
Tree SSA
A New Optimization Infrastructure for GCC

Diego Novillo
Red Hat Canada, Ltd.

dnovillo@redhat.com

Abstract

Tree SSA is a new optimization framework
based on the Static Single Assignment (SSA)
form that operates on GCC’s tree representa-
tion. Tree SSA is designed to be both lan-
guage and target independent and allow high-
level analyses and transformations that are dif-
ficult or impossible to implement with RTL.
One of the main goals of the project is to
produce an analysis and optimization infras-
tructure based on proven algorithms and tech-
niques available in the literature. In this pa-
per we describe the design and implementation
of the Tree SSA framework, provide prelimi-
nary results and discuss possible applications
and future work.

1 Introduction

Currently, optimizing transformations in GCC
operate on a single intermediate representation,
namely RTL (Register Transfer Language).
Parse trees generated by the front end are
almost immediately converted into RTL and
passed on to the optimizer (Figure 1).

Being a low-level representation, RTL works
well for optimizations that are close to the tar-
get (e.g., register allocation, delay slot opti-
mizations, peepholes, etc). However, many op-
timizing transformations need higher level in-
formation about the program that is difficult (or

even impossible) to obtain from RTL (e.g., ar-
ray references, data types, references to pro-
gram variables, control flow structures). Over
time, some of these transformations have been
implemented in RTL, but since the data struc-
ture is not really suited for this, the end result
is code that is excessively convoluted, hard to
maintain and error prone.

In this paper we describe an optimization
framework based on GENERIC and GIM-
PLE, two high-level intermediate represen-
tations (IR) derived from GCC parse trees
[5]. Language-specific constructs are removed
from the input parse trees to obtain GENERIC.
In turn, GENERIC trees are broken down into
a simpler three address representation called
GIMPLE which is used for optimization.

Optimizing GIMPLE is appealing because, (a)
it facilitates the implementation of new analy-
ses and optimizations closer to the source, (b)
it simplifies the work of the RTL optimizers,
potentially speeding up the compilation pro-
cess or improving the generated code, and (c)
it can be done in a largely language and target-
independent way. The latter is an important
feature for a compiler like GCC that targets
many different architectures and languages.

We believe that modularizing the compiler and
using well-known published algorithms will
help developers maintain and improve GCC,
and flatten the learning curve required for ex-

182 • GCC Developers Summit

Front End

Back End

C C
parser

RTL

C++ C++
parser

Java Java
parser

Fortran 95 Fortran 95
parser

Objective-C Objective-C
parser

RTL
Optimizer

Code
Generator

Object
Code

Figure 1: Existing compilation process in GCC.

ternal developers to contribute optimization
passes. Furthermore, by reducing the amount
of RTL code generated, we also expect to re-
duce compilation times and improve the qual-
ity of the final code.

2 Overview

There are three main components to the basic
infrastructure: the gimplifier, the control flow
graph (CFG) and the SSA module (Figure 2).

• The gimplifier is responsible for convert-
ing the input GENERIC representation
into GIMPLE. It also provides functions
for generating GIMPLE statements and
testing whether a given statement or ex-
pression is in GIMPLE form.

• The Control Flow Graph (CFG) is a di-
rected graph that models the execution
of the program. Each node in the CFG,
called a basic block, represents a non-
branching sequence of statements (execu-
tion starts with the first instruction in the
group and it leaves the block only after the
last instruction has been executed). The

edges of the graph represent possible exe-
cution paths in the flow of control (condi-
tionals, loops, etc.).

• Static Single Assignment (SSA) is a rela-
tively new representation that is becoming
increasingly popular because it leads to
efficient algorithmic implementations of
data flow analyzers and optimizing trans-
formations [3].

The SSA module finds all the variables
referenced and builds the SSA form for
the function. It provides all the neces-
sary functions and data structures to com-
pute, among other things, aliasing, reach-
ing definitions, and reached-uses informa-
tion. It is also responsible for converting
the function back to normal form right be-
fore calling the RTL expanders.

