The Python Library Reference
Release 3.3.0

Guido van Rossum
Fred L. Drake, Jr., editor

September 29, 2012

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Built-in Constants 23
3.1 Constants added by the sitemodule e 23
Built-in Types 25
4.1 Truth Value Testing o i it e e e e e e e 25
4.2 Boolean Operations — and, Or, NOT . . v v v v v v v v v i e e e e e e e e e e e e e 25
43 CompariSONS . . v v v v v v e 26
4.4 Numeric Types — int, float,complex« oottt v ittt 26
4.5 Tterator Types L e e 32
4.6 Sequence Types — list, tuple, range v v v i v v i it ii i e 33
477 TextSequence TYPE — STT . . . v v v v v i e e e e e e e e e e e e e e e e e e e 38
4.8 Binary Sequence Types — bytes, bytearray, memoryview v v v v v v v v v v 46
49 SetTypes — set, frozenset i v i it i e e e e e e e 55
4.10 Mapping Types — dict 0 e 57
4.11 Context Manager Types o o o o e e e e e e e 61
4.12 Other Built-in Types o . o e e e 61
4.13 Special Atributes e 64
Built-in Exceptions 65
5.1 Baseclasses 65
5.2 Concrete eXCePtiONS .« v v v v v v v v e 66
5.3 0 WarNIngs o v o i e e e e e e e e e e e e e e e 70
54 Exceptionhierarchy e 71
Text Processing Services 73
6.1 string— Common string OPerations oottt e e 73
6.2 re — Regular expression operationsl e e e e 82
6.3 difflib — Helpers forcomputingdeltas 99
6.4 textwrap —Textwrappingandfilling o 109
6.5 unicodedata—Unicode Database 112
6.6 stringprep — Internet String Preparation L L oo 114
6.7 readline —GNUreadlineinterface e 115
6.8 rlcompleter — Completion function for GNUreadline 118
Binary Data Services 119
7.1 struct — Interpret bytes as packed binary data 0oL 119

9

7.2 codecs — Codec registry and base classes e
Data Types

8.1 datetime —Basicdateand timetypesol
8.2 calendar — General calendar-related functions oL
83 collections—Containerdatatypes o v v i i i e e e e e e e
84 collections.abc — Abstract Base Classes for Containers
8.5 heapg—Heapqueuealgorithm oL
8.6 Dbisect — Array bisection algorithm
8.7 array — Efficient arrays of numeric values oL oo
8.8 weakref —Weakreferences L
8.9 types — Dynamic type creation and names for built-intypes
8.10 copy — Shallow and deep copy Operationsottt e
8.11 pprint —Datapretty prinfero i e e e e e e e e e
8.12 reprlib — Alternate repr () implementation oo

Numeric and Mathematical Modules

9.1
9.2
9.3
9.4
9.5
9.6

numbers — Numeric abstract base classes e .
math — Mathematical functions
cmath — Mathematical functions for complex numbers
decimal — Decimal fixed point and floating point arithmetic
fractions —Rational numbers Lo
random — Generate pseudo-random numbers L. Lol e e e

10 Functional Programming Modules

10.1
10.2
10.3

itertools — Functions creating iterators for efficient looping
functools — Higher-order functions and operations on callable objects
operator — Standard operators as functionsl oo

11 File and Directory Access

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

os.path — Common pathname manipulations
fileinput — Iterate over lines from multiple input streams
stat — Interpreting stat () resultS L L e e e
filecmp — File and Directory CompariSOns v v v v v v vt i e e e e
tempfile — Generate temporary files and directories
glob — Unix style pathname pattern eXpansion oot v v vt b
fnmatch — Unix filename pattern matching Lo
linecache —Randomaccesstotextlines
shutil — High-level file operations i e

11.10 macpath — Mac OS 9 path manipulation functions

12 Data Persistence

12.1
12.2
12.3
12.4
12.5
12.6

pickle — Python object serialization L L e
copyreg — Register pickle support functionso oo
shelve — Python object persistence v i e e e e
marshal — Internal Python object serialization,
dbm — Interfaces to Unix “databases” e
sglite3 — DB-API 2.0 interface for SQLite databases

13 Data Compression and Archiving

13.1
13.2
13.3
13.4
13.5

z1lib — Compression compatible withgzip
gzip— Supportfor gzipfiles e e
bz2 — Support for bzip2 compression Lo
1zma — Compression using the LZMA algorithm
zipfile — Work with ZIP archives e

139
139
165
168
183
185
189
191
193
197
200
201
205

209
209
212
216
219
244
246

251
251
264
268

275
275
278
281
285
286
290
290
291
292
299

301
301
313
313
316
317
320

13.6 tarfile —Readand write tararchivefiles

14 File Formats
14.1 csv—CSV File Reading and Writing
142 configparser — Configuration file parser L oL
143 netrc—netrc file processing e e e e e e e e e
144 xdrlib —Encodeanddecode XDRdata,
145 plistlib — Generate and parse Mac OS X .plistfiles.,

15 Cryptographic Services
15.1 hashlib — Secure hashes and message digests,
15.2 hmac — Keyed-Hashing for Message Authentication

16 Generic Operating System Services
16.1 os — Miscellaneous operating system interfaces oL ...
16.2 io — Core tools for working with streams
16.3 time — Time access and CONVEISIONS v v v v v v v it e e e et e e e e
16.4 argparse — Parser for command-line options, arguments and sub-commands
16.5 optparse — Parser for command lineoptions Lo
16.6 getopt — C-style parser for command lineoptions
16.7 logging— Logging facility for Python Lo
16.8 logging.config— Logging configuration
169 logging.handlers—Logginghandlers,
16.10 getpass — Portable password input Lo e e e e
16.11 curses — Terminal handling for character-cell displays
16.12 curses.textpad — Text input widget for curses programs
16.13 curses.ascii — Utilities for ASCII characters
16.14 curses.panel — A panel stack extension forcurses Lo
16.15 plat form — Access to underlying platform’s identifying data
16.16 errno — Standard errno system symbols L. L L
16.17 ctypes — A foreign function library for Python o000

17 Concurrent Execution
17.1 threading— Thread-based parallelism
17.2 multiprocessing — Process-based parallelism
17.3 concurrent.futures — Launching parallel tasks
17.4 subprocess — Subprocess management o.u e e e e e e e
17.5 sched—Eventscheduler e
17.6 queue — A synchronized queue class e
1777 select — Waiting for /O completion
17.8 dummy_threading — Drop-in replacement for the threadingmodule
179 _thread — Low-level threading API
17.10 _dummy_thread — Drop-in replacement for the _threadmodule

18 Interprocess Communication and Networking
18.1 socket — Low-level networking interface L oo
18.2 ss1 — TLS/SSL wrapper for socket objects o o i i e
18.3 asyncore — Asynchronous sockethandler
18.4 asynchat — Asynchronous socket command/response handler
18.5 signal — Set handlers for asynchronous events 0oL
18.6 mmap — Memory-mapped file support

19 Internet Data Handling
19.1 email — Anemail and MIME handling package
19.2 json —JSONencoderand decoder

365
365
371
387
388
391

393
393
395

397
397
433
444
451
480
505
507
521
530
541
542
558
559
561
563
566
572

603
603
615
667
672
685
686
689
694
694
696

697
697
713
730
733
736
741

745
745
790

20

21

22

193 mailcap—Mailcapfilehandling L
19.4 mailbox — Manipulate mailboxes in various formats oL,
19.5 mimetypes — Map filenames to MIME types e
19.6 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings
19.7 binhex — Encode and decode binhex4 files
19.8 binascii — Convert between binaryand ASCII
19.9 quopri — Encode and decode MIME quoted-printabledata
19.10 uu — Encode and decode uuencode files Lo o

Structured Markup Processing Tools

20.1 html — HyperText Markup Language support v i i vt vt e e
20.2 html.parser — Simple HTML and XHTML parser,
20.3 html.entities — Definitions of HTML general entities
204 xml.etree.ElementTree — The ElementTree XML API
20.5 xml.dom— The Document Object Model AP
20.6 xml.dom.minidom— Lightweight DOM implementation
20.7 xml.dom.pulldom— Support for building partial DOM trees
20.8 xml.sax — Supportfor SAX2 parsers oo e e e
209 xml.sax.handler — Baseclasses for SAX handlers
20.10 xml .sax.saxutils — SAXUtilities i e e
20.11 xml.sax.xmlreader — Interface for XML parsers
20.12 xml .parsers.expat — Fast XML parsingusing Expat

Internet Protocols and Support

21.1 webbrowser — Convenient Web-browser controller
21.2 cgi — Common Gateway Interface support e
21.3 cgitb — Traceback manager for CGIscripts
21.4 wsgiref — WSGI Utilities and Reference Implementation
21.5 urllib.request — Extensible library foropening URLs
21.6 urllib.response —Responseclassesusedbyurllib,
217 urllib.parse —Parse URLsintocomponentso v v v v v v ...
21.8 urllib.error — Exception classes raised by urllibrequest,
219 urllib.robotparser — Parser forrobots.txt L.
21.10 http.client — HTTP protocol client
21.11 ftplib —FTPprotocolclient o e
21.12 poplib —POP3 protocol client e e e e
21.13 imaplib —IMAP4 protocolclient L
21.14 nntplib —NNTP protocolclient e
21.15 smtplib — SMTP protocol client
21.16 smtpd — SMTP Server e
21.17 telnetlib —Telnetclient e
21.18 uuid — UUID objects according to RFC 4122 e i
21.19 socketserver — A framework for network servers oL oL
21.20 http.server — HTTPservers o o 0 0 et e e e e
21.21 http.cookies — HTTP state management v v ivv ..
21.22 http.cookiejar — Cookie handling for HTTPclients
21.23 xmlrpc.client — XML-RPCclientaccess o . v i i i vt v it
21.24 xmlrpc.server — Basic XML-RPCservers
21.25 ipaddress — IPv4/IPv6 manipulation library 0oL 0oL

Multimedia Services

22.1 audioop — Manipulateraw audiodata oL oL
22.2 aifc —Read and write AIFF and AIFC files
22.3 sunau—Read and write Sun AU files

823
823
823
828
828
840
850
854
856
857
862
863
867

224 wave —Readand write WAV files L 1013
22,5 chunk —ReadIFFchunkeddata 1015
22.6 colorsys — Conversions between color Systems oo e 1016
2277 imghdr — Determine the type of animage 1017
22.8 sndhdr — Determine type of sound file L Lo 1017
229 ossaudiodev — Access to OSS-compatible audio devices 1018
23 Internationalization 1023
23.1 gettext — Multilingual internationalization services 1023
23.2 locale — Internationalization SErviCeso e e 1031
24 Program Frameworks 1039
24.1 turtle —Turtlegraphics e 1039
24.2 cmd — Support for line-oriented command interpreterso oL 1074
243 shlex — Simple lexical analysis o o L e e e e 1079
25 Graphical User Interfaces with Tk 1083
25.1 tkinter — Pythoninterface to Tcl/Tk i e 1083
25.2 tkinter.ttk —Tkthemed widgets e 1093
253 tkinter.tix —ExtensionwidgetsforTko oo, 1110
254 tkinter.scrolledtext — Scrolled Text Widget 1115
255 IDLE . . . e 1115
25.6 Other Graphical User Interface Packages, 1118
26 Development Tools 1121
26.1 pydoc — Documentation generator and online help system 1121
26.2 doctest — Testinteractive Pythonexampleso o oL, 1122
26.3 unittest — Unittesting framework e 1145
264 unittest.mock —mockobjectlibrary L 1170
26.5 Thepatchers e 1183
26.6 MagicMock and magic method support L.l 1191
26.7 Helpers o o e e e 1194
26.8 unittest.mock —gettingstarted L e e e 1202
26.9 Further Examples. o L e e e e e e e 1208
26.10 2to3 - Automated Python 2 to 3 code translation L 0oL, 1220
26.11 test — Regression tests package forPython. o oo oL, 1225
26.12 test.support — Utilities for the Python testsuite 1228
26.13 venv — Creation of virtual environments e e 1232
27 Debugging and Profiling 1237
27.1 bdb — Debugger framework L e 1237
27.2 faulthandler — Dump the Pythontraceback 1241
27.3 pdb —The Python Debugger e e 1243
27.4 The Python Profilers e 1249
27.5 timeit — Measure execution time of small code snippets 1255
27.6 trace — Trace or track Python statementexecution 1259
28 Python Runtime Services 1263
28.1 sys — System-specific parameters and functions L. 0oL 1263
28.2 sysconfig— Provide access to Python’s configuration information. 1276
283 builtins —Built-inobjects e e e e e e e 1280
284 __ _main___ — Top-level script environment Lo e 1280
28.5 warnings—Warningcontrol oL e 1280
28.6 contextlib — Utilities for with-statement contexts 1285
287 abc—Abstract Base Classes« . e e e e e e 1293

29

30

31

32

33

34

28.8 atexit —Exithandlers e
28.9 traceback — Printor retrieve a stack traceback o oL oL
28.10 _ future_ — Future statement definitions
28.11 gc — Garbage Collectorinterface L
28.12 inspect — Inspectlive objects L.
28.13 site — Site-specific configuration hooko oL
28.14 fpectl — Floating point exception control L e e
28.15 distutils — Building and installing Pythonmodules

Custom Python Interpreters
29.1 code — Interpreter base Classes L e e e e e e e e e
29.2 codeop — Compile Pythoncode e

Importing Modules

30.1 imp — Accessthe importinternals e
30.2 zipimport — Import modules from Zip archives L.
30.3 pkgutil — Package extensionutility oL Lo Lo
304 modulefinder —Find modulesused by ascript oL,
30.5 runpy — Locating and executing Pythonmodules 0oL,
30.6 importlib — Animplementation of import e

Python Language Services

31.1 parser — Access Pythonparsetrees e
31.2 ast —Abstract Syntax Trees v v v i e e e e e e e e
31.3 symtable — Access to the compiler’s symbol tables
31.4 symbol — Constants used with Python parse trees
31.5 token — Constants used with Python parse trees
31.6 keyword — Testing for Python keywords oo
31.7 tokenize — Tokenizer for Pythonsource e
31.8 tabnanny — Detection of ambiguous indentation oo
31.9 pyclbr — Python class browser supporto Lo
31.10 py_compile — Compile Python source files
31.11 compileall — Byte-compile Python libraries
31.12 dis — Disassembler for Python bytecode
31.13 pickletools — Tools for pickle developers

Miscellaneous Services
32.1 formatter — Generic output formattingo e e e e

MS Windows Specific Services

33.1 msilib — Read and write Microsoft Installer files
33.2 msvcrt — Useful routines from the MS VC++runtime
333 winreg— WIndows regiStry CCeSS . . . v v v v v v v v v e e e e e e e e e e e e e e e e e
33.4 winsound — Sound-playing interface for Windows oo Lo

Unix Specific Services

34.1 posix — The most common POSIX systemcalls
342 pwd—The passworddatabase L e
343 spwd — The shadow password database
344 grp—Thegroupdatabase e
34.5 crypt — Function to check Unix passwords o e
346 termios —POSIXstylettycontrol e e
347 tty —Terminal control functionso
34.8 pty —Pseudo-terminal utilities e e e e e e e e
349 fcntl —The fentl () and ioctl () systemcalls Lo

vi

34.10 pipes — Interface to shell pipelines
34.11 resource — Resource usage information
34.12 nis — Interface to Sun’s NIS (Yellow Pages)
34.13 syslog — Unix syslog library routines

35 Undocumented Modules

35.1 Platform specific modules

A Glossary
Bibliography

B About these documents

B.1 Contributors to the Python Documentation

C History and License

C.1 Historyof thesoftware

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Python Module Index

Index

1427

1429
1429

1431
1431
1432
1435

1447

1449

1453

vii

viii

The Python Library Reference, Release 3.3.0

Release 3.3
Date September 29, 2012

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 3.3.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual), or
look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a section or two. Regardless of the order
in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the remainder of the
manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 3.3.0

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here

in alphabetical order.

