storage to the client. Because session
parameters are sensitive they are encrypted and authenticated with a key only known to
the server and then sent to the client. The Session Tickets extension is described in RFC
5077 [TLSTKT].

A disadvantage of session tickets is that they eliminate the effects of forward secrecy when a
server uses the same key for long time. That is, the secrecy of all sessions on a server using
tickets depends on the ticket key being kept secret. For that reason server keys should be
rotated and discarded regularly.

Since version 3.1.3 GnuTLS clients transparently support session tickets, unless forward
secrecy is explicitly requested (with the PFS priority string).

3.6.4 HeartBeat

This is a TLS extension that allows to ping and receive confirmation from the peer, and is
described in [RFC6520]. The extension is disabled by default and [gnutls_heartbeat_enable],
page 306 can be used to enable it. A policy may be negotiated to only allow sending

Chapter 3: Introduction to TLS and DTLS 13

heartbeat messages or sending and receiving. The current session policy can be checked with
[gnutls_heartbeat_allowed], page 305. The requests coming from the peer result to GNUTLS_
E_HEARTBEAT_PING_RECEIVED being returned from the receive function. Ping requests to
peer can be send via [gnutls_heartbeat_ping], page 306.

int [gnutls_heartbeat_allowed], page 305 (gnutls_session_t session, unsigned
int type)
void [gnutls_heartbeat_enable], page 306 (gnutls_session_t session, unsigned
int type)

int [gnutls_heartbeat_ping], page 306 (gnutls_session_t session, size_t
data_size, unsigned int max_tries, unsigned int flags)

int [gnutls_heartbeat_pong], page 307 (gnutls_session_t session, unsigned int
flags)

void [gnutls_heartbeat_set_timeouts], page 307 (gnutls_session_t session,
unsigned int retrans_timeout, unsigned int total_timeout)

unsigned int [gnutls_heartbeat_get_timeout], page 306 (gnutls_session_t
session)

3.6.5 Safe renegotiation

TLS gives the option to two communicating parties to renegotiate and update their secu-
rity parameters. One useful example of this feature was for a client to initially connect
using anonymous negotiation to a server, and the renegotiate using some authenticated
ciphersuite. This occurred to avoid having the client sending its credentials in the clear.

However this renegotiation, as initially designed would not ensure that the party one is
renegotiating is the same as the one in the initial negotiation. For example one server could
forward all renegotiation traffic to an other server who will see this traffic as an initial
negotiation attempt.

This might be seen as a valid design decision, but it seems it was not widely known or
understood, thus today some application protocols use the TLS renegotiation feature in a
manner that enables a malicious server to insert content of his choice in the beginning of a
TLS session.

The most prominent vulnerability was with HT'TPS. There servers request a renegotiation
to enforce an anonymous user to use a certificate in order to access certain parts of a web
site. The attack works by having the attacker simulate a client and connect to a server, with
server-only authentication, and send some data intended to cause harm. The server will
then require renegotiation from him in order to perform the request. When the proper client
attempts to contact the server, the attacker hijacks that connection and forwards traffic to
the initial server that requested renegotiation. The attacker will not be able to read the
data exchanged between the client and the server. However, the server will (incorrectly)
assume that the initial request sent by the attacker was sent by the now authenticated
client. The result is a prefix plain-text injection attack.

The above is just one example. Other vulnerabilities exists that do not rely on the TLS
renegotiation to change the client’s authenticated status (either TLS or application layer).

While fixing these application protocols and implementations would be one natural reaction,
an extension to TLS has been designed that cryptographically binds together any renego-

Chapter 3: Introduction to TLS and DTLS 14

tiated handshakes with the initial negotiation. When the extension is used, the attack is
detected and the session can be terminated. The extension is specified in [RFC5746].

GnuTLS supports the safe renegotiation extension. The default behavior is as follows.
Clients will attempt to negotiate the safe renegotiation extension when talking to servers.
Servers will accept the extension when presented by clients. Clients and servers will permit
an initial handshake to complete even when the other side does not support the safe renego-
tiation extension. Clients and servers will refuse renegotiation attempts when the extension
has not been negotiated.

Note that permitting clients to connect to servers when the safe renegotiation extension
is not enabled, is open up for attacks. Changing this default behavior would prevent in-
teroperability against the majority of deployed servers out there. We will reconsider this
default behavior in the future when more servers have been upgraded. Note that it is easy
to configure clients to always require the safe renegotiation extension from servers.

To modify the default behavior, we have introduced some new priority strings (see
Section 6.10 [Priority Strings|, page 127). The %UNSAFE_RENEGOTIATION priority string
permits (re-)handshakes even when the safe renegotiation extension was not negotiated.
The default behavior is %PARTIAL_RENEGOTIATION that will prevent renegotiation with
clients and servers not supporting the extension. This is secure for servers but leaves clients
vulnerable to some attacks, but this is a trade-off between security and compatibility with
old servers. The %SAFE_RENEGOTIATION priority string makes clients and servers require
the extension for every handshake. The latter is the most secure option for clients, at the
cost of not being able to connect to legacy servers. Servers will also deny clients that do
not support the extension from connecting.

It is possible to disable use of the extension completely, in both clients and servers, by using
the %DISABLE_SAFE_RENEGOTIATION priority string however we strongly recommend you to
only do this for debugging and test purposes.

The default values if the flags above are not specified are:
Server: %PARTIAL_RENEGOTIATION
Client: %PARTIAL_RENEGOTIATION

For applications we have introduced a new API related to safe renegotiation. The
[gnutls_safe_renegotiation_status|, page 328 function is used to check if the extension has
been negotiated on a session, and can be used both by clients and servers.

3.6.6 OCSP status request

The Online Certificate Status Protocol (OCSP) is a protocol that allows the client to verify
the server certificate for revocation without messing with certificate revocation lists. Its
drawback is that it requires the