Figure 3 shows the proposed integration be-
tween GIMPLE and RTL optimizations as im-
plemented in thetree-ssa branch. No-
tice that the interface between GENERIC
and GIMPLE may involve some language-
dependent transformations, but those issues are
beyond the scope of this paper.

GCC Developers Summit 2003 • 183

Tree Optimizer

GIMPLE CFG SSA

SSA pass N

 ...

SSA pass 2

SSA pass 1

unSSA RTL Back
End

Figure 2: Overview of the tree optimization process.

3 GIMPLE Trees

Although GCC parse trees provide very de-
tailed information about the original program,
they are not suitable for optimization:

1. Lack of a common representation.
There is no single tree representation
shared by all the front ends. This means
that each language would require a dif-
ferent implementation of the same infras-
tructure. This would be a maintenance
nightmare and would make it very diffi-
cult to add new front ends to GCC.

2. Side effects. Parse trees are allowed to
have side effects. This means that the tree
analysis and optimization phases would
have to understand the semantics of ev-
ery source language, which takes us to
the multiple implementation scenario de-
scribed above.

3. Structural complexity . Parse trees may
combine in arbitrarily complex patterns,
which may obfuscate the control flow of
the program. For instance, the following
expression is represented in a single parse
tree

if ((a = (b > 5) ? c : d) > 10)
. . .

When building the control flow graph for
this code fragment, the compiler must re-
alize that the predicate for theif() state-
ment contains different flows of control
of its own. Furthermore, this expression
requires more than one basic block to be
represented.

To overcome these limitations, we use two
new tree-based intermediate representations
called GENERIC and GIMPLE. GENERIC
addresses the lack of a common tree represen-
tation among the various front ends. GIMPLE
solves the side-effect and complexity problems
that facilitate the discovery of data and control
flow in the program. All the analyses and op-
timizations are done on the GIMPLE represen-
tation.

Figure 4 illustrates the differences between
GENERIC (Figure 4(a)) and GIMPLE (Figure
4(b)). Notice how in the GIMPLE version in-
dividual expressions are simpler and more reg-
ular in structure. For instance, with the excep-
tion of function calls, a statement in GIMPLE
form is guaranteed to have no more than three
variable references. GIMPLE expressions are
also guaranteed to contain no side-effects (for
example, the post-increment operation in line
5 of Figure 4(a) has been explicitly exposed by

184 • GCC Developers Summit

Front End

Tree Optimizer

C
trees

C
genericizer

GENERIC

C++
trees

C++
genericizer

Java
trees

Java
genericizer

Fortran 95
trees

Fortran 95
genericizer

Objective-C
trees

Objective-C
genericizer

gimplifier

GIMPLE

CFG

SSA

SSA pass N ... SSA pass 2 SSA pass 1

unSSA

RTL

Back
End

Figure 3: Proposed integration of GIMPLE and RTL optimizers.

GCC Developers Summit 2003 • 185

1 a = foo ();
2 b = a + 10;
3 c = 5;
4 if (a > b + c)
5 c = b++ / a + (b * a);
6 bar (a, b, c);

(a) GENERIC form.

1 a = foo ();
2 b = a + 10;
3 c = 5;
4 T1 = b + c;
5 if (a > T1)
6 {
7 T2 = b / a;
8 T3 = b * a;
9 c = T2 + T3;

10 b = b + 1;
11 }
12 bar (a, b, c);

(b) GIMPLE form.

Figure 4: A program in GENERIC and GIMPLE forms.

the conversion to GIMPLE form).

4 The Control Flow Graph

To take advantage of the existing flow graph
code for RTL, the GIMPLE flow graph uses
the same data structures for basic blocks and
edges. This allows the GIMPLE CFG to use
all the functions that operate on the flow graph
independently of the underlying IR (e.g., dom-
inance information, edge placement, reachabil-
ity analysis). For the cases where IR informa-
tion is necessary, we either replicate function-
ality (e.g., flow graph cleanup) or have intro-
duced hooks (e.g., loop discovery).