Built-in Functions

abs () dict () help () min () setattr ()
all() dir () hex () next () slice ()

any () divmod () id() object () sorted ()
ascii() enumerate () | input () oct () staticmethod ()
bin () eval () int () open () str()

bool () exec () isinstance () ord () sum ()
bytearray () filter () issubclass () pow () super ()
bytes () float () iter () print () tuple ()
callable () format () len () property () | type ()

chr () frozenset () list () range () vars ()
classmethod () getattr () locals () repr () zip ()
compile () globals () map () reversed() | __import__ ()
complex () hasattr () max () round ()

delattr () hash () memoryview () set ()
abs (x)

Return the absolute value of a number. The argument may be an integer or a floating point number. If the

argument is a complex number, its magnitude is returned.

all (iterable)

Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:

if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable) :
for element in iterable:
if element:
return True
return False

The Python Library Reference, Release 3.3.0

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII char-
acters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to that
returned by repr () in Python 2.

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python int
object, it has to define an __index___ () method that returns an integer.

bool ([x])
Convert a value to a Boolean, using the standard fruth testing procedure. 1If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int (see Numeric Types — int,
float, complex). Class bool cannot be subclassed further. Its only instances are False and True (see Boolean
Values).

bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray type is a mutable sequence of integers in the range 0 <= x < 256.
It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as most
methods that the bytes type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

oIf it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

oIf it is an integer, the array will have that size and will be initialized with null bytes.

oIf it is an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

oIf it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.

bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in therange 0 <= x < 256. bytes
is an immutable version of bytearray — it has the same non-mutating methods and the same indexing and
slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.

callable (object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible that
a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class
returns a new instance); instances are callable if their class hasa _ call__ () method. New in version 3.2:
This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode codepoint is the integer i. For example, chr (97)
returns the string “a’. This is the inverse of ord (). The valid range for the argument is from O through

1,114,111 (Ox10FFFF in base 16). ValueError will be raised if i is outside that range.

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.3.0

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in this
section.

For more information on class methods, consult the documentation on the standard type hierarchy in fypes.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)

Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a string or an AST object. Refer to the ast module documentation for information on how to
work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (* <string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be ' exec’ if source consists of a
sequence of statements, ' eval’ if it consists of a single expression, or ’ single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the compi-
lation of source. If neither is present (or both are zero) the code is compiled with those future statements that are
in effect in the code that is calling compile. If the flags argument is given and dont_inherit is not (or is zero) then
the future statements specified by the flags argument are used in addition to those that would be used anyway.
If dont_inherit is a non-zero integer then the flags argument is it — the future statements in effect around the call
to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature
instance in the __ future__ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the
optimization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source contains
null bytes.

Note: When compiling a string with multi-line code in * single’ or ' eval’ mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in the
code module.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in ' exec’ mode does not
have to end in a newline anymore. Added the optimize parameter.

complex ([real[, imag]])
Create a complex number with the value real + imag*j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.3.0

(including complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion
function like int () and float (). If both arguments are omitted, returns 0 j.

Note: When converting from a string, the string must not contain whitespace around the central + or — operator.
For example, complex (’ 1+273’) is fine, but complex (' 1 + 27j’) raises ValueError.

The complex type is described in Numeric Types — int, float, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ’foobar’) isequivalenttodel x.foobar.

dict ([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in Mapping
Types — dict.

For other containers see the builtin 1ist, set, and tuple classes, and the col lections module.

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or __getattribute__ () function to cus-
tomize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace
["__builtins__ ', ’'__name_ ', ’struct’]
>>> dir (struct) # show the names in the struct module

["Struct’, '__all_ ", ’'__builtins_ ', ’_ _cached_ ', '__doc_ ', '__ _file 7",
!__initializing__ ', '__locader__ ', '__name_ ', ’'_ package_ ',

! _clearcache’, ’'calcsize’, ’"error’, ’'pack’, ’pack_into’,
"unpack’, "unpack_from’]
>>> class Shape (object) :

def @ dir (self):

C. return [’area’, ’'perimeter’, ’location’]
>>> s = Shape()
>>> dir(s)
["area’, ’'location’, ’'perimeter’]

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.3.0

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the resultis (q,

a % Db),wheregisusuallymath.floor (a / b) butmay be 1 less than that. Inanycaseg b + a %
bis very close to a,if a % b is non-zero it has the same sign as b,and 0 <= abs(a % b) < abs(b).

enumerate (iterable, start=0)
Return an enumerate object. iferable must be a sequence, an iferator, or some other object which supports
iteration. The __next__ () method of the iterator returned by enumerate () returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = [’Spring’, ’Summer’, ’'Fall’, ’'Winter’]

>>> list (enumerate (seasons))

[(0O, "Spring’), (1, 'Summer’), (2, ’'Fall’), (3, "Winter’)]
>>> list (enumerate (seasons, start=1))

[(1, "Spring’), (2, ’Summer’), (3, ’'Fall’), (4, ’'Winter’)]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression, globals=None, locals=None)

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present
and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed. This means
that expression normally has full access to the standard builtins module and restricted environments are
propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed in the environment where eval () is called. The return value is the result
of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval (’/
2

x+17)

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with ’ exec’ as the mode
argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to pass
around for use by eval () orexec ().

The Python Library Reference, Release 3.3.0

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing only
literals.

exec (object[, globals[, locals]])

This function supports dynamic execution of Python code. object must be either a string or a code object. If it is
a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error occurs).
! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be valid as file
input (see the section “File input” in the Reference Manual). Be aware that the ret urn and yield statements
may not be used outside of function definitions even within the context of code passed to the exec () function.
The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals and
locals are given, they are used for the global and local variables, respectively. If provided, locals can be any
mapping object. Remember that at module level, globals and locals are the same dictionary. If exec gets two
separate objects as globals and locals, the code will be executed as if it were embedded in a class definition.

If the globals dictionary does not contain a value for the key __builtins__, areference to the dictionary of
the built-in module bui 1t ins is inserted under that key. That way you can control what builtins are available to
the executed code by inserting your own __builtins___ dictionary into globals before passing it to exec ().

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

filter (function, iterable)

Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function(item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

float ([x])

Convert a string or a number to floating point.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional signmay be * +” or ’ =’ ;a " +’ sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or a positive or negative infinity. More
precisely, the input must conform to the following grammar after leading and trailing whitespace characters are
removed:

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline

conversion mode to convert Windows or Mac-style newlines.

10

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.3.0

Sign L \\+II ‘ ALY

infinity = “Infinity” | “inf”

nan = “nan”

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here f1oatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an
OverflowError will be raised.

For a general Python object x, f1loat (x) delegatesto x.___float__ ().
If no argument is given, O . O is returned.

Examples:

>>> float ('+1.23")

1.23

>>> float (’ -12345\n’)
-12345.0

>>> float (' 1e-003")
0.001

>>> float ("+1E6")
1000000.0

>>> float (! —-Infinity’)
-inf

The float type is described in Numeric Types — int, float, complex.

format (value[, format_spec])

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument, however there is a standard formatting syntax that is used by
most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling str (value).

Acallto format (value, format_spec) istranslatedto type (value) ._ format_ (format_spec)

which bypasses the instance dictionary when searching for the value’s __ _format__ () method. A
TypeError exception is raised if the method is not found or if either the format_spec or the return value are
not strings.

frozenset ([itemble])

Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in Set
Types — set, frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collect ions module.

getattr (object, name[, default])

Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’)
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current

11

The Python Library Reference, Release 3.3.0

module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an AttributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

hex (x)
Convert an integer number to a hexadecimal string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index___ () method that returns an integer.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = input ("-—> ')
—-—> Monty Python’s Flying Circus
>>> 3

"Monty Python’s Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

int ([number I string[, base]])

Convert a number or string to an integer. If no arguments are given, return 0. If a number is given, return
number.__int__ (). Conversion of floating point numbers to integers truncates towards zero. A string
must be a base-radix integer literal optionally preceded by ‘+’ or ‘-* (with no space in between) and optionally
surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with ‘a’ to ‘z’ (or ‘A’ to ‘Z’) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be
optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means to interpret
exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int (' 010’ , 0) is not legal,
while int (010’) is,as wellas int (010", 8).

The integer type is described in Numeric Types — int, float, complex.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.3.0

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virtual)
subclass thereof. If object is not an object of the given type, the function always returns false. If classinfo is
not a class (type object), it may be a tuple of type objects, or may recursively contain other such tuples (other
sequence types are not accepted). If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised.

issubclass (class, classinfo)
Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any
other case, a TypeError exception is raised.

iter (object[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method
with integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then object must be a callable object. The iterator created in this case
will call object with no arguments for each call to its __next___ () method; if the value returned is equal to
sentinel, St opTIteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter () is to read lines of a file until a certain line is reached. The
following example reads a file until the readl ine () method returns an empty string:

with open ('mydata.txt’) as fp:
for line in iter (fp.readline, ’7):
process_line(line)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list ([iterable])
Rather than being a function, 11ist is actually a mutable sequence type, as documented in Sequence Types —
list, tuple, range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iferable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the
function inputs are already arranged into argument tuples, see itertools.starmap ().

max (iterable[, args...], *[, key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

13

The Python Library Reference, Release 3.3.0

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0] and
heapg.nlargest (1, iterable, key=keyfunc).

memoryview (obj)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable[, args...], *[, key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

If multiple items are minimal, the function returns the first one encountered. This is consis-
tent with other sort-stability preserving tools such as sorted(iterable, key=keyfunc) [0] and
heapg.nsmallest (1, iterable, key=keyfunc).

next (iterator[, default])
Retrieve the next item from the iterator by calling its __next___ () method. If default is given, it is returned if
the iterator is exhausted, otherwise StopIteration is raised.

object ()
Return a new featureless object. object is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a Python int
object, it has to define an __index__ () method that returns an integer.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True,
opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.

file is either a string or bytes object giving the pathname (absolute or relative to the current working directory)
of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is
closed when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ’ r’ which means
open for reading in text mode. Other common values are ’ w’ for writing (truncating the file if it already exists),
" x' for exclusive creation and ’ a’ for appending (which on some Unix systems, means that all writes append
to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the
encoding used is platform dependent: locale.getpreferredencoding (False) is called to get the
current locale encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

Character | Meaning

el open for reading (default)

"w! open for writing, truncating the file first

rx’ open for exclusive creation, failing if the file already exists

ra’ open for writing, appending to the end of the file if it exists

b’ binary mode

e’ text mode (default)

T4 open a disk file for updating (reading and writing)

Ty’ universal newlines mode (for backwards compatibility; should not be used in new code)

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.3.0

The default mode is ” r’ (open for reading text, synonym of ’/ rt’). For binary read-write access, the mode
"w+b’ opens and truncates the file to O bytes. ' r+b’ opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including ' b’ in the mode argument) return contents as bytes objects without any decoding. In text mode
(the default, or when ’ t’ is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is
done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size of a
fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as follows:

*Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE. On
many systems, the buffer will typically be 4096 or 8192 bytes long.

*“Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use the
policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever 1ocale.getpreferredencoding () returns), but
any encoding supported by Python can be used. See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. Pass strict’ to raise a ValueError exception if there is an encoding error (the
default of None has the same effect), or pass * ignore’ to ignore errors. (Note that ignoring encoding errors
can lead to data loss.) ' replace’ causes a replacement marker (such as ’ ?’) to be inserted where there
is malformed data. When writing, ' xmlcharrefreplace’ (replace with the appropriate XML character
reference) or ' backslashreplace’ (replace with backslashed escape sequences) can be used. Any other
error handling name that has been registered with codecs.register_error () is also valid.

newline controls how universal newlines mode works (it only applies to text mode). It can be None, ”, " \n’,
"\r’,and ' \r\n’. It works as follows:

*When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
the input canend in * \n’, “\r’, or ' \r\n’, and these are translated into ’ \n’ before being returned
to the caller. If it is ”, universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string, and
the line ending is returned to the caller untranslated.

*When writing output to the stream, if newline is None, any ' \n’ characters written are translated to
the system default line separator, os . linesep. If newline is ” or \n’, no translation takes place. If
newline is any of the other legal values, any ’ \n’ characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be
kept open when the file is closed. If a filename is given closefd has no effect and must be True (the default).

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open
as opener results in functionality similar to passing None). Changed in version 3.3: The opener parameter
was added. The ’ x’ mode was added. The type of file object returned by the open () function depends on
the mode. When open () is used to open a file in a text mode (" w’, 'r’, "wt’, ' rt’, etc.), it returns a
subclass of io.TextIOBase (specifically io.Text IOWrapper). When used to open a file in a binary
mode with buffering, the returned class is a subclass of io.BufferedIOBase. The exact class varies: in
read binary mode, it returns a io.BufferedReader; in write binary and append binary modes, it returns

15

The Python Library Reference, Release 3.3.0

a io.BufferedWriter, and in read/write mode, it returns a io.BufferedRandom. When buffering is
disabled, the raw stream, a subclass of io.RawIOBRase, i0.FileIO, is returned.

See also the file handling modules, such as, fileinput, io (where open () is declared), os, os.path,
tempfile,and shutil. Changed in version 3.3: TOError used to be raised, it is now an alias of OSError.
FileExistsError is now raised if the file opened in exclusive creation mode (’ x”) already exists.

ord (c)

Given a string representing one Unicode character, return an integer representing the Unicode code point of that
character. For example, ord (’ a’) returns the integer 97 and ord (' \u2020’) returns 8224. This is the
inverse of chr ().

pow (x,y[, z])

Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than
pow (x, vy) % z). Thetwo-argument form pow (x, vy) isequivalent to using the power operator: x* *y.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10+«2 returns 100, but 10+ *—2 returns 0.01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print ([object,], * sep="", end="\n’, file=sys.stdout, flush="False)

Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no object is given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used. Whether output is buffered is usually determined by file, but if the flush keyword
argument is true, the stream is forcibly flushed. Changed in version 3.3: Added the flush keyword argument.

property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C:
def @ init_ (self):
self._x = None

def getx(self):
return self._x
def setx(self, wvalue):
self._x = value
def delx(self):
del self._x
X = property(getx, setx, delx, "I'm the ’'x’ property.")

If then c is an instance of C, c . x will invoke the getter, c.x = value will invoke the setter and del c.x
the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.3.0

class Parrot:
def @ init__ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C:
def @ init_ (self):
self._x = None

@property

def x(self):
"""Ilm the /XI property- mmn
return self._x

@x.setter
def x(self, wvalue):
self. _x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property also has the attributes fget, fset, and £del corresponding to the constructor argu-
ments.

range ([smrt], stop[, step])
Rather than being a function, range is actually an immutable sequence type, as documented in Sequence Types
— list, tuple, range.

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defininga___repr___ () method.

reversed (seq)
Return a reverse iferator. seq must be an object which has a __reversed__ () method or supports the
sequence protocol (the __len__ () method andthe ___getitem__ () method with integer arguments starting
at 0).

round (x[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to zero.
Delegates to x.__round___ (n).