The flow graph builder will also remove su-
perfluous control expressions of the formif
(0) , if (1) and switch (CST) . The
edges leading to the unreachable arms of the
conditionals are removed, which in turn causes
the unreachable arms to be removed. These
statements are also completely linearized by
replacing the conditional with the clause that
is always executed.

4.1 Statement manipulation

Although GIMPLE trees have a much sim-
pler structure than GENERIC and the origi-
nal parse trees, they still contain certain ele-
ments that are of no interest to a typical opti-
mization pass. GIMPLE is a container-based
data structure. As such, statements inside
constructs like loops, conditionals and lexical
scopes are contained in sub-trees. Within each
lexical scope, individual statement nodes are
chained together using compound expression
(CE) nodes. For instance, the body of function
baz in Figure 5 contains two statements, the
lexical scope starting at line5 and thereturn
statement at line13. In turn, the lexical scope
at line 5 contains 3 statements (lines8, 9 and
10). Notice how all the statements in each lex-
ical scope are joined using CE nodes.

One way to traverse this function is to use the
traditional call towalk_tree with a callback
function to do the processing. However, this
approach not only visits more nodes than nec-
essary, but it also makes it difficult to distin-
guish a statement from an expression contained

186 • GCC Developers Summit

1 baz ()
2 {
3 int i, j;
4
5 {
6 int k;
7
8 k = foo ();
9 i = k + 2;

10 j = i * k;
11 }
12
13 return j;
14 }

2 {

 3 int i, j; CE

5 { 13 return j;

 6 int k; CE

 8 k = foo (); CE

 9 i = k + 2; 10 j = i * k;

Figure 5: A GIMPLE program and its tree representation.

in a statement1.

To traverse the statements of a function in
GIMPLE, one must follow the compound ex-
pression nodes in the body of the function. We
have implemented an iterator data structure,
called tree statement iterator(TSI), to facili-
tate this process. Note that TSIs don’t guaran-
tee that every single statement will be visited.
A traversal starting at line5 in Figure 5 will
only visit lines5 and13. It is up to the caller
to detect when a lexical scope or control state-
ment is being visited and recursively visit its
body.

While TSIs are convenient for traversing lex-
ical scopes, they are not suited for traversing
statements inside basic blocks. Notice how

1GENERIC and GIMPLE do not distinguish state-
ments from expressions as is done in the C and C++ front
ends.

functionbaz() contains a single basic block.
A proper traversal should visit lines8, 9, 10
and13, which could be done using TSIs, but
the caller would have to be responsible for
handling lexical scopes and determining basic
block boundaries. This is provided byblock
statement iterators(BSI). Thus, once the flow
graph for the function has been built, traversing
all the statements in the function can be done
with the double nested loop:

FOR EACH BB (bb)
for (i = bsi start (bb); !bsi end p (i); bsi next (&i))

processstmt (bsi stmt (i));

BSIs can also be used for backward traver-
sals as well as statement manipulation. Cur-
rently, statements can be removed, inserted in-
side blocks (before and after other statements)
and inserted on edges.

GCC Developers Summit 2003 • 187

1 a = foo ();
2 b = a + 10;
3 c = 5;
4 T1 = b + c;
5 if (a > T1)
6 {
7 T2 = b / a;
8 T3 = b * a;
9 c = T2 + T3;

10 b = b + 1;
11 }
12 bar (a, b, c);

(a) Original GIMPLE program.

1 a
1

= foo ();
2 b

1
= a

1
+ 10;

3 c
1

= 5;
4 T1

1
= b

1
+ c

1
;

5 if (a
1

> T1
1
)

6 {
7 T2

1
= b

1
/ a

1
;

8 T3
1

= b
1

* a
1
;

9 c
2

= T2
1

+ T3
1
;

10 b
2

= b
1

+ 1;
11 }
12 b

3
= φ(b

1
, b

2
);

13 c
3

= φ(c
1
, c

2
);

14 bar (a
1
, b

3
, c

3
);

(b) Same program in SSA form.

Figure 6: Static Single Assignment form.

5 Static Single Assignment form

The Static Single Assignment (SSA) form [3]
is based on the premise that program variables
are assigned in exactly one location in the pro-
gram. Multiple assignments to the same vari-
able create new versions of that variable. Natu-
rally, actual programs are seldom in SSA form
initially because variables tend to be assigned
multiple times. The compiler modifies the pro-
gram representation so that every time a vari-
able is assigned in the code, a new version of
the variable is created. Different versions of the
same variable are distinguished by subscript-
ing the variable name with its version number.
Variables used in the right-hand side of expres-
sions are renamed so that their version number
matches that of the most recent assignment.

Figure 6 shows the program from Figure 4(b)
and its corresponding SSA form (Figures 6(a)
and 6(b) respectively). Notice that every as-
signment in the program introduces a new ver-
sion number for the corresponding variable.
Every time a variable is used, its name is re-
placed with the version corresponding to the

most recent assignment for the variable.

Now consider the use of variableb in the call
to bar() (line 12). There are two assignments
to b that could reach line12; the assignment at
line 2 and the assignment inside theif at line
10. To solve this ambiguity, SSA introduces a
new artificial definition forb by means of aφ
(phi) function. This new definition merges both
assignments to create a new version forb (b3).
The semantics of theφ function dictate thatb3

will take the value from one of the function’s
arguments. The specific argument returned by
theφ function is not known until runtime.

6 Real and virtual operands

The SSA form is not suited for handling non-
scalar variable types. For instance, given an ar-
ray M[100][100] , not only would the com-
piler need to keep track of 10,000 different ver-
sion numbers forM, but it may also be im-
possible to determine whether two references
M[i][j] and M[k][l] are the same vari-
able or not. Structures, unions and aliased vari-

188 • GCC Developers Summit

ables present similar problems.

One alternative to handling non-scalar types
would be to simply ignore them. After all, if
the operands are not converted into SSA form,
they would not be considered for optimization.
However, that would also mean that statements
referencing nothing but non-scalars would ap-
pear dead to the optimizers. Also, situations
like scalar variables aliased by a structure field
would also be missed.

To address this problem, operands referencing
non-scalar variables are considered references
to the base object for that variable. For in-
stance, references toM[i][j] andM[k][l]
in the previous example would be considered
references toM. Since these operands need to
be treated separately by the optimizers, they
are known asvirtual operands, as opposed to
the real operandsfor scalar variables. There-
fore, every GIMPLE statementScontains four
distinct sets of operands:

DEF(S). If S is an assignment statement, this
is the variable at its left-hand side.

USES(S)is the set of all the variables used (or
loaded) byS.

VDEFS(S)is the set of all the virtual variables
defined (or stored) byS. VDEF operators
represent non-killing definitions because
they may or may not occur at run time. A
VDEF operator is of the formV = VDEF
<V>, which means that a new value forV
is created fromV’s old value.

VUSES(S)is the set of all the virtual variables
used byS.

Virtual operands are also used to handle situ-
ations where the program is altering variables
in ways that are difficult or impossible to de-
termine statically. In these cases, the data flow

framework needs to gather enough information
to prevent the optimizers from missing a poten-
tial data dependency. In all these cases, virtual
operands are used. Some of the more common
situations include:

1. Aliasing. If two variablesa and b may
alias each other, then the compiler selects
one of them to serve as the representative
for all the aliased references. Every refer-
ence to either variable is then considered
a virtual operand using the alias represen-
tative.

2. Call clobbering. Function calls may
modify addressable local variables and
globals in unknown ways. This is han-
dled using a similar approach. Variables
that may be call clobbered are consid-
ered alias of an artificial variable called
.global_var . This variable is consid-
ered modified by function calls and by as-
signments to any of the variables associ-
ated with it.

3. Inline assembly. Much like function
calls, inline assembly may modify local
variables in ways that the optimizers do
not understand. Variables listed in theout-
putsor clobberslist of GCC’sasm state-
ment, are considered VDEF operands.