17

The Python Library Reference, Release 3.3.0

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus z; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round (0.5) and round (-0.5) are 0, and round (1.5) is 2). The return value is an integer if called with
one argument, otherwise of the same type as x.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives2.67
instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be
represented exactly as a float. See fut-fp-issues for more information.

set ([iterable])
Return a new set, optionally with elements taken from iterable. The set type is described in Ser Types — set,
Jfrozenset.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar = 123.

slice ([start], stop[, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, 1i]. See
itertools.islice () for an alternate version that returns an iterator.

sorted (iterable[, key][, reverse])
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () toconvert an old-style cmp function to a key function.
For sorting examples and a brief sorting tutorial, see Sorting HowTo.

staticmethod (function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:
class C:

@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C.f ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a variant
that is useful for creating alternate class constructors.

For more information on static methods, consult the documentation on the standard type hierarchy in types.

18 Chapter 2. Built-in Functions

http://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 3.3.0

str([object[, encoding[, errors]]])
Return a string version of an object, using one of the following modes:

If encoding and/or errors are given, st r () will decode the object which can either be a byte string or a character
buffer using the codec for encoding. The encoding parameter is a string giving the name of an encoding; if the
encoding is not known, LookupError is raised. Error handling is done according to errors; this specifies
the treatment of characters which are invalid in the input encoding. If errors is ' strict’ (the default), a
ValueError is raised on errors, while a value of ’ ignore’ causes errors to be silently ignored, and a
value of ' replace’ causes the official Unicode replacement character, U+FFFD, to be used to replace input
characters which cannot be decoded. See also the codecs module.

When only object is given, this returns its nicely printable representation. For strings, this is the string itself.
The difference with repr (obJject) isthat str (object) does not always attempt to return a string that is
acceptable to eval () ;its goal is to return a printable string. With no arguments, this returns the empty string.

Objects can specify what str (object) returns by defininga ___str__ () special method.

For more information on strings see Sequence Types — list, tuple, range which describes sequence functionality
(strings are sequences), and also the string-specific methods described in the String Methods section. To output
formatted strings, see the String Formatting section. In addition see the Text Processing Services section.

sum (iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The iterable‘s
items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ”. join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using itertools.chain ().

super ([type[, object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr ()
except that the type itself is skipped.

The __mro___ attribute of the type lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an ob-
ject, isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single
inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that this method have the same calling signature in every case (because
the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and
because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arqg):
super () .method (arg) # This does the same thing as:

super (C, self).method(arqg)

19

The Python Library Reference, Release 3.3.0

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such as
super () .__getitem__ (name). It does so by implementing its own __getattribute__ () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

tuple ([iterable])
Rather than being a function, tuple is actually an immutable sequence type, as documented in Sequence Types
— list, tuple, range.

type (object)
Return the type of an object. The return value is a type object and generally the same object as returned by
object._ _class__.

The isinstance () built-in function is recommended for testing the type of an object, because it takes sub-
classes into account.

With three arguments, t ype () functions as a constructor as detailed below.

type (name, bases, dict)
Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the __name___ attribute; the bases tuple itemizes the base classes and becomes
the _ bases__ attribute; and the dict dictionary is the namespace containing definitions for class body and
becomes the __dict___ attribute. For example, the following two statements create identical t ype objects:

>>> class X:
a =1

>>> X = type(’'X’, (object,), dict(a=1l))

vars ([object])
Without an argument, act like 1ocals ().

With a module, class or class instance object as argument (or anything else that has a ___dict___ attribute),
return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined. *

zip (*iterables)
Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument, it
returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(xiterables):
zip(’ABCD’, ’xy’) --> Ax By
sentinel = object ()

2 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

20 Chapter 2. Built-in Functions

http://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.3.0

iterators = [iter(it) for it in iterables]
while iterators:
result = []
for it in iterators:
elem = next (it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple(result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip (* [iter (s) 1*n).

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched values
from the longer iterables. If those values are important, use itertools.zip_longest () instead.

z1ip () in conjunction with the » operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> zipped = zip(x, V)

>>> list (zipped)

(1, 4, (2, 5, (3, 6)]

>>> x2, y2 = zip(xzip(x, Vy))

>>> x == list(x2) and y == list (y2)
True

__import__ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike
importlib.import_module ().

This function is invoked by the import statement. It can be replaced (by importing the builtins module and
assigningtobuiltins.___import__)in order to change semantics of the import statement, but nowadays
it is usually simpler to use import hooks (see PEP 302) to attain the same goals. Direct use of __import__ ()

is entirely discouraged in favor of importlib.import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at all,
and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. O (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the module
calling___import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:
spam = ___import__ (’spam’, globals(), locals(), [1, 0)

The statement import spam.ham results in this call:

21

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.3.0

spam = __import__ (’spam.ham’, globals (), locals(), []1, 0)

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ (’spam.ham’, globals (), locals(), [’"eggs’, ’sausage’], 0)
eggs = _temp.eggs

saus = _temp.sausage

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are

retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use
importlib.import_module (). Changed in version 3.3: Negative values for level are no longer
supported (which also changes the default value to 0).

22

Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq__ (), __1t__ (), and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
The same as Special value used mostly in conjunction with extended slicing syntax for user-defined
container data types.

__debug___
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be
used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemExit with the specified exit code.

copyright
license

23

The Python Library Reference, Release 3.3.0

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

24 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested for
truth value, and converted to a string (with the repr () function or the slightly different st r () function). The latter
function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or while condition or as operand of the Boolean operations
below. The following values are considered false:

* None

* False

* zero of any numeric type, for example, 0, 0.0, 0.
* any empty sequence, for example, ”, (), [].

e any empty mapping, for example, { }.

e instances of user-defined classes, if the class defines a _ _bool__ () or __ _len__ () method, when that
method returns the integer zero or boo1l value False. !

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

! Additional information on these special methods may be found in the Python Reference Manual (customization).

25

The Python Library Reference, Release 3.3.0

Operation Result Notes

X Or y if x is false, then y, else x (1)

x and y if x is false, then x, else y 2)

not x if x is false, then True, else False | (3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.
2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has alower priority than non-Boolean operators, so not a == b isinterpreted as not (a == b),and
a == not b isasyntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x < y
and y <= gz, except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for example,
function objects) support only a degenerate notion of comparison where any two objects of that type are unequal. The
<, <=, > and >= operators will raise a TypeError exception when comparing a complex number with another built-
in numeric type, when the objects are of different types that cannot be compared, or in other cases where there is no
defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eqg___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (), __le_ (), __gt__ (),and __ge__ () (in general,
__1t__ () and__eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects and
never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types (below).

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using
double in C; information about the precision and internal representation of floating point numbers for the machine
on which your program is running is available in sys.float_info. Complex numbers have a real and imaginary

26 Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

part, which are each a floating point number. To extract these parts from a complex number z, use z.real and
z .imag. (The standard library includes additional numeric types, fractions that hold rationals, and decimal
that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ’ 5’ or / J’ to a numeric literal yields an imaginary number (a complex
number with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary
parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. Comparisons between numbers of mixed type use the same rule. > The constructors
int (), float (), and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in the
same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes | Full
documentation
X +y sum of x and y
X -y difference of x and y
X *x Y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y @))
X %y remainder of x / y 2)
-X X negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)(6) | int ()
float (x) x converted to floating point @)(6) | float ()
complex (re, a complex number with real part re, imaginary part im. im (6) complex ()
im) defaults to zero.
c.conjugate () | conjugate of the complex number ¢
divmod (x, V) the pair (x // y, x % V) 2) divmod ()
pow (x, V) x to the power y (5 pow ()
X *%x Y X to the power y 5
Notes:

1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2is 0, (-1) //2is-1,1//(=2) is
-1,and (-1)//(-2) is 0.

2. Not for complex numbers. Instead convert to floats using abs () if appropriate.

3. Conversion from floating point to integer may round or truncate as in C; see functions f1oor () and ceil ()
in the math module for well-defined conversions.

4. float also accepts the strings “nan” and “inf”” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

5. Python defines pow (0, 0) and 0 =% O to be 1, as is common for programming languages.

6. The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd
property).

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 27

The Python Library Reference, Release 3.3.0

See http://www.unicode.org/Public/6.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and £1loat) also include the following operations:

Operation Result Notes
math.trunc(x) | xtruncated to Integral

round (x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to O.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >= x

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types
Bitwise operations only make sense for integers. Negative numbers are treated as their 2’s complement value (this
assumes a sufficiently large number of bits that no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority (operations in the same box have the same priority):

Operation Result Notes
x |y bitwise or of x and y
x Ny bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n x shifted left by n bits (H©2)
X >> n x shifted right by n bits (HA3)
~X the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.
2. A left shift by #n bits is equivalent to multiplication by pow (2, n) without overflow check.

3. A right shift by n bits is equivalent to division by pow (2, n) without overflow check.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers . Integral abstract base class. In addition, it provides one more method:

int.bit_length ()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin(n)
’-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x . bit_length () is the unique positive integer k such that 2+ (k-1)
<= abs (x) < 2xxk. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int (log(abs(x), 2)).If xiszero,thenx.bit_length () returns 0.

Equivalent to:

28 Chapter 4. Built-in Types

http://www.unicode.org/Public/6.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.3.0

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> ’-0b100101’
s = s.lstrip(’'-0b’) # remove leading zeros and minus sign
return len(s) # len(’71001017) ——> 6

New in version 3.1.

int.to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big’)

b’ \x04\x00"

>>> (1024) .to_bytes (10, byteorder='big’)

b’ \x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='"big’, signed=True)

b/ \xfA\XFA\XEA\XEF\XEL\XEF\XEL\XEF\xfc\x00’

>>> x = 1000

>>> x.to_bytes ((x.bit_length() // 8) + 1, byteorder=’little’)
b’ \xe8\x03"

The integer is represented using length bytes. An OverflowError is raised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most significant byte is at
the end of the byte array. To request the native byte order of the host system, use sy s .byteorder as the byte
order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised. The default value for signed is False. New in
version 3.2.

classmethod int . from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b’ \x00\x10’, byteorder="big’)

16

>>> int.from_bytes (b’ \x00\x10’, byteorder=’'1little’)

4096

>>> int.from_bytes (b’ \xfc\x00’, byteorder="big’, signed=True)
-1024

>>> int.from_bytes (b’ \xfc\x00’, byteorder='big’, signed=False)
64512

>>> int.from _bytes ([255, 0, 0], byteorder="big’)

16711680

The argument bytes must either support the buffer protocol or be an iterable producing bytes. bytes and
bytearray are examples of built-in objects that support the buffer protocol.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1itt1le", the most significant byte is at
the end of the byte array. To request the native byte order of the host system, use sys.byteorder as the byte
order value.

The signed argument indicates whether two’s complement is used to represent the integer. New in version 3.2.

4.4. Numeric Types — int, float, complex 29

The Python Library Reference, Release 3.3.0

4.4.3 Additional Methods on Float

The float type implements the numbers.Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).1is_integer ()
True
>>> (3.2).1is_integer ()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float .hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod f1oat . fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.
A hexadecimal string takes the form:
[sign] [’'0x’] integer [’ .’ fraction] [’p’ exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of £1oat .hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by float . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3
+ 10./16 + 7./16%%x2) % 2.0xx10,0r 3740.0:

>>> float.fromhex (' 0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
"0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and vy, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== vy (see the __hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational num-
ber, and hence applies to all instances of int and fraction.Fraction, and all finite instances of f1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P
is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedis P = 2xx31 - 1 on machines with 32-bit C longs
andP = 2x+61 - 1 onmachines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash (x) as m =*
invmod (n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no in-
verse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value
sys.hash_info.inf.

e If x = m / nis a negative rational number define hash (x) as ~hash (-x). If the resulting hash is -1,
replace it with —2.

e The particular values sys.hash_info.inf, —sys.hash_info.inf and sys.hash_info.nan are
used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have the
same hash value.)

e For a complex number z, the hash values of the real and imaginary parts are combined by
computing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo
2+«xsys.hash_info.width so that it lies in range (-2*+* (sys.hash_info.width - 1),
2x% (sys.hash_info.width - 1)). Again, if the result is —1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, float, or complex:

import sys, math

def hash_fraction(m, n):
""r"Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mmn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
while m $ P == n % == 0:
m, n=m// P, n// P
ifn %P == 0:
hash_ = sys.hash_info.inf
else:
Fermat’s Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_ = (abs(m) % P) % pow(n, P - 2, P) % P
if m < O:

hash_ = -hash_
if hash_ == -1:

hash_ = -2

return hash_

4.4. Numeric Types — int, float, complex 31

The Python Library Reference, Release 3.3.0

def hash_float (x):
"""Compute the hash of a float x."""

if math.isnan (x) :

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*xx.as_integer_ratio())

def hash_complex(z) :
"""Compute the hash of a complex number z."""

hash_ = hash_float(z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2+*+*sys.hash_info.width
M = 2x%(sys.hash_info.width - 1)
hash. = (hash_ & (M - 1)) — (hash & M)
if hash_ == -1:
hash_ == -2
return hash_

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

container._ _iter_ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter_ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APL

iterator._ _next_ ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s __next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__ ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter_ () and __next__ () methods. More information about generators can be found in the
documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for processing
of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the table, s and ¢ are sequences of the same type, n, i, j and k are integers and x is an arbitrary object that meets any
type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and
(repetition) operations have the same priority as the corresponding numeric operations.

Operation Result Notes
x in s True if an item of s is equal to x, else False (D

x not in s False if an item of s is equal to x, else True @))

s + t the concatenation of s and ¢ 6)(7)
S *x norn x s n shallow copies of s concatenated)7
s[i] ith item of s, origin 0 3)
s[i:7] slice of s from i to j 3@
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min(s) smallest item of s

max (s) largest item of s

s.index (x[, 1i[, 3J1]1) | index of the first occurence of x in s (at or after index i and before index j) | (8)
s.count (x) total number of occurences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Notes:

1. While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:
>>> "gg" in "eggsll
True

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also that
the copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

4.6. Sequence Types — list, tuple, range 33

The Python Library Reference, Release 3.3.0

>>> lists = [[]] * 3
>>> lists

(1, 1, [11

>>> lists[0] .append(3)
>>> lists

(31, 31, (311

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
x 3 are (pointers to) this single empty list. Modifying any of the elements of 11 sts modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for i in range (3)]
>>> 1ists[0] .append(3)

>>> lists[1l].append(5)

>>> lists[2].append(7)

>>> lists

(esy, 51, (711

3. If i orj is negative, the index is relative to the end of the string: 1en(s) + iorlen(s) + jJissubstituted.
But note that -0 is still O.

4. The slice of s from i to j is defined as the sequence of items with index k such that i <= k < J. Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If i
is greater than or equal to j, the slice is empty.

5. The slice of s from i to j with step k is defined as the sequence of items with index x = i + n=*k such that
0 <= n < (j-1i) /k. In other words, the indices are i, 1+k, i+2«k, i+3«k and so on, stopping when j is
reached (but never including j). If i or j is greater than len (s), use len (s). If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

6. Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

* if concatenating str objects, you can build a list and use str. join () at the end or else write to a
io.StringIO instance and retrieve its value when complete

* if concatenating byt es objects, you can similarly use bytes. join () or io.BytesIO, or you can do
in-place concatenation with a bytearray object. bytearray objects are mutable and have an efficient
overallocation mechanism

* if concatenating t uple objects, extend a 1 ist instead
« for other types, investigate the relevant class documentation

7. Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

8. index raises ValueError when x is not found in s. When supported, the additional arguments to the index
method allow efficient searching of subsections of the sequence. Passing the extra arguments is roughly equiv-
alent to using s [1:Jj] .index (x), only without copying any data and with the returned index being relative
to the start of the sequence rather than the start of the slice.