The programs in Figures 7, 8 and 9 illustrate
how virtual operands are used to handle non-
scalar variables, aliasing and call clobbering.
All the example functions have been renamed
into SSA already. Notice how the VDEF oper-
ators link new SSA versions for a variable with
its previous version. This creates def-def links
that are used in passes like dead-code elimina-
tion to determine all the potentially live assign-
ments.

GCC Developers Summit 2003 • 189

double foo (int i, int j, int k, int l)
{

double T1, T2, f;
double M[100][100];

/* References to an element of ’M’ are
considered references to the whole
matrix. */

M
2

= VDEF <M
1
>

M[i][j] = . . .

/* VDEFs are non-killing definitions,
that’s why the new definition
created for M

3
is linked to M

2
in

the previous assignment. */
M

3
= VDEF <M

2
>

M[k][l] = . . .

VUSE <M
3
>

T1
4

= M[i][j];

VUSE <M
3
>

T2
5

= M[k][l];
f
6

= T1
4

+ T2
5
;

return f
6
;

}

Figure 7: Virtual operands for handling non-
scalar variables.

7 Representing pointers

In GIMPLE there are no multi-level pointers.
This is a very appealing property that allows
the compiler to keep track of a pointerp and
its dereference*p as two separate, but related,
variables. The relation betweenp and *p is
quite straightforward:

1. Every store top implies a store operation
to *p , because nowp is pointing to a dif-
ferent memory location.

2. Every store or load of*p implies a load
operation fromp, becausep is read to de-
termine what memory location to use.

int foo (int i, int j, int *p)
{

int a;

if (i
1

> j
2
)

{
/* Whenever ’p’ changes, ’*p’ must

also change. */
(*p)

4
= VDEF <(*p)

3
>

p
5

= &a;
}

/* Since ’*p’ may alias ’a’, instead
of renaming the operand ’a’, we
create a virtual definition for its
alias ’*p’. */

(*p)
7

= VDEF <(*p)
4
>

/* ’p’ is needed to access ’*p’. */
VUSE <p

5
>

a = i
1

+ j
2
;

VUSE <(*p)
7
>

return *p;
}

Figure 8: Virtual operands for handling aliases.

8 Conversion into SSA form

Converting the program into SSA form con-
sists of three main phases:

1. may-alias computation, which determines
what variables are referenced in the func-
tion and whether they may be aliased or
not,

2. insertion of φ nodes at basic blocks
reached by more than one definition of the
same variable, and,

3. statement renaming, which rewrites every
operand and virtual operand using the ap-
propriate SSA version numbers.

The following sections highlight the more im-
portant aspects of the conversion into SSA

190 • GCC Developers Summit

float F;

float foo(float f)
{

/* Since ’F’ is call-clobbered,
instead of renaming ’F’ in the
statement, we rename the virtual
operand .GLOBALVAR. */

.GLOBAL VAR
2

= VDEF <.GLOBAL VAR
1
>

F = f
3

+ 2;

/* Function calls clobber the variable
.GLOBAL VAR which in turn indicates
that ’F’ is also clobbered. */

.GLOBAL VAR
3

= VDEF <.GLOBAL VAR
2
>

bar ();

/* Uses of ’F’ are converted to
virtual uses of .GLOBALVAR. In
this statement we are using the
value of ’F’ potentially
modified by the call to bar(). */

VUSE <.GLOBAL VAR
3
>

return F;
}

Figure 9: Virtual operands for handling call
clobbering.

form. A more detailed description of the pro-
cess can be found in the literature [3, 1, 6].

8.1 Computing may-alias information

This pass collects all the variables referenced
in the function and determines may-alias sets
for each one. Currently, alias information is
type-based. A points-to analyzer is imple-
mented, but it is not fully functional yet.

8.2 Inserting φ nodes

This pass insertsφ nodes at the dominance
frontier of blocks with live variable definitions.
The algorithm implements the semi and fully
pruned forms suggested by Briggs et. al. [1]
to reduce the number ofφ nodes in the pro-

gram. The basic idea is that if a variable is not
live after being defined in blockb, then it is not
necessary to insert aφ node at the dominance
frontier of b.

Since computing global live-in information is
more expensive than local live-in, this pass
uses a heuristic based on the total number ofφ
arguments. If this is is above a certain thresh-
old2, the compiler builds a fully pruned form.

8.3 Rewriting statements and dominator-
based optimizations

The renaming process is done using a depth-
first traversal of the flow graph’s dominator tree
[3]. During this traversal it is possible to ap-
ply very simplistic transformations that take
advantage of the order in which basic blocks
are visited [6].

These transformations, also known as
dominator-based optimizations, include
constant propagation, redundancy elimination,
copy propagation and propagation of predicate
expressions. These optimizations are only
supposed to do simple cleanup work that
catches most of the simple cases. The key
property is that they must work fast because
they are piggybacked on top of the renaming
process (which is linear in the number of
statements).

1. Constant propagation. When a constant
assignment of the formai = C is found,
it is stored in a hash table. Successive oc-
currences ofai are replaced withC. No
folding nor control flow simplification is
done, only constant replacements. Copy
assignments are similarly optimized.

2. Redundancy elimination uses a similar
idea. When an assignment of the form
ai = bj⊕ck is found, the expressionbj⊕ck

2Currently 32.

GCC Developers Summit 2003 • 191

is stored into a hash table. Successive
occurrences ofbj ⊕ ck, within the same
sub-tree, are replaced withai. Notice that
this transformation is valid only when re-
placing redundant expressions dominated
by the original assignment, otherwise it
would be possible to insertai in a control
flow path where it is never evaluated.

3. Propagation of predicate expressions.
When a conditional statement of the form
if (ai == C) is found, the assignment
ai = C is inserted into the hash table for
constants and copies when processing the
“then” clause of the conditional. This will
cause the constant/copy propagator to re-
placeai with C in that sub-tree.

8.4 Conversion back to normal form

Once all the SSA optimizations have been ap-
plied to the function, all the SSA version num-
bers andφ nodes must be removed to return the
code to its original form. This process consists
mainly in converting allφ nodes into copy op-
erations. Some of the more important aspects
of this pass is avoiding superfluous copy op-
erations. We implement the standard conver-
sion into normal form described in the litera-
ture [1, 6].

9 Implementation status

Currently, the basic framework is almost fin-
ished. Two front ends (C and C++) have been
fully converted to emit GIMPLE trees and the
regression test suite presents similar results to
those of mainline GCC. Readers interested in
testing the current implementation and/or con-
tributing to its development are invited to visit
the Tree SSA web page athttp://gcc.
gnu.org/projects/tree-ssa/ . This
page contains information for retrieving a copy

of the development branch in CVS, status of
the implementation and a list of “to-do” items.

In terms of performance, the branch still lags
behind mainline. This is hardly surprising
as we have mostly worked on correctness is-
sues. Performance is going to be the focus
of the next phase of development. We have
been tracking performance using SPEC95 and
SPEC2000. Daily results of these experiments
can be found athttp://gcc.gnu.org/
benchmarks/ .

In addition to the optimizations performed
while renaming into SSA form and the flow
graph restructuring, there are four optimization
passes implemented.

1. Sparse Conditional Constant Propagation
(CCP) [7] is an efficient formulation of the
constant propagation problem that is also
capable of finding constant conditionals
and unreachable code. This optimization
is currently enabled by default at-O1 and
above.

2. Partial Redundancy Elimination (PRE)
[2] finds expressions that are computed
more than once and re-writes them so that
their values are computed once and re-
used as necessary. In addition to removing
completely redundant computations, PRE
has the ability to make partially redun-
dant computations fully redundant, thus
combining the effects of global common
subexpression elimination and loop in-
variant code motion.

3. Dead Code Elimination (DCE) [3] re-
moves all statements in the program that
have no effect on its output (assignments
to variables that are never used again, con-
ditional expressions with empty bodies,
etc). This optimization is currently en-
abled by default at-O1 and above.