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

This support allows immutable sequences, such as tuple instances, to be used as dict keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The
collections.abc.MutableSequence ABC is provided to make it easier to correctly implement these
operations on custom sequence types.

In the table s is an instance of a mutable sequence type, ¢ is any iterable object and x is an arbitrary object that meets
any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value
restriction 0 <= x <= 255).

Operation Result Notes

s[i] = x item i of s is replaced by x

s[i:3] =t slice of s from i to j is replaced by the contents of the iterable ¢

del s[i:7j] sameas s[i:3] = []

s[i:j:k] =t the elements of s [1i: j:k] are replaced by those of ¢ @)

del s[i:j:k] removes the elements of s [1:j:k] from the list

s.append (x) appends x to the end of the sequence (same as s [len (s) :len(s)] = [x])

s.clear () removes all items from s (same as del s[:]) 5)

s.copy () creates a shallow copy of s (same as s[:]) 5)

s.extend (t) extends s with the contents of # (same as s [len (s) :len(s)] = t)

s.insert (i, x) | insertsx into s at the index givenby i (sameass[i:1] = [x])

s.pop([i]) retrieves the item at i and also removes it from s 2)

s.remove (X) remove the first item from s where s [1] == x 3)

s.reverse () reverses the items of s in place “)
Notes:

1. ¢ must have the same length as the slice it is replacing.

2. The optional argument i defaults to —1, so that by default the last item is removed and returned.
3. remove raises ValueError when x is not found in s.
4

. The reverse () method modifies the sequence in place for economy of space when reversing a large sequence.
To remind users that it operates by side effect, it does not return the reversed sequence.

5. clear () and copy () are included for consistency with the interfaces of mutable containers that don’t support
slicing operations (such as dict and set) New in version 3.3: clear () and copy () methods.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).

class 1ist ([iterable])
Lists may be constructed in several ways:

*Using a pair of square brackets to denote the empty list: []
*Using square brackets, separating items with commas: [a], [a, b, c]
*Using a list comprehension: [x for x in iterable]

*Using the type constructor: 1ist () or list (iterable)

4.6. Sequence Types — list, tuple, range 35

The Python Library Reference, Release 3.3.0

The constructor builds a list whose items are the same and in the same order as iterable‘s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a
copy is made and returned, similar to iterable[:]. For example, 1ist (" abc’) returns ["a’, 'b’,
"c¢’]and 1ist ((1, 2, 3)) returns [1, 2, 3]. If no argument is given, the constructor creates a
new empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (* key=None, reverse=None)
This method sorts the list in place, using only < comparisons between items. Exceptions are not suppressed
- if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a
partially modified state).

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once and
then used for the entire sorting process. The default value of None means that list items are sorted directly
without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key func-
tion.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration,
and raises ValueError if it can detect that the list has been mutated during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple ([iterable])

Tuples may be constructed in a number of ways:
*Using a pair of parentheses to denote the empty tuple: ()
*Using a trailing comma for a singleton tuple: a, or (a,)
*Separating items with commas: a, b, cor (a, b, c)
*Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable‘s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it
is returned unchanged. For example, tuple (' abc’) returns (‘a’, 'b’, ’‘c’) and tuple([1, 2,
3]) returns (1, 2, 3).Ifnoargument is given, the constructor creates a new empty tuple, ().

36

Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, £ (a, b,
c) is a function call with three arguments, while £ ((a, b, c¢)) is a function call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index,
collections.namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.

class range ([start], stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that implements the
__index__ special method). If the step argument is omitted, it defaults to 1. If the start argument is omitted,
it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1] = start + stepxi
where i >= Oandr[i] < stop.

For a negative step, the contents of the range are still determined by the formular [1] = start + step=i,
but the constraints are i >= Oandr[i] > stop.

A range object will be empty if r [0] does not meant the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sy s .maxs1ize are permitted but some features (such as 1en ())
may raise OverflowError.

Range examples:

>>> list (range (10))

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range(l, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

(o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will
usually violate that pattern).

The advantage of the range type over a regular 1ist or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step
values, calculating individual items and subranges as needed).

4.6. Sequence Types — list, tuple, range 37

The Python Library Reference, Release 3.3.0

Range objects implement the collections.Sequence ABC, and provide features such as containment tests,
element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> 1

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal might
have different start, stop and step attributes, for example range (0) == range (2, 1, 3) orrange (0,
3, 2) == range (0, 4, 2).) Changed in version 3.2: Implement the Sequence ABC. Support slicing and
negative indices. Test int objects for membership in constant time instead of iterating through all items.Changed in
version 3.3: Define ‘==" and ‘!=" to compare range objects based on the sequence of values they define (instead of
comparing based on object identity).New in version 3.3: The start, stop and step attributes.

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, which are immutable sequences of Unicode code points. String
literals are written in a variety of ways:

 Single quotes: ' allows embedded "double" quotes’
* Double quotes: "allows embedded ’single’ quotes".
 Triple quoted: ”’ Three single quotes”’,"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects with the s7r built-in.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
string s, s[0] == s[0:1].

There is also no mutable string type, but st r. join () or io.StringIO can be used to efficiently construct strings
from multiple fragments. Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix
is once again permitted on string literals. It has no effect on the meaning of string literals and cannot be combined
with the r prefix.

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see
str.format (), Format String Syntax and String Formatting) and the other based on C printf style formatting
that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can
handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.casefold()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions
in a string. For example, the German lowercase letter / 3/ is equivalent to "ss". Since it is already lowercase,
lower () would do nothingto ' B’ ; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard. New in version 3.3.

str.center (width[,ﬁllchar])
Return centered in a string of length widrh. Padding is done using the specified fillchar (default is a space).

str.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

str.encode (encoding="utf-8”, errors="strict”)
Return an encoded version of the string as a bytes object. Default encoding is ' ut £-8’. errors may be given
to set a different error handling scheme. The default for errors is ’ strict’, meaning that encoding errors
raise a UnicodeError. Other possible values are ignore’, ' replace’, ' xmlcharrefreplace’,
"backslashreplace’ and any other name registered via codecs.register_error (), see section
Codec Base Classes. For a list of possible encodings, see section Standard Encodings. Changed in version 3.1:
Support for keyword arguments added.

str.endswith (suﬁ‘ix[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs ([tabsize])
Return a copy of the string where all tab characters are replaced by zero or more spaces, depending on the
current column and the given tab size. The column number is reset to zero after each newline occurring in the
string. If tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other non-printing
characters or escape sequences.

str.find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the slice
s [start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

Note: The £ind () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> Py’ in ’Python’
True

4.7. Text Sequence Type — str 39

The Python Library Reference, Release 3.3.0

str.

str.

str.

str.

str.

str.

str.

str

str

format (*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a posi-
tional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field
is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format (1+2)
"The sum of 1 + 2 is 3’

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

format_map (mapping)
Similar to str.format («*mapping), except that mapping is used directly and not copied to a dict .
This is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> / {name} was born in {country}’.format_map (Default (name="Guido’))
"Guido was born in country’

New in version 3.2.

index (sub[, start[, end]])
Like find (), but raise ValueError when the substring is not found.

isalnum ()

Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha (), c.isdecimal (),
c.isdigit(),orc.isnumeric().

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those with
general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different from the
“Alphabetic” property defined in the Unicode Standard.

isdecimal ()

Return true if all characters in the string are decimal characters and there is at least one character, false otherwise.
Decimal characters are those from general category “Nd”. This category includes digit characters, and all
characters that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC DIGIT ZERO.
isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

.isidentifier ()

Return true if the string is a valid identifier according to the language definition, section identifiers.

.islower ()

Return true if all cased characters > in the string are lowercase and there is at least one cased character, false

3 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter,
titlecase).

40

Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

str

str

str

str

str

str

str

str

str

otherwise.

.isnumeric ()
Return true if all characters in the string are numeric characters, and there is at least one character, false oth-
erwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

.isprintable ()
Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings
written to sys.stdout or sys.stderr.)

.isspace()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.
Whitespace characters are those characters defined in the Unicode character database as “Other” or “Separator”
and those with bidirectional property being one of “WS”, “B”, or “S”.

.istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.
.isupper ()

Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

. join (iterable)
Return a string which is the concatenation of the strings in the iterable iterable. A TypeError will be raised
if there are any non-string values in iterable, including bytes objects. The separator between elements is the
string providing this method.

.13just (width|, fillchar |)
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is
a space). The original string is returned if width is less than or equal to len (s).

.lower ()
Return a copy of the string with all the cased characters converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

.1strip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious " 1lstrip ()
" spacious
>>> 'www.example.com’ .1lstrip (' cmowz.’)
"example.com’

4

static st r .maketrans (x[, y[, z]])

This static method returns a translation table usable for str.translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted to
ordinals.

4.7.

Text Sequence Type — str 41

The Python Library Reference, Release 3.3.0

str

str

str.

str.

str.

str

str

str

str.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

.partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

.replace (old, new[, count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on fail-
ure.

rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the substring sub is not found.

rjust (width, fillchar |)
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than or equal to len (s).

.rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

.rsplit (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below.

.rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious "Lrstrip()

! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
"mississ’

split (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1, then
there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, " 1,2’ .split (',) returns ["1’, ", ' 2'1). The sep argument may consist of multiple char-
acters (for example, ' 1<>2<>3’ .split (' <>') returns ["1’, ’'2’, ’3’1). Splitting an empty string
with a specified separator returns [”].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

42

Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

For example,” 1 2 3 ’.split() returns ["1’, ’2’, '3’],and’ 1 2 3 ’.split (None, 1)
returns ["17, "2 3 '].

str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. This method uses the universal newlines
approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and true.

For example, ’ab c\n\nde fg\rkl\r\n’.splitlines() returns [‘ab c’, ", ’'de fg’,
k1’1, while the same call with splitlines (True) returns ["ab c\n’, ’\n’, ’'de fg\r’,
"k1\r\n’].

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line.

str.startswith (preﬁx[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string at
that position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious " .strip ()
"spacious’

>>> 'www.example.com’ .strip (/' cmowz.’)
"example’

str.swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not
necessarily true that s . swapcase () . swapcase () ==

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining char-
acters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they’re bill’s friends from the UK".title()
"They’Re Bill’S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za-z]+
lambda mo: mo.group (0) [0] .upper () +
0)[1:].1lower (),

)",

mo.group (
s)

>>> titlecase("they’re bill’s friends.")
"They’re Bill’s Friends."

4.7. Text Sequence Type — str 43

The Python Library Reference, Release 3.3.0

str.translate (map)
Return a copy of the s where all characters have been mapped through the map which must be a dictionary
of Unicode ordinals (integers) to Unicode ordinals, strings or None. Unmapped characters are left untouched.
Characters mapped to None are deleted.

Youcanuse str.maketrans () to create a translation map from character-to-character mappings in different
formats.

Note: An even more flexible approach is to create a custom character mapping codec using the codecs
module (see encodings.cpl251 for an example).

str.upper ()
Return a copy of the string with all the cased characters converted to uppercase. Note that
str.upper () .isupper () might be False if s contains uncased characters or if the Unicode category
of the resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

4

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.zfill (width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than or equal to 1len (s).

4.7.2 print£-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer str . format () interface helps avoid
these errors, and also provides a generally more powerful, flexible and extensible approach to formatting text.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting

Q

or interpolation operator. Given format % values (where format is a string), $ conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to using the sprintf () in the C
language.

If format requires a single argument, values may be a single non-tuple object. * Otherwise, values must be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The " %’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an * =’ (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), givenasa ’ .’ (dot) followed by the precision. If specified as ’ =’ (an asterisk), the actual
precision is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a paren-
thesised mapping key into that dictionary inserted immediately after the * $’ character. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print (' $ (language)s has % (number)03d quote types.’ %
B {’ language’ : "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning

r#7 The value conversion will use the “alternate form” (where defined below).

"o’ The conversion will be zero padded for numeric values.

r—r The converted value is left adjusted (overrides the / 0’ conversion if both are given).

ro (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
r4r A sign character (“ +’ or ’ -) will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to %d.

The conversion types are:

Conver- | Meaning Notes

sion

rd’ Signed integer decimal.

rir Signed integer decimal.

"o’ Signed octal value. @)

"u’ Obsolete type — it is identical to " d” . @)

rx’ Signed hexadecimal (lowercase). 2)

"X’ Signed hexadecimal (uppercase). 2)

ref Floating point exponential format (lowercase). 3)

"B’ Floating point exponential format (uppercase). 3)

r£r Floating point decimal format. 3)

rE’ Floating point decimal format. 3)

rg’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not “)
less than precision, decimal format otherwise.

"G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not @)
less than precision, decimal format otherwise.

el Single character (accepts integer or single character string).

i String (converts any Python object using repr ()). 5)

rs’ String (converts any Python object using str ()). 5)

ra’ String (converts any Python object using ascii ()). &)

I’ No argument is converted, results in a * $’ character in the result.

Notes:

1. The alternate form causes a leading zero (* 0) to be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

2. The alternate form causes a leading ” 0x’ or ’ 0X’ (depending on whether the ’ x’ or ’ X’ format was used)
to be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4.7. Text Sequence Type — str 45

The Python Library Reference, Release 3.3.0

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
5. If precision is N, the output is truncated to N characters.
7. See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that \ 0’ is the end of the string. Changed
in version 3.1: $£ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g conver-
sions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by
memoryview which uses the buffer protocol to access the memory of other binary objects without needing to make

a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.8.1 Bytes

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and
are closely related to string objects in a variety of other ways.

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:
 Single quotes: b’ still allows embedded "double" quotes’
* Double quotes: b"still allows embedded ’single’ quotes".
 Triple quoted: b”’ 3 single quotes”’,b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any binary
values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See strings for
more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable se-
quences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate this
restriction will trigger ValueError. This is done deliberately to emphasise that while many binary formats include
ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not generally the
case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that are not ASCII
compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
* A zero-filled bytes object of a specified length: bytes (10)
* From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (ob7)

Also see the bytes built-in.

46 Chapter 4. Built-in Types

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.3.0

Since bytes objects are sequences of integers, for a bytes object b, b [0] will be an integer, while b [0:1] will be
a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string of
length 1)

The representation of bytes objects uses the literal format (b’ ...’) since it is often more useful than e.g.
bytes ([46, 46, 46]). Youcan always convert a bytes object into a list of integers using 1ist (b).

Note: For Python 2.x users: In the Python 2.x series, a variety of implicit conversions between 8-bit strings (the
closest thing 2.x offers to a built-in binary data type) and Unicode strings were permitted. This was a backwards
compatibility workaround to account for the fact that Python originally only supported 8-bit text, and Unicode text
was a later addition. In Python 3.x, those implicit conversions are gone - conversions between 8-bit binary data and
Unicode text must be explicit, and bytes and string objects will always compare unequal.