192 • GCC Developers Summit

4. Copy Propagation (CP) is the same op-
timization applied while converting the
program into SSA form, but implemented
as a separate pass.

We are also implementing a memory checker,
calledmudflap, that instruments every pointer
and array reference in the program with bound-
ary checks [4]. It is a combination of compile-
time instrumentation and run-time library. The
instrumented code contains calls to the run-
time library that will be triggered when the pro-
gram attempts one of several illegal operations,
such as accessing an array out of bounds, free-
ing the same block of memory more than once,
accessing unallocated memory, leaking mem-
ory, etc.

Mudflap is not yet integrated into the SSA
framework, so no static analyses are done
to prevent inserting superfluous instrumenta-
tion. Optimization of mudflap instrumentation
is currently underway.

10 Conclusions

The Tree SSA project provides a new optimiza-
tion framework to make it possible for GCC to
implement high-level analyses and optimiza-
tions. Currently, the framework is in active
development and some optimizations have al-
ready been implemented. The goals of this
project include:

• Provide a basic set of data structures and
functions for optimizers to query and ma-
nipulate the tree representation.

• Simplify and, in some cases, replace ex-
isting optimizations that work on the RTL
representation but are not really suited for
it. By simplifying the work for the RTL
optimizers we aim to improve compile
times and code quality.

• Implement new optimizations and analy-
ses that are either difficult or impossible
to implement in RTL.

By basing all the analyses and transformations
on widely known published algorithms, we are
also trying to improve our ability to maintain
and add new features to GCC. Furthermore,
the use of standard techniques will encourage
external participation from groups in the com-
piler community that are not necessarily famil-
iar with GCC.

Acknowledgments

I would like to thank Red Hat for funding
the Tree SSA project and to all the develop-
ers who have contributed to it. In particu-
lar, I would like to thank the regular contrib-
utors to the project: Jeff Law and Andrew
MacLeod for their work on the base infrastruc-
ture and optimizers; Jason Merrill for his work
on GENERIC and GIMPLE; Frank Eigler for
his work on Mudflap; Sebastian Pop for the
original expression simplifier, tree unparser,
and tree browser; Daniel Berlin for his work
on points-to alias analysis and PRE; Steven
Bosscher and the G95 team for their work on
integrating G95 with GIMPLE; and Andreas
Jaeger, Phil Edwards, and Andrew Pinski for
testing the branch on a regular basis.

References

[1] P. Briggs, K. D. Cooper, T. J. Har-
vey, and L. Taylor Simpson. Practi-
cal Improvements to the Construction and
Destruction of Static Single Assignment
Form. Software—Practice and Experi-
ence, 28(8):859–881, 1998.

[2] F. Chow, S. Chan, R. Kennedy, S.-M. Liu,
R. Lo, and P. Tu. A new algorithm for

GCC Developers Summit 2003 • 193

partial redundancy elimination based on
SSA form. InACM SIGPLAN ’97 Confer-
ence on Programming Language Design
and Implementation, pages 273–286, Las
Vegas, 1997.

[3] R. Cytron, J. Ferrante, B. Rosen, M. Weg-
man, and K. Zadeck. Efficiently comput-
ing static single assignment form and the
control dependence graph.ACM Transac-
tions on Programming Languages and Sys-
tems, 13(4):451–490, October 1991.

[4] F. Ch. Eigler. Mudflap: Pointer Use
Checking for C/C++. InProceedings of the
2003 GCC Summit, Ottawa, Canada, May
2003.

[5] J. Merrill. GENERIC and GIMPLE: A
New Tree Representation for Entire Func-
tions. In Proceedings of the 2003 GCC
Summit, Ottawa, Canada, May 2003.

[6] R. Morgan. Building an Optimizing Com-
piler. Digital Press, 1998.

[7] M. Wegman and K. Zadeck. Constant
propagation with conditional branches.
ACM Transactions on Programming Lan-
guages and Systems, 13(2):181–210, April
1991.

194 • GCC Developers Summit