4.8.2 Bytearray Objects
bytearray objects are a mutable counterpart to bytes objects. There is no dedicated literal syntax for bytearray
objects, instead they are always created by calling the constructor:

 Creating an empty instance: bytearray ()

* Creating a zero-filled instance with a given length: bytearray (10)

* From an iterable of integers: bytearray (range (20))

» Copying existing binary data via the buffer protocol: bytearray (b’ Hi!)

As bytearray objects are mutable, they support the murable sequence operations in addition to the common bytes and
bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands
of the same type, but with any object that supports the buffer protocol. Due to this flexibility, they can be freely mixed
in operations without causing errors. However, the return type of the result may depend on the order of operands.

Due to the common use of ASCII text as the basis for binary protocols, bytes and bytearray objects provide almost all
methods found on text strings, with the exceptions of:

* str.encode () (which converts text strings to bytes objects)
e str.format () and str.format_map () (which are used to format text for display to users)

e str.isidentifier (), str.isnumeric(), str.isdecimal (), str.isprintable () (which
are used to check various properties of text strings which are not typically applicable to binary protocols).

All other string methods are supported, although sometimes with slight differences in functionality and semantics (as
described below).

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write:

a = "abc"
b = a.replace("a", "f")
and:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 47

The Python Library Reference, Release 3.3.0

a b"abc"
b = a.replace (b"a", b"f")

Whenever a bytes or bytearray method needs to interpret the bytes as characters (e.g. the is... () methods,
split (), strip ()), the ASCII character set is assumed (text strings use Unicode semantics).

Note: Using these ASCII based methods to manipulate binary data that is not stored in an ASCII based format may
lead to data corruption.

The search operations (in, count (), find (), index (), rfind () and rindex ()) all accept both integers in
the range 0 to 255 (inclusive) as well as bytes and byte array sequences. Changed in version 3.3: All of the search
methods also accept an integer in the range 0 to 255 (inclusive) as their first argument. Each bytes and bytearray
instance provides a decode () convenience method that is the inverse of str.encode ():

bytes.decode (encoding="utf-8”, errors="strict”)

bytearray.decode (encoding="utf-8”, errors="strict”)
Return a string decoded from the given bytes. Default encoding is " ut£-8’. errors may be given to set
a different error handling scheme. The default for errors is ’ strict’, meaning that encoding errors raise
a UnicodeError. Other possible values are ' ignore’, ' replace’ and any other name registered via
codecs.register_error (), see section Codec Base Classes. For alist of possible encodings, see section
Standard Encodings. Changed in version 3.1: Added support for keyword arguments.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format
for describing binary data. Accordingly, the bytes and bytearray types have an additional class method to read data in
that format:

classmethod bytes . fromhex (string)

classmethod bytearray . fromhex (string)
This bytes class method returns a bytes or bytearray object, decoding the given string object. The string must
contain two hexadecimal digits per byte, spaces are ignored.

>>> bytes.fromhex (' 2Ef0 F1£f2 ')
b’ A\Axf0O\xfl\xf2’

The maketrans and translate methods differ in semantics from the versions available on strings:

bytes.translate (table[, delete])

bytearray.translate (table[, delete])
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the table argument to None for translations that only delete characters:

>>> b’read this short text’.translate (None, b’aeiou’)
b’rd ths shrt txt’

static bytes .maketrans (from, to)

static bytearray.maketrans (from, to)
This static method returns a translation table usable for bytes.translate () that will map each character
in from into the character at the same position in fo; from and fo must be bytes objects and have the same length.
New in version 3.1.

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

4.8.4 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying.

class memoryview (0bj)

Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that support
the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as bytes and bytearray, an element is a single byte, but other types
such as array .array may have bigger elements.

len (view) is equal to the length of tolist. If view.ndim = 0, the lengthis 1. If view.ndim = 1,
the length is equal to the number of elements in the view. For higher dimensions, the length is equal to the
length of the nested list representation of the view. The itemsize attribute will give you the number of bytes
in a single element.

A memoryview supports slicing to expose its data. If format is one of the native format specifiers from
the st ruct module, indexing will return a single element with the correct type. Full slicing will result in a
subview:

>>> v = memoryview (b’ abcefg’)
>>> v[1l]

98

>>> v[-1]

103

>>> v[1l:4]

<memory at 0x7£3ddc9£4350>
>>> bytes(v[1:4])

b’bce’

Other native formats:

>>> import array

>>> a = array.array(’1’, [-11111111, 22222222, -33333333, 444444447)
>>> a[0]

-11111111

>>> a[-1]

44444444

>>> a[2:3].tolist ()

[-33333333]

>>> af::2].tolist ()

[-11111111, -33333333]

>>> g[::—-1].tolist ()

[44444444, -33333333, 22222222, -11111111]

New in version 3.3. If the underlying object is writable, the memoryview supports slice assignment. Resizing is
not allowed:

>>> data = bytearray(b’abcefg’)
>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = ord(b’z")

>>> data

4.8.

Binary Sequence Types — bytes, bytearray, memoryview 49

The Python Library Reference, Release 3.3.0

bytearray (b’ zbcefg’)

>>> v[1:4] = b’123"

>>> data

bytearray (b’ z123fg’)

>>> v[2:3] = b’ spam’

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview assignment: lvalue and rvalue have different structures

>>> v[2:6] = b’spam’
>>> data
bytearray (b’ zlspam’)

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The

hash is defined as hash (m) == hash (m.tobytes()):
>>> v = memoryview (b’ abcefg’)

>>> hash(v) == hash(b’abcefg’)

True

>>> hash(v[2:4]) == hash (b’ce’)

True

>>> hash(v[::-2]) == hash(b’abcefg’ [::-2])
True

Changed in version 3.3: One-dimensional memoryviews with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Note: Hashing of memoryviews with formats other than ‘B’, ‘b’ or ‘c’ as well as hashing of multi-dimensional
memoryviews is possible in version 3.3.0, but will raise an error in 3.3.1 in order to be compatible with the new
memoryview equality definition.

memoryview has several methods:

__eq__ (exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of struct format strings currently supported by tolist (), v and w are equal if
v.tolist () == w.tolist ():

>>> import array

>>> a = array.array('1’, [1, 2, 3, 4, 51)

>>> b = array.array(’d’, [1.0, 2.0, 3.0, 4.0, 5.01)
>>> ¢ = array.array('b’, [5, 3, 1])

>>> x = memoryview(a)

>>> y = memoryview (b)

>>> x == a == y ==

True

>>> x.tolist () == a.tolist() == y.tolist () == b.tolist ()
True

>>> z = y[::-2]

>>> 7 == C

True

>>> z.tolist () == c.tolist ()

True

50 Chapter 4. Built-in Types

http://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.3.0

If either format string is not supported by the st ruct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :

fields = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)

>>> b = memoryview (point)

>>> a == point

False

>>> a == b

False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and the
logical array structure.

tobytes ()
Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b’ abc’

>>> bytes (m)

b"abc’

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted
to bytes. tobytes () supports all format strings, including those that are not in st ruct module syntax.

tolist ()
Return the data in the buffer as a list of elements.

>>> memoryview (b’ abc’) .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d’, [1.1, 2.2, 3.31)
>>> m = memoryview(a)

>>> m.tolist ()

(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
a view is held on them (for example, a bytearray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except

release () itself which can be called multiple times):

>>> m = memoryview (b’abc’)
>>> m.release ()

4.8. Binary Sequence Types — bytes, bytearray, memoryview 51

The Python Library Reference, Release 3.3.0

>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview(b’abc’) as m:
m[0]

97

>>> m[0]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast Ubnnad;shape])

Cast a memoryview to a new format or shape. shape defaults to [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview, but the
buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

Both formats are restricted to single element native formats in st ruct syntax. One of the formats must
be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the original length.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array("1’, [1,2,31])
>>> x = memoryview(a)
>>> x.format

Vl!

>>> x.itemsize

8

>>> len (x)

3

>>> x.nbytes

24

>>> y = x.cast('B’")
>>> y.format

IBI

>>> y.itemsize

1

>>> len(y)

24

>>> y.nbytes

24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b’zyz’)
>>> x = memoryview (b)
>>> x[0] = b’a’

Traceback (most recent call last):

52

Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format "B"

>>> y = x.cast('c’)
>>> y[0] = b’a’
>>> b

bytearray (b’ayz’)
Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

>>> buf = struct.pack("i"x12, xlist (range(12)))
>>> x = memoryview (buf)

>>> y = x.cast(’1’, shape=I[2,2,3])

>>> y.tolist ()

(rro, 1, 21, (3, 4, 511, [l6, 7, 81, [9, 10, 1111]
>>> y.format

i
>>> y.itemsize
4

>>> len(y)

4

>>> y.nbytes
48
>>>

N

= y.cast ('b")
>>> z.format

Ib!

>>> z.itemsize

1

>>> len(z)

48

>>> z.nbytes

48

Cast 1D/unsigned char to to 2D/unsigned long:

>>> buf = struct.pack ("L"x6, xlist(range(6)))
>>> x = memoryview (buf)

>>> vy = x.cast(’'L’, shape=[2,3])

>>> len(y)

2

>>> y.nbytes

48

>>> y.tolist ()

(o, 1, 21, 3, 4, 5]]

New in version 3.3.
There are also several readonly attributes available:
obj

The underlying object of the memoryview:

>>> b = bytearray(b’xyz’)
>>> m = memoryview (b)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 53

The Python Library Reference, Release 3.3.0

>>> m.obj is b
True
New in version 3.3.

nbytes
nbytes == product (shape)

* itemsize == len (m.tobytes ()). This is the amount of

space in bytes that the array would use in a contiguous representation. It is not necessarily equal to len(m):

>>> import array

>>> a = array.array('i’, [1,2,3,4,5])
>>> m = memoryview(a)
>>> len (m)

5

>>> m.nbytes

20

>>> y = m[::2]

>>> len(y)

3

>>> y.nbytes

12

>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack("d"x12, *[1l.5xx for x in range(12)])

>>> x = memoryview (buf)

>>> y = x.cast(’d", shape=[3,4])

>>> y.tolist ()

(6.0, 1.5, 3.0, 4.51, [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)

3

>>> y.nbytes

96

New in version 3.3.

readonly
A bool indicating whether the memory is read only.

format

A string containing the format (in st ruct module style) for each element in the view. A memoryview can
be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are restricted
to native single element formats. Changed in version 3.3: format ' B’ is now handled according to the

itemsize

struct module syntax. This means that memoryview (b’ abc’) [0] == b’abc’ [0] == 97.
The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview(array.array (’'H’, [32000, 32001, 3200271))

>>> m.itemsize
2
>>> m([0]

54

Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

32000
>>> struct.calcsize('H’) == m.itemsize
True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as a N-dimensional array.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous. New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous. New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous. New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, remov-
ing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. (For other containers see the built-in dict, 1ist, and tuple classes, andthe collections
module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {’ jack’, ’sjoerd’}, in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterableﬂ)
class frozenset (iterable])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Instances of set and frozenset provide the following operations:

len (s)
Return the cardinality of set s.

4.9. Set Types — set, frozenset 55

The Python Library Reference, Release 3.3.0

x in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersec-
tion is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a true subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a true superset of other, thatis, set >= other and set != other.

union (other, ...)
set | other |
Return a new set with elements from the set and all others.

intersection (other,...)
set & other &
Return a new set with elements common to the set and all others.

difference (other,...)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set ~ other
Return a new set with elements in either the set or other but not both.

copy ()

Return a new set with a shallow copy of s.
Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any iter-

able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set (“abc’) & ’cbs’ in favor of the more readable
set ("abc’) .intersection(’cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the
first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and
only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For
example, set (’abc’) == frozenset (’abc’) returns True and so does set (’abc’) in
set ([frozenset ("abc’)]).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==Db,
or a>b.

56

Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

Since sets only define partial ordering (subset relationships), the output of the 1ist . sort () method is unde-
fined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ("ab’) | set ("bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (other, ...)
set |= other |
Update the set, adding elements from all others.

intersection_update (other, ...)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (other, ...)
set —-= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update (), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept any
iterable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set. To
support searching for an equivalent frozenset, the elem set is temporarily mutated during the search and then
restored. During the search, the elem set should not be read or mutated since it does not have a meaningful
value.

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple classes, and
the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not ashable, that is, values containing lists, dictionaries
or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such as 1 and 1. 0)

4.10. Mapping Types —dict 57

The Python Library Reference, Release 3.3.0

then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{"jack’: 4098, ’'sjoerd’: 4127} or {4098: 'Jjack’, 4127: ’sjoerd’}, orby the dict
constructor.

class dict ([arg])

Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments. If
no arguments are given, return a new empty dictionary. If the positional argument arg is a mapping object, return
a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional
argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first
is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once,
the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items to the
dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated
with the keyword is retained in the dictionary. For example, these all return a dictionary equal to { "one":
1, "two": 2}:

edict (one=1, two=2)

edict ({’one’: 1, "two’: 2})

edict (zip (("one’, "two’), (1, 2)))

edict ([["two’, 2], ['one’, 111])
The first example only works for keys that are valid Python identifiers; the others work with any valid keys.
These are the operations that dictionaries support (and therefore, custom mapping types should support too):

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__ (), if the key key is not present, the d[key]
operation calls that method with the key key as argument. The d [key] operation then returns or raises
whatever is returned or raised by the _ missing__ (key) call if the key is not present. No other
operations or methods invoke _ _missing__ (). If _ missing__ () is not defined, KeyError is
raised. _ missing__ () must be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):

C return 0
>>> ¢ = Counter ()
>>> c [’ red’]

0

>>> c['red’'] += 1
>>> c[’red’]

See collections.Counter for a complete implementation including other methods helpful for accu-
mulating and managing tallies.

d[key] = value
Set d[key] to value.

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

del dlkey]
Remove d [key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter (d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (seq[, value])
Create a new dictionary with keys from seq and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, wvalue) pairs). See the documentation of view
objects.

keys ()
Return a new view of the dictionary’s keys. See the documentation of view objects.

pop (key [, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and key
is not in the dictionary, a KeyError is raised.

popitem/()
Remove and return an arbitrary (key, wvalue) pair from the dictionary.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

See Also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10. Mapping Types —dict 59

The Python Library Reference, Release 3.3.0

4.10.1 Dictionary view objects

The objects returned by dict.keys (), dict.values () and dict.items () are view objects. They provide
a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, wvalue)) in the dictionary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python implementa-
tions, and depends on the dictionary’s history of insertions and deletions. If keys, values and items views are
iterated over with no intervening modifications to the dictionary, the order of items will directly correspond. This
allows the creation of (value, key) pairsusing zip (): pairs = zip(d.values (), d.keys{()).
Another way to create the same listis pairs = [(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, wvalue)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since
the entries are generally not unique.) For set-like views, all of the operations defined for the abstract base class
collections.abc.Set are available (for example, ==, <, or *).

An example of dictionary view usage:

>>> dishes = {’eggs’: 2, ’sausage’: 1, ’"bacon’: 1, ’'spam’: 500}
>>> keys = dishes.keys/()
>>> values = dishes.values /()

>>> # iteration

>>n = 0

>>> for val in values:
e n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order
>>> list (keys)

["eggs’, ’'bacon’, ’'sausage’, ’'spam’]

>>> list (values)

(2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes[’eggs’]

>>> del dishes[’sausage’]

>>> list (keys)

["spam’, ’'bacon’]

>>> # set operations

60 Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

>>> keys & {’eggs’, ’'bacon’, ’salad’}
{"bacon’}

>>> keys ©~ {’sausage’, ’juice’}
{’juice’, ’'sausage’, ’'bacon’, ’'spam’}

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is implemented
using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement
body is executed and exited when the statement ends:

contextmanager.__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext (). These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context in
the body of the with statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body of the with statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code (such as contextlib.nested) to easily detect whether ornotan ___exit__ ()
method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. See the context 1ib module for some examples.

Python’s generators and the context1ib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C APL
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

4.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.11. Context Manager Types 61

The Python Library Reference, Release 3.3.0

4.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather
it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the ___dict___
attribute is not possible (you can write m.___dict___[’a’] = 1, which defines m.a to be 1, but you can’t write
m.__dict__ = {}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a file,
they are written as <module ’os’ from ’/usr/local/lib/pythonX.Y/os.pyc’>.

4.12.2 Classes and Class Instances

See objects and class for these.

4.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a
bound method (also called instance method) object. When called, it will add the self argument to the argument
list. Bound methods have two special read-only attributes: m.___self__ is the object on which the method oper-
ates,andm.___func___is the function implementing the method. Callingm (arg-1, arg-2, ..., arg-n) is
completely equivalent to callingm.__func__ (m.__self , arg-1l, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__func__), setting method attributes on bound methods
is disallowed. Attempting to set a method attribute results in a TypeError being raised. In order to set a method
attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self) :
pass
c = C()
c.method.___func__ .whoami = 'my name is c’

See types for more information.

62 Chapter 4. Built-in Types

The Python Library Reference, Release 3.3.0

4.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the built-in compile () function and can be extracted from function objects
through their ___code___ attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

4.12.6 Type Objects
Type objects represent the various object types. An object’s type is accessed by the built-in function type (). There
are no special operations on types. The standard module t ypes defines names for all standard built-in types.

Types are written like this: <class ’int’>.

4.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

4.12.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object,named E11ipsis (a built-in name). type (E11lipsis) () producesthe E11ipsis singleton.

Itis writtenas Ellipsisor....

4.12.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types they
don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

4.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool () can be used to
convert any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written as False and True, respectively.

4.12. Other Built-in Types 63

The Python Library Reference, Release 3.3.0

4.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

object.__diect_
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class_
The class to which a class instance belongs.

class.__bases_
The tuple of base classes of a class object.

class._ name

The name of the class or type.

class.__qualname_
The qualified name of the class or type. New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in ___mro

class.__subclasses_ ()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. Example:

>>> int._ subclasses__ ()
[<class ’"bool’>]

64 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which it is derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several
items of information (e.g., an error code and a string explaining the code). The associated value is usually passed as
arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from the Except ion class and not BaseExcept ion. More information on defining excep-
tions is available in the Python Tutorial under tut-userexceptions.

When raising (or re-raising) an exception in an except clause ___context___is automatically set to the last excep-
tion caught; if the new exception is not handled the traceback that is eventually displayed will include the originating
exception(s) and the final exception.

This implicit exception chain can be made explicit by using from with raise. The single argument to £rom must
be an exception or None. It will be set as ___cause___ on the raised exception. Setting __cause___ implicitly sets
the _ suppress_context__ to True. If __cause__ is an exception, it will be displayed. If __cause___is
present or __suppress_context__ hasatrue value, __context__ will not be displayed.

In either case, the default exception handling code will not display any of the remaining links in the __context___
chainif __cause__ has been set.

5.1 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for that,
use Exception). If str () is called on an instance of this class, the representation of the argument(s) to the
instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like TOError)

65

The Python Library Reference, Release 3.3.0

expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback (1)
This method sets b as the new traceback for the exception and returns the exception object. It is usually
used in exception handling code like this:

try:

except SomeException:
tb = sys.exc_info () [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError,FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. lookup ().

5.2 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input () or raw_input ()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: the file.read () and file.readline () methods return an empty string
when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the ——with-fpectl option, or the WANT_SIGFPE_HANDLER symbol is defined
in the pyconfig.h file.

exception GeneratorExit
Raise when a generator‘s close () method is called. It directly inherits from BaseExcept ion instead of
Exception since it is technically not an error.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import fails
to find a name that is to be imported.

66 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.3.0

The name and path attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the module that was attempted to be imported and the path to any file which triggered the
exception, respectively. Changed in version 3.3: Added the name and path attributes.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control—-C or Delete). During execution, a check for
interrupts is made regularly. The exception inherits from BaseException so as to not be accidentally caught
by code that catches Except ion and thus prevent the interpreter from exiting.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’s malloc () function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exception Not ImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method.

exception OSError
This exception is raised when a system function returns a system-related error, including I/O failures such as
“file not found” or “disk full” (not for illegal argument types or other incidental errors). Often a subclass of
OSError will actually be raised as described in OS exceptions below. The errno attribute is a numeric error
code from the C variable errno.

Under Windows, the winerror attribute gives you the native Windows error code. The errno attribute is
then an approximate translation, in POSIX terms, of that native error code.

Under all platforms, the st rerror attribute is the corresponding error message as provided by the operating
system (as formatted by the C functions perror () under POSIX, and FormatMessage () Windows).

For exceptions that involve a file system path (such as open () or os.unlink ()), the exception instance will
contain an additional attribute, £ilename, which is the file name passed to the function. Changed in version
3.3: EnvironmentError, IOError, WindowsError, VMSError, socket .error, select.error
and mmap . error have been merged into OSError.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). Because of the lack of standardization of floating point
exception handling in C, most floating point operations also aren’t checked.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref .proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a

5.2. Concrete exceptions 67

The Python Library Reference, Release 3.3.0

string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exception StopIteration
Raised by built-in function next () and an iterator's __next___ () method to signal that there are no further
items to be produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the excep-
tion, and defaults to None.

When a generator function returns, a new StopIteration instance is raised, and the value returned by the
function is used as the value parameter to the constructor of the exception. Changed in version 3.3: Added
value attribute and the ability for generator functions to use it to return a value.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions exec () or eval (), or when reading the initial script or standard input (also interactively).

Instances of this class have attributes £ilename, 1ineno, of fset and text for easier access to the details.
str () of the exception instance returns only the message.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of
the Python interpreter (sys.version;itis also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exception SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is an integer, it specifies the system exit status (passed to
C’s exit () function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting to None).
Also, this exception derives directly from BaseException and not Exception, since it is not technically
an error.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a call to fork ()).

The exception inherits from BaseException instead of Exception so that it is not accidentally caught by
code that catches Exception. This allows the exception to properly propagate up and cause the interpreter to
exit.

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

68 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.3.0

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases
of OSError.

exception EnvironmentError
exception IOError

exception VMSError
Only available on VMS.

exception WindowsError
Only available on Windows.

5.2.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds
to errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the i o module.

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues. Subclasses are BrokenPipeError,
ConnectionAbortedError, ConnectionRefusedError and ConnectionResetError.

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been
closed, or trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE
and ESHUTDOWN.

5.2. Concrete exceptions 69

The Python Library Reference, Release 3.3.0

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds
to errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds
to errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError
Raised when a system call is interrupted by an incoming signal. Corresponds to errno EEINTR.

exception IsADirectoryError
Raised when a file operation (such as os.remove ()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError
Raised when a directory operation (such as os.1listdir ()) is requested on something which is not a direc-
tory. Corresponds to errno ENOTDIR.

exception PermissionError
Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES and EPERM.

exception ProcessLookupError
Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError
Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

New in version 3.3: All the above OSError subclasses were added.
See Also:
PEP 3151 - Reworking the OS and IO exception hierarchy

5.3 Warnings

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

70 Chapter 5. Built-in Exceptions

http://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.3.0

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception BytesWarning
Base class for warnings related to bytes and buffer.

exception ResourceWarning
Base class for warnings related to resource usage. New in version 3.2.

5.4 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-— SystemExit
+—— KeyboardInterrupt

+-— GeneratorExit
+—-— Exception
+-— StopIteration
+—— ArithmeticError
| +-— FloatingPointError
| +—— OverflowError
| +—-— ZeroDivisionError
+-— AssertionError
+-— AttributeError
+—— BufferError
+—— EOFError
+—— ImportError
+—— LookupError
| +-— IndexError
| +-— KeyError
+—— MemoryError
+—— NameError
| +—— UnboundLocalError

+—— OSError
| +-— BlockingIOError
+—— ChildProcesskError

|

| +—-— ConnectionError

| \ +-— BrokenPipeError

| \ +—— ConnectionAbortedError
| \ +—-— ConnectionRefusedError
| \ +-— ConnectionResetError

| +-— FileExistsError

|

+—— FileNotFoundError

5.4. Exception hierarchy 71

The Python Library Reference, Release 3.3.0

+-— InterruptedError
+—-— IsADirectoryError
+—-— NotADirectoryError
+-— PermissionError
+—— ProcessLookupError
+-— TimeoutError
ReferenceError
RuntimeError
+-— NotImplementedError
SyntaxError
+—— IndentationError
+—-— TabError
SystemError
TypeError
ValueError
+—— UnicodeError
+—— UnicodeDecodeError
+-— UnicodeEncodeError
+-— UnicodeTranslateError
Warning
+-— DeprecationWarning
+—— PendingDeprecationWarning
+-— RuntimeWarning
+-— SyntaxWarning
+-— UserWarning
+-— FutureWarning
+—— ImportWarning
+-—— UnicodeWarning
+-— BytesWarning
+—-— ResourceWarning

72

Chapter 5. Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text processing
services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition, see
the documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See Also:
Sequence Types — list, tuple, range

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters ' abcdefghi jklmnopgrstuvwxyz’ . This value is not locale-dependent and will not
change.

string.ascii_uppercase
The uppercase letters / ABCDEFGHIJKLMNOPQRSTUVWXYZ' . This value is not locale-dependent and will not
change.

string.digits
The string ' 0123456789 .

string.hexdigits
The string 0123456789%abcde fABCDEF’ .

string.octdigits
The string ' 01234567

73

http://hg.python.org/cpython/file/3.3/Lib/string.py

The Python Library Reference, Release 3.3.0

string.punctuation

String of ASCII characters which are considered punctuation characters in the C locale.

string.printable

String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation, and whitespace.

string.whitespace

A string containing all ASCII characters that are considered whitespace. This includes the characters space, tab,
linefeed, return, formfeed, and vertical tab.

6.1.2 String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the
format () method described in

PEP 3101. The Formatter class in the st ring module allows you to create and customize your own string
formatting behaviors using the same implementation as the built-in format () method.

class string.Formatter

The Formatter class has the following public methods:

format (format_string, *args, **kwargs)

format () is the primary API method. It takes a format string and an arbitrary set of positional and
keyword arguments. format () is just a wrapper that calls vformat ().

vformat (format_string, args, kwargs)

This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using the xargs and *xkwds syntax. vformat () does the work of breaking up
the format string into character data and replacement fields. It calls the various methods described below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)

Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, conver-
sion). This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec
and conversion will be None.

get_field (field_name, args, kwargs)

Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as
“O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key
has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)

Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer, it
represents the index of the positional argument in args; if it is a string, then it represents a named argument
in kwargs.

The args parameter is set to the list of positional arguments to vformat (), and the kwargs parameter is
set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

74

Chapter 6. Text Processing Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.3.0

So for example, the field expression ‘O.name’ would cause get_value () to be called with a key ar-
gument of 0. The name attribute will be looked up after get_value () returns by calling the built-in
getattr () function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError should
be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The set
of unused args can be calculated from these parameters. check_unused_args () is assumed to raise
an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that sub-
classes can override it.

convert_field (value, conversion)
Converts the value (returned by get__field ()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), ‘t’ (repr) and ‘a’ (ascii) conversion types.

6.1.3 Format String Syntax
The str.format () method and the Formatter class share the same syntax for format strings (although in the
case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

replacement_field

\\{II

[field_name] [”!” conversion] [":”

field_name = arg_name (”.” attribute_name | “[” element_index
arg_name = [identifier | integer]

attribute_name = identifier

element_index = integer | index_string

index_string <any source character except “]”> +
conversion Wy owWgm | owgn
format_spec n= <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ’ !/, and a format_spec, which is preceded by a colon
’ : 7. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to
a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names
in a format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers O, 1, 2, ...
will be automatically inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify
arbitrary dictionary keys (e.g., the strings * 10’ or ’ : —]) within a format string. The arg_name can be followed by
any number of index or attribute expressions. An expression of the form ’ .name’ selects the named attribute using
getattr (), while an expression of the form ’ [index]’ does an index lookup using __getitem__ (). Changed

6.1. string — Common string operations 75

format_spec]

\\}II

\\]")*

The Python Library Reference, Release 3.3.0

in version 3.1: The positional argument specifiers can be omitted, so ’ { } {1}’. Some

simple format string examples:

{}’ is equivalentto ’ {0}

"First, thou shalt count to {0}" # References first positional argument

"Bring me a {}" # Implicitly references the first positional argument
"From {} to {}" # Same as "From {0} to {1}"

"My quest is {name}" # References keyword argument ’name’

"Weight in tons {0.weight}" # ’weight’ attribute of first positional arg

"Units destroyed: {players[0]}" # First element of keyword argument ’‘players’.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format__ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling __ format__ (),
the normal formatting logic is bypassed.

Three conversion flags are currently supported: ’ !'s’ which calls str () on the value, ’ ! v/ which calls repr ()
and ’ 'a’ whichcalls ascii ().

Some examples:

"Harold’s a clever {0!s}"
"Bring out the holy {name!r}"
"More {'a}"

Calls str() on the argument first
Calls repr() on the argument first
Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields can contain
only a field name; conversion flags and format specifications are not allowed. The replacement fields within the
format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to be
dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (see Format String Syntax). They can also be passed directly to the built-in format () function.
Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format string (" ") produces the same result as if you had called str () on the
value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec = [[filllalign] [sign] [#][0] [width][,][.precision] [type]

fill = <a character other than ‘{' or ‘}’'>

align := \\<H | “>II ‘ \\:II | N\AIT

Sign = \\+II | \N__ 7 ‘ ” A\Y

width = integer

precision = integer

type ::= \\bl’ | “C" ‘ \\dll | \\ell | \\EII | \\fII | \\FII I \\gll | \\GII ‘ \\nll | \\oll

76 Chapter 6. Text Processing Services

“S

The Python Library Reference, Release 3.3.0

The fill character can be any character other than ‘{‘ or ‘}’. The presence of a fill character is signaled by the character
following it, which must be one of the alignment options. If the second character of format_spec is not a valid
alignment option, then it is assumed that both the fill character and the alignment option are absent.

The meaning of the various alignment options is as follows:

Op- | Meaning
tion
"<’ | Forces the field to be left-aligned within the available space (this is the default for most
objects).

">’ | Forces the field to be right-aligned within the available space (this is the default for numbers).
"=’ | Forces the padding to be placed after the sign (if any) but before the digits. This is used for
printing fields in the form ‘+000000120’. This alignment option is only valid for numeric

types.
7 ~7 | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning

tion

T4 indicates that a sign should be used for both positive as well as negative numbers.

r—r indicates that a sign should be used only for negative numbers (this is the default behavior).

space indicates that a leading space should be used on positive numbers, and a minus sign on
negative numbers.

The ” #” option causes the “alternate form” to be used for the conversion. The alternate form is defined differently for
different types. This option is only valid for integer, float, complex and Decimal types. For integers, when binary, octal,
or hexadecimal output is used, this option adds the prefix respective ’ Ob’, ' 0o’ , or / 0x’ to the output value. For
floats, complex and Decimal the alternate form causes the result of the conversion to always contain a decimal-point
character, even if no digits follow it. Normally, a decimal-point character appears in the result of these conversions
only if a digit follows it. In addition, for g’ and ’ G’ conversions, trailing zeros are not removed from the result.

The ', " option signals the use of a comma for a thousands separator. For a locale aware separator, use the ’ n’
integer presentation type instead. Changed in version 3.1: Added the ' ,’ option (see also PEP 378). width is a
decimal integer defining the minimum field width. If not specified, then the field width will be determined by the
content.

Preceding the width field by a zero (* 0’) character enables sign-aware zero-padding for numeric types. This is
equivalent to a fill character of / 0’ with an alignment type of ' =" .

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted with £/ and ' F’ , or before and after the decimal point for a floating point value formatted with
"g’ or ' G’ . For non-number types the field indicates the maximum field size - in other words, how many characters
will be used from the field content. The precision is not allowed for integer values.

Finally, the rype determines how the data should be presented.

The available string presentation types are:

Type | Meaning
rs’ String format. This is the default type for strings and may be omitted.
None | The sameas’s’.

The available integer presentation types are:

6.1. string — Common string operations 77

http://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 3.3.0

Type| Meaning

"b’ | Binary format. Outputs the number in base 2.

"¢’ | Character. Converts the integer to the corresponding unicode character before printing.

"d’ | Decimal Integer. Outputs the number in base 10.

o’ | Octal format. Outputs the number in base 8.

x’ | Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.
"X’ | Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.
"n’ | Number. This is the same as ’ d’, except that it uses the current locale setting to insert the
appropriate number separator characters.

None | The same as ' d’.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed
below (except “ n’ and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for floating point and decimal values are:

Type Meaning

"e’ | Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the
exponent.

"E’ | Exponent notation. Same as ’ e’ except it uses an upper case ‘E’ as the separator character.

" £/ | Fixed point. Displays the number as a fixed-point number.

"F’ | Fixed point. Same as ’ £/, but converts nan to NAN and inf to INF.

" g’ | General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on
its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type ' e’
and precision p—1 would have exponent exp. Then if -4 <= exp < p, the number is
formatted with presentation type ’ £’ and precision p—1-exp. Otherwise, the number is
formatted with presentation type ’ e’ and precision p—1. In both cases insignificant trailing
zeros are removed from the significand, and the decimal point is also removed if there are no
remaining digits following it.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf,
—-inf, 0, -0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1.

"G’ | General format. Same as ' g’ except switches to ' E/ if the number gets too large. The
representations of infinity and NaN are uppercased, too.

"n’ | Number. This is the same as ’ g’ , except that it uses the current locale setting to insert the
appropriate number separator characters.

"%’ | Percentage. Multiplies the number by 100 and displays in fixed (’ £) format, followed by a
percent sign.

Nong Similar to ’ g, except with at least one digit past the decimal point and a default precision of
12. This is intended to match st r (), except you can add the other format modifiers.

Format examples

This section contains examples of the new format syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old $-formatting, with the addition of the { } and with : used instead
of %. For example, ' $03.2£’ can be translated to ’ { : 03.2£}".

The new format syntax also supports new and different options, shown in the follow examples.
Accessing arguments by position:

>>> {0}, {1}, {2}’ .format("a’, '"b’", ’'c’)
"a, b, c’

78 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.3.0

>>> " {}, {}, {}' .format('a’, ’'b’, ’'c’) # 3.1+ only

"a, b, c’

>>> {2}, {1}, {0}’ .format('a’, ’'b’", 'c’)

"c, b, a’

>>> {2}, {1}, {0}’ .format (+x"abc’) # unpacking argument sequence

"c, b, a’

>>> {0} {1} {0}’ .format (' abra’, ’'cad’) # arguments’ indices can be repeated

"abracadabra’
Accessing arguments by name:

>>> /Coordinates: {latitude}, {longitude}’.format (latitude=’"37.24N’, longitude='-115.81W")
"Coordinates: 37.24N, -115.81W’

>>> coord = {’latitude’: "37.24N’, ’longitude’: ’'-115.81W’}

>>> ’Coordinates: {latitude}, {longitude}’.format (x+xcoord)

"Coordinates: 37.24N, —-115.81W’

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> (/The complex number {0} is formed from the real part {0.real}
"and the imaginary part {0.imag}.’).format (c)
"The complex number (3-57j) is formed from the real part 3.0 and the imaginary part -5.0.7
>>> class Point:
def _ _init_ (self, x, y):
self.x, self.y = x, vy
def _ _str__ (self):
return 'Point ({self.x}, {self.y})’.format (self=self)

’

>>> str (Point (4, 2))
"Point (4, 2)’

Accessing arguments’ items:

>>> coord = (3, 5)
>> 'X: {0[0]1}; Y: {O[1]}".format (coord)
"X: 3; Y: 57

Replacing %s and %$r:

>>> "repr () shows quotes: {!r}; str() doesn’t: {!s}".format ('testl’, ’"test2’)
"repr () shows quotes: ’"testl’; str() doesn’t: test2"

Aligning the text and specifying a width:

>>> / {:<30}" .format (' left aligned’)
"left aligned !

>>> / {:>30}’ .format (' right aligned’)
! right aligned’

>>> / {:730}’ .format (' centered’)
! centered

>>> " {:%x730}’ .format (' centered’) # use '+’ as a fill char

I xxkxkxkkrxxkkCenteredrrx*kxxkxx*'

14

Replacing $+£, $—f,and $ f and specifying a sign:

>>> ' {:+f}; {:+f}’ .format (3.14, -3.14) # show it always

"+3.140000; -3.140000"

>>> " {: f}; {: £}’ .format(3.14, -3.14) # show a space for positive numbers
7 3.140000; -3.140000"

6.1. string — Common string operations 79

The Python Library Reference, Release 3.3.0

>>> " {:—-f}; {:-f}" . format (3.14, -3.14) # show only the minus ——- same as

73.140000; -3.140000"
Replacing $x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format (42)
"int: 42; hex: 2a; oct: 52; bin: 101010

>>> # with 0x, 0o, or 0b as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0}; bin: {0:#b}".format (42)
"int: 42; hex: 0x2a; oct: 0052; bin: 00101010’

Using the comma as a thousands separator:

>>> ' {:,}’ . format (1234567890)
"1,234,567,890"

Expressing a percentage:

>>> points = 19

>>> total = 22

>>> ’'Correct answers: {:.2%}’.format (points/total)
"Correct answers: 86.36%’

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> 7 {:%5Y-%m-%d $H:%M:%S}’ .format (d)

72010-07-04 12:15:587

Nesting arguments and more complex examples:

>>> for align, text in zip('<*>’, [’'left’, ’'center’, ’'right’]):
"{0:{fill}{align}l1l6}’ .format (text, fill=align, align=align)

left<<<<<<<<<<<!

I anarifcentert ANt

">>>>>>>>>>>right’

>>>

>>> octets = [192, 168, 0, 1]

>>> 7 {:02X}{:02X}{:02X}{:02X}’ .format (xoctets)

"COAB0001"

>>> int(_, 16)

3232235521

>>>

>>> width = 5

>>> for num in range(5,12):
for base in ’'dXob’:

RErPy;

print (! {0:{width} {base}}’.format (num, base=base, width=width), end=’

print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

80 Chapter 6. Text Processing Services

{:£}7

")

The Python Library Reference, Release 3.3.0

6.1.4 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal %-based substitutions,
Templates support $-based substitutions, using the following rules:

* $$ is an escape; it is replaced with a single $.

e Sidentifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" must spell a Python identifier. The first non-identifier character after the $ character termi-
nates this placeholder specification.

e ${identifier} is equivalent to Sidentifier. Itis required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "$ {noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.
The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (template)
The constructor takes a single argument which is the template string.

substitute (mapping, **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the
placeholders from kwds take precedence.

safe_substitute (mapping, **kwds)
Like substitute (), except thatif placeholders are missing from mapping and kwds, instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries to
return a usable string instead of raising an exception. In another sense, safe_substitute () may be
anything other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template ('’ $who likes S$what’)

>>> s.substitute (who='"tim’, what=’kung pao’)

"tim likes kung pao’

>>> d = dict (who='tim’)

>>> Template (' Give $who $100’) .substitute (d)
Traceback (most recent call last):

[...]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template (' $who likes S$what’) .substitute (d)
Traceback (most recent call last):

[...]

KeyError: ’what’

>>> Template (' $who likes S$what’) .safe_substitute (d)
"tim likes S$what’

6.1. string — Common string operations 81

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 3.3.0

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

* delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed.

* idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces will be
added automatically as appropriate). The default value is the regular expression [_a-z] [_a-z0-9] *.

* flags — The regular expression flags that will be applied when compiling the regular expression used for recog-
nizing substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added to
the flags, so custom idpatterns must follow conventions for verbose regular expressions. New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

* invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

6.1.5 Helper functions

string.capwords (s, sep=None)
Split the argument into words using str.split (), capitalize each word using str.capitalize (), and
join the capitalized words using st r. join (). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

6.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings. However, Unicode strings and
8-bit strings cannot be mixed: that is, you cannot match an Unicode string with a byte pattern or vice-versa; similarly,
when asking for a substitution, the replacement string must be of the same type as both the pattern and the search
string.

Regular expressions use the backslash character (* \’) to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write * \\\\’ as the pattern
string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a regular Python
string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with /. So r"\n" is a two-character string containing ’ \’ and ’ n’, while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

82 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.3.0

It is important to note that most regular expression operations are available as module-level functions and methods on
compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See Also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second
edition of the book no longer covers Python at all, but the first edition covered writing good regular expression
patterns in great detail.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pg will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like A’, "a’, or
" 0’ , are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so
last matches the string * Last’. (In the rest of this section, we’ll write RE’sinthis special style, usually
without quotes, and strings to be matched / in single quotes’.)

Some characters, like ’ | 7 or ’ (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted. Regular expression pattern strings may not contain
null bytes, but can specify the null byte using a \number notation such as \x00" .

The special characters are:

" .7 (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

! A7 (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

”$’ Matches the end of the string or just before the newline at the end of the string, and in MULT ILINE mode also
matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo.$ in ' fool\nfoo2\n’ matches ‘foo2’ normally, but
‘fool’ in MULTILINE mode; searching for a single $ in * foo\n’ will find two (empty) matches: one just
before the newline, and one at the end of the string.

"%’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab+ will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

"+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

"2’ Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

*?,+?,?2? The " «’, "+’ ,and ’ 2’ qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. «> is matched against * <H1>title</H1>’, it will match the entire
string, and not just <H1>’. Adding ’ ?’ after the qualifier makes it perform the match in non-greedy or

6.2. re — Regular expression operations 83

The Python Library Reference, Release 3.3.0

minimal fashion; as few characters as possible will be matched. Using . ? in the previous expression will
match only ’ <H1>"'.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not to

match. For example, a { 6} will match exactly six ’ a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many

repetitions as possible. For example, a{3, 5} will match from 3 to 5 ’ a’ characters. Omitting m specifies
a lower bound of zero, and omitting » specifies an infinite upper bound. As an example, a {4, }b will match
aaaab or a thousand " a’ characters followed by a b, but not aaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few

repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string ' aaaaaa’, a{3, 5} willmatch 5 " a’ characters, while a {3, 5} ? will only match 3 characters.

"\’ Either escapes special characters (permitting you to match characters like * =’ , 7 2’ , and so forth), or signals a

special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:

* Characters can be listed individually, e.g. [amk] will match "a’, "m’,or " k’.

* Ranges of characters can be indicated by giving two characters and separating them by a -’ , for example
[a—z] will match any lowercase ASCII letter, [0—-5] [0—-9] will match all the two-digits numbers from
00to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If — is escaped (e.g. [a\-z]) orifit’s
placed as the first or last character (e.g. [a—]), it will match a literal * -’ .

* Special characters lose their special meaning inside sets. For example, [(+x)] will match any of the
literal characters ” (’,"+’," %", or’)"'.

* Character classes such as \w or \ S (defined below) are also accepted inside a set, although the characters
they match depends on whether ASCTIT or LOCALE mode is in force.

» Characters that are not within a range can be matched by complementing the set. If the first character of
the set is * ~/, all the characters that are not in the set will be matched. For example, [~5] will match
any character except ' 5, and [~"] will match any character except / ~/. ~ has no special meaning if
it’s not the first character in the set.

e To match a literal 7]’ inside a set, precede it with a backslash, or place it at the beginning of the set. For
example, both [() [\]1{}] and [] () [{}] will both match a parenthesis.

"|” A|B,where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary

number of REs can be separated by the ’ |’ in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated by ’ |/ are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the ’ |’ operator is never greedy. To match a literal * | 7, use
\ |, or enclose it inside a character class, asin [|].

.) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the

contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number special sequence, described below. To match the literals * (* or) ’, use \ (or \), or
enclose them inside a character class: [(] [)].

84

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.3.0

(?...) This is an extension notation (a /2’ following a ’ (’ is not meaningful otherwise). The first character
after the 2’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group; (?P<name>. ..) isthe only exception to this rule. Following are the currently supported
extensions.

(?ailmsux) (One or more letters from the set “a’, "1/, 'L’, 'm’, 's’, 'u’, ' x’.) The group matches the
empty string; the letters set the corresponding flags: re . A (ASCII-only matching), re . I (ignore case), re . L
(locale dependent), re .M (multi-line), re.S (dot matches all), and re.X (verbose), for the entire regular
expression. (The flags are described in Module Contents.) This is useful if you wish to include the flags as part
of the regular expression, instead of passing a flag argument to the re . compile () function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression string, or
after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible within the rest
of the regular expression via the symbolic group name name. Group names must be valid Python identifiers, and
each group name must be defined only once within a regular expression. A symbolic group is also a numbered
group, just as if the group were not named. So the group named id in the example below can also be referenced
as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_] \wx), the group can be referenced by its name in argu-
ments to methods of match objects, such as m.group (’ id’) orm.end (’ 1d’), and also by name in the
regular expression itself (using (?P=1id)) and replacement text given to . sub () (using \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.
(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matchesif ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example, Isaac (?=Asimov) will match ’ Isaac ' only ifit’s followed by ' Asimov’.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac
(?!'Asimov) will match Isaac ' only if it’s not followed by ' Asimov’.

(?<=...) Matches if the current position in the string is preceded by a match for ... that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc) def will find a match in abcde £, since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must
only match strings of some fixed length, meaning that abc or a | b are allowed, but ax and a{3, 4} are not.
Note that patterns which start with positive lookbehind assertions will not match at the beginning of the string
being searched; you will most likely want to use the search () function rather than the match () function:

>>> import re

>>> m = re.search(’ (?<=abc)def’, ’"abcdef’)
>>> m.group (0)
"def’

This example looks for a word following a hyphen:

>>> m = re.search(’ (?<=-)\wt+’, ’spam-egg’)
>>> m.group (0)
4 eggl
(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative

lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

6.2. re — Regular expression operations 85

The Python Library Reference, Release 3.3.0

(? (id/name) yes—pattern|no-pattern) Will try to match with yes—-pattern if the group with given
id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted.
For example, (<)? (\w+@\w+ (?2:\.\w+)+) (?(1)>]$) is a poor email matching pattern, which will
match with <user@host.com>’ as well as ' user@host.com’, but not with * <user@host .com’
nor ' user@host.com>"’ .

The special sequences consist of / \’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example, \ $ matches the character ’ $” .

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1 matches 'the the’ or '55 55’, but not ' the end’ (note the space after the group). This
special sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number
is 3 octal digits long, it will not be interpreted as a group match, but as the character with octal value number.
Inside the ” [* and ’]’ of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of Unicode
alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore Unicode character. Note that formally, \b is defined as the boundary between a \w and a \W
character (or vice versa), or between \w and the beginning/end of the string. This means that r’ \bfoo\b’
matches ' foo’,’ foo.’,’ (foo)’,’bar foo baz’ butnot’ foobar’ or’ foo3’.

By default Unicode alphanumerics are the ones used, but this can be changed by using the ASCIT flag. Inside
a character range, \b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that r’ py\B’
matches ' python’, "py3’,’py2’,butnot ' py’, "' py.’,or ' py!’. \Bis just the opposite of \b, so word
characters are Unicode alphanumerics or the underscore, although this can be changed by using the ASCIT flag.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode character
category [Nd]). This includes [0-9], and also many other digit characters. If the ASCIT flag is used
only [0-9] is matched (but the flag affects the entire regular expression, so in such cases using an explicit
[0-9] may be a better choice).

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a Unicode decimal digit. This is the opposite of \d. If the ASCTT flag is used
this becomes the equivalent of [~0-9] (but the flag affects the entire regular expression, so in such cases using
an explicit [~0-9] may be a better choice).

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v], and
also many other characters, for example the non-breaking spaces mandated by typography rules in many
languages). If the ASCIT flag is used, only [\t\n\r\f\v] is matched (but the flag affects the entire
regular expression, so in such cases using an explicit [\t\n\r\£f\v] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is equiv-
alentto [\t\n\r\f\v].

\S Matches any character which is not a Unicode whitespace character. This is the opposite of \ s. If the ASCIT flag
is used this becomes the equivalent of [~ \t\n\r\£f\v] (but the flag affects the entire regular expression, so
in such cases using an explicit [~ \t\n\r\£f\v] may be a better choice).

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can be part
of a word in any language, as well as numbers and the underscore. If the ASCTIT flag is used, only

86 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.3.0

[a—zA-Z0-9_] is matched (but the flag affects the entire regular expression, so in such cases using an
explicit [a—zA-2Z0-9_] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is
equivalent to [a-zA-Z0-9_].

\W Matches any character which is not a Unicode word character. This is the opposite of \w. If the ASCTIT flag is
used this becomes the equivalent of [~a—-zA-70-9_] (but the flag affects the entire regular expression, so in
such cases using an explicit [*a-zA-Z0-9_] may be a better choice).

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \u \U
\v \x AR

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u’ and ' \U’ escape sequences are only recognized in Unicode patterns. In bytes patterns they are not treated
specially.

Octal escapes are included in a limited form. If the first digit is a O, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length. Changed in version 3.3: The * \u’ and ’ \U’ escape sequences have been added.

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

re.compile (pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match () and search () methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to
result = re.match(pattern, string)

but using re.compile () and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.match (), re.search() or
re.compile () are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

re.A

6.2. re — Regular expression operations 87

The Python Library Reference, Release 3.3.0

re

re.

re.
re.

re.
re.

re
re

re.
re.

re.

re

re.

re.

.ASCITI
Make \w, \W, \b, \B, \d, \D, \s and \ S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns.
Note that for backward compatibility, the re . U flag still exists (as well as its synonym re . UNICODE and its
embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode by default for
strings (and Unicode matching isn’t allowed for bytes).
DEBUG
Display debug information about compiled expression.
I
IGNORECASE
Perform case-insensitive matching; expressions like [A-Z] will match lowercase letters, too. This is not af-
fected by the current locale and works for Unicode characters as expected.
L
LOCALE
Make \w, \W, \b, \B, \'s and \S dependent on the current locale. The use of this flag is discouraged as the
locale mechanism is very unreliable, and it only handles one “culture” at a time anyway; you should use Unicode
matching instead, which is the default in Python 3 for Unicode (str) patterns.
.M
.MULTILINE
When specified, the pattern character / ~’ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character $’ matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, / ~’ matches only at the beginning
of the string, and ’ $ only at the end of the string and immediately before the newline (if any) at the end of the
string.
S
DOTALL
Make the ’ .’ special character match any character at all, including a newline; without this flag, * . " will
match anything except a newline.
X
.VERBOSE
This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored, except
when in a character class or preceded by an unescaped backslash, and, when a line contains a ’ #’ neither in a
character class or preceded by an unescaped backslash, all characters from the leftmost such ’ #’ through the
end of the line are ignored.
That means that the two following regular expression objects that match a decimal number are functionally
equal:
a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d » # some fractional digits""", re.X)
b = re.compile (r"\d+\.\d+")
search (pattern, string, flags=0)

Scan through string looking for a location where the regular expression pattern produces a match, and return
a corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

match (pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding

88

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.3.0

match object. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not at
the beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re.split (pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all groups
in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits occur,
and the remainder of the string is returned as the final element of the list.

>>> re.split (/' \W+’, ’Words, words, words.’)
["Words’, "words’, ’"words’, ']

>>> re.split (’ (\W+)’, ’'Words, words, words.’)
["Words”, ', ', "words’, ', ', "words’, ".’, ''"]

>>> re.split (/' \W+’, ’'Words, words, words.’, 1)
["Words’, ’"words, words.’]

>>> re.split (' [a—-f]+’, '0a3B9’, flags=re.IGNORECASE)
[(ror, 37, 9]

If there are capturing groups in the separator and it matches at the start of the string, the result will start with an
empty string. The same holds for the end of the string:

>>> re.split (/ (\W+)’, ’...words, words...')
rrr, ..., "words’, ', ', '"words’, "...", "]

That way, separator components are always found at the same relative indices within the result list.

Note that split will never split a string on an empty pattern match. For example:

>>> re.split ('x*x", ’"foo’)

["foo']

>>> re.split (" (?2m)"$", "foo\n\nbar\n")
[" foo\n\nbar\n’]

Changed in version 3.1: Added the optional flags argument.

re.findall (pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-right,
and matches are returned in the order found. If one or more groups are present in the pattern, return a list of

groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the
result unless they touch the beginning of another match.

re.finditer (pattern, string, flags=0)
Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the
result unless they touch the beginning of another match.

re.sub (pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\r is converted to a carriage return, and so forth. Unknown escapes such as \ j are left alone. Backreferences,
such as \ 6, are replaced with the substring matched by group 6 in the pattern. For example:

6.2. re — Regular expression operations 89

The Python Library Reference, Release 3.3.0

>>> re.sub (r’def\s+ ([a-zA-Z_][a—-zA-7Z_0-9]x)\s*\ (\sx\):’,
r’static PyObjectx\npy_\1 (void)\n{’,

"def myfunc():")

"static PyObject*\npy_myfunc (void)\n{’

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == ’"-’: return ' '/
. else: return -’
>>> re.sub(’'-{1,2}’, dashrepl, 'pro-———--gram-files’)

"pro-—-gram files’
>>> re.sub(r’\sAND\s’, ' & ', ’'Baked Beans And Spam’, flags=re.IGNORECASE)
"Baked Beans & Spam’

The pattern may be a string or an RE object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous match, so sub (' x*’, ’'-’, ’abc’) returns ' —a-b-c-'.

In addition to character escapes and backreferences as described above, \g<name> will use the substring
matched by the group named name, as defined by the (?P<name>...) syntax. \g<number> uses the
corresponding group number; \g<2> is therefore equivalent to \ 2, but isn’t ambiguous in a replacement such
as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference to group 2 followed by the
literal character * 0’ . The backreference \ g<0> substitutes in the entire substring matched by the RE. Changed
in version 3.1: Added the optional flags argument.

re . subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).
Changed in version 3.1: Added the optional flags argument.

re.escape (string)
Escape all the characters in pattern except ASCII letters, numbers and ’ _’ . This is useful if you want to match
an arbitrary literal string that may have regular expression metacharacters in it. Changed in version 3.3: The
’ _’ character is no longer escaped.

re.purge ()
Clear the regular expression cache.

exception re .error
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern.

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

regex.search (string[, pos[, endpos]])
Scan through string looking for a location where this regular expression produces a match, and return a corre-
sponding match object. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

920 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.3.0

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0. This
is not completely equivalent to slicing the string; the * ~” pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos char-
acters long, so only the characters from pos to endpos — 1 will be searched for a match. If endpos is less than
pos, no match will be found; otherwise, if rx is a compiled regular expression object, rx . search (string,
0, 50) isequivalentto rx.search (string[:50], 0).

>>> pattern = re.compile("d")

>>> pattern.search ("dog") # Match at index 0

<_sre.SRE_Match object at ...>

>>> pattern.search("dog", 1) # No match; search doesn’t include the "d"

regex.match (string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding match
object. Return None if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")

>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object at ...>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

regex.split (string, maxsplit=0)
Identical to the split () function, using the compiled pattern.

regex.findall (string[,pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

regex.finditer (string[, pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

regex.sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

regex.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

regex.flags
The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline flags in
the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

regex.groups
The number of capturing groups in the pattern.

regex.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

regex.pattern
The pattern string from which the RE object was compiled.

6.2. re — Regular expression operations 91

The Python Library Reference, Release 3.3.0

6.2.4 Match Objects

Match objects always have a boolean value of True. This lets you use a simple if-statement to test whether a match
was found. Match objects support the following methods and attributes:

match .expand (femplate)

Return the string obtained by doing backslash substitution on the template string template, as done by the sub ()
method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences (\1, \2)
and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding group.

match.group ([groupl,])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist™")
>>> m.group (0) # The entire match

"Isaac Newton’

>>> m.group (1) # The first parenthesized subgroup.
"Isaac’

>>> m.group (2) # The second parenthesized subgroup.
"Newton’

>>> m.group (l, 2) # Multiple arguments give us a tuple.

(" Isaac’, ’'Newton’)

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattern, an IndexError
exception is raised.

A moderately complicated example:

>>> m = re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group (/' first_name’)

"Malcolm’

>>> m.group (' last_name’)

"Reynolds’

Named groups can also be referred to by their index:
>>> m.group (1)

"Malcolm’

>>> m.group (2)

"Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(x" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
IC3I

92

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.3.0

match.groups (default=None)
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None.

For example:
>>> m = re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()

(7247, "1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match(r" (\d+)\.?2 (\d+) 2", "24")

>>> m.groups () # Second group defaults to None.

(24", None)

>>> m.groups ("0”) # Now, the second group defaults to 707.
(1241, IOI)

match.groupdict (default=None)
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{’ first_name’: "Malcolm’, ’last_name’: ’'Reynolds’}

match.start ([group])

match.end([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return -1 if group exists but did not contribute to the match. For a match object m,
and a group g that did contribute to the match, the substring matched by group g (equivalent to m.group (g))
is

m.string[m.start (g) :m.end (g)]

Note thatm. start (group) willequal m. end (group) if group matched a null string. For example, after m
= re.search(’b(c?)’, ’'cba’),m.start(0)isl,m.end(0) is2,m.start (1) andm.end (1)
are both 2, and m. start (2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]

"tony@tiger.net’

match.span ([gr0up])
For a match m, return the 2-tuple (m.start (group), m.end(group)). Note that if group did not
contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

match.pos
The value of pos which was passed to the search () or match () method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

6.2. re — Regular expression operations 93

The Python Library Reference, Release 3.3.0

match.endpos
The value of endpos which was passed to the search () or match () method of a regex object. This is the
index into the string beyond which the RE engine will not go.

match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a) (b)), and ((ab)) will have lastindex == 1 if applied to the string ' ab’,
while the expression (a) (b) will have lastindex == 2, if applied to the same string.

match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

match.re
The regular expression object whose match () or search () method produced this match instance.

match.string
The string passed to match () or search ().

6.2.5 Regular Expression Examples
Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return ’'<Match: %r, groups=%r>’ % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each

@ 9 13t

character representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2” through *“9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r""[a2-9tjgk] {5}s")

>>> displaymatch(valid.match ("aktbq")) # Valid.
"<Match: ’"aktbqg’, groups=()>"

>>> displaymatch(valid.match ("akt5e")) # Invalid.
>>> displaymatch (valid.match ("akt")) # Invalid.
>>> displaymatch (valid.match ("727ak")) # Valid.

"<Match: ’727ak’, groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> pair = re.compile(r".+(.).*x\1")
>>> displaymatch (pair.match ("717ak"))
"<Match: "717", groups=("7",)>"

>>> displaymatch (pair.match("718ak"))
>>> displaymatch (pair.match("354aa"))
"<Match: ’354aa’, groups=('a’,)>"

Pair of 7s.

No pairs.
Pair of aces.

To find out what card the pair consists of, one could use the group () method of the match object in the following

manner:

>>> pair.match("717ak") .group (1)
7'71

94

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.3.0

Error because re.match () returns None, which doesn’t have a group () method:
>>> pair.match("718ak") .group (1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".x(.).»\1", "718ak").group (1)
AttributeError: ’'NoneType’ object has no attribute ’'group’

>>> pair.match("354aa") .group (1)

14 a 4

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful, though

also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings
between scanf () format tokens and regular expressions.

scanf () Token | Regular Expression

%cC

%5¢c {5}

$d [—+]?2\d+

%e, $E, %1, %9 [—+]172(\d+ \ \dx) 2 |\.\d+) ([eE] [-+]?2\d+) ?
%1 [-+12(0 [\dA-Fa- f]+|O[71+ \d+)

%0 [-+12[0]+

$s \S+

S$u \d+

[-+1?2(0[xX])?[\dA-Fa-f]+

X
o\
b

To extract the filename and numbers from a string like
/usr/sbin/sendmail - 0 errors, 4 warnings
you would use a scanf () format like

%$s — %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers two different primitive operations based on regular expressions: re .match () checks for a match only
at the beginning of the string, while re . search () checks for a match anywhere in the string (this is what Perl does

by default).

For example:

>>> re.match ("c", "abcdef™) # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object at ...>

Regular expressions beginning with * ~’ can be used with search () to restrict the match at the beginning of the
string:

>>> re.match ("c", "abcdef™) # No match
>>> re.search(""c", "abcdef") # No match

6.2. re — Regular expression operations 95

The Python Library Reference, Release 3.3.0

>>> re.search(""a", "abcdef") # Match
<_sre.SRE_Match object at ...>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with ’ ~’ will match at the beginning of each line.

>>> re.match (’X’, "A\nB\nX’, re.MULTILINE) # No match
>>> re.search ('’ "X’, "A\nB\nX’, re.MULTILINE) # Match
<_sre.SRE_Match object at ...>

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example that
creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

["Ross McFluff: 834.345.1254 155 Elm Street’,
"Ronald Heathmore: 892.345.3428 436 Finley Avenue’,
"Frank Burger: 925.541.7625 662 South Dogwood Way’,
"Heather Albrecht: 548.326.4584 919 Park Place’]

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[["Ross’, "McFluff’, ’834.345.1254’, 7155 Elm Street’],
["Ronald’, ’'Heathmore’, 7892.345.3428’, ’'436 Finley Avenue’],
["Frank’, ’"Burger’, "7925.541.7625', ’'662 South Dogwood Way’],
["Heather’, ’'Albrecht’, 7548.326.4584’, "919 Park Place’]]

The : ? pattern matches the colon after the last name, so that