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Abstract
Artificial neural networks with millions of ad-
justable parameters and a similar number of
training examples are a potential solution for dif-
ficult, large-scale pattern recognition problems in
areas such as speech and face recognition, clas-
sification of large volumes of web data, and fi-
nance. The bottleneck is that neural network
training involves iterative gradient descent and is
extremely computationally intensive. In this pa-
per we present a technique for distributed train-
ing of Ultra Large Scale Neural Networks1 (UL-
SNN) on Bunyip, a Linux-based cluster of 196
Pentium III processors. To illustrate ULSNN
training we describe an experiment in which
a neural network with 1.73 million adjustable
parameters was trained to recognize machine-
printed Japanese characters from a database con-
taining 9 million training patterns. The train-
ing runs with a average performance of 163.3
GFlops/s (single precision). With a machine cost
of $150,913, this yields a price/performance ratio
of 92.4¢ /MFlops/s (single precision). For com-
parison purposes, training using double precision
and the ATLAS DGEMM produces a sustained
performance of 70 MFlops/s or $2.16 / MFlop/s
(double precision).

1. Introduction

Artificial neural networks are a class of parametric, non-
linear statistical models that have found wide-spread use in
many pattern recognition domains, including speech recog-
nition, character recognition, signal processing, medical di-
agnosis and finance. The typical network in such an appli-

1Following the convention with integrated circuits, we take
ULSNN to mean a neural network with in excess of one million
parameters and one million training examples.

cation has 100–100,000 adjustable parameters and requires
a similar number of training patterns in order to generalize
well to unseen test data. Provided sufficient training data
is available, the accuracy of the network is limited only by
its representational power, which in turn is essentially pro-
portional to the number of adjustable parameters. Thus, in
domains where large volumes of data can be collected —
such as speech, face and character recognition, and web
page classification — improved accuracy can often be ob-
tained by training a much larger network.

In this paper we describe a method for distributed train-
ing of Ultra Large Scale Neural Networks(ULSNN), or
networks with more than one million adjustable parame-
ters and a similar number of training examples. At its
core, the algorithm usesEmmerald, a single-precision (32
bit) general matrix-matrix multiply (SGEMM) based on
the Pentium III SIMD Streaming Extensions (SSE), with
a peak performance in excess of 1090 MFlops/s on a single
550 MHz Pentium III. The use of single-precision floating
point operations is justified by the fact that we have found
it sufficient for gradient-based training of ULSNN’s. For
medium–large scale neural networks as few as 16 bits pre-
cision is sufficient [2].

To illustrate the use of our ULSNN training code, we de-
scribe an experiment in which a neural network with 1.73
million adjustable parameters is being trained to recognize
machine-printed Japanese characters from a database con-
taining 9 million training patterns. The training is run-
ning on Bunyip, a 196 processor, Linux-based Intel Pen-
tium III cluster consisting of 98 dual 550 MHz processor
PC’s, each containing 384 MBytes of RAM, 13 GBytes
of hard disk and 3x100 Mb/s fast Ethernet cards. All
components in Bunyip are “COTS” (Commodity-Off-The-
Shelf), and were sourced from a local PC manufacturer (see
http://tux.anu.edu.au/Projects/Beowulf/).

Our longest experiment took56 hours and52 minutes, re-
quiring a total of31.2 Peta Flops (1015 single-precision
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floating-point operations), with an average performance of
152 GFlops/s (single precision) while under load. With
no other user processes running the performance increases
to 163.3 GFlops/s which was sustained for a four hour
test before returning access to other users. Total memory
usage during training was 32.37 GBytes. The total ma-
chine cost, including the labor cost in construction, was
AUD$253,000, or USD$150,913 at the exchange rate of
AUD$1 = .5965¢ USD on the day of the final and largest
payment. This gives a final price/performance ratio of
USD 92.4¢ /MFlops/s (single precision). For comparison
purposes, training using double precision and the ATLAS
DGEMM [11] produced a sustained performance of 70
MFlops/s or $2.16 /MFlops/s (double precision).

2. “Bunyip” Hardware Details

The machine used for the experiments in this paper is
“Bunyip” , a 98-node, dual Pentium III Beowulf-class sys-
tem running Linux kernel 2.2.14. Our main design goals
for this machine were to maximise CPU and network per-
formance for the given budget of AUD $250,000 (about
USD $149,125). Secondary factors to be balanced into the
equation were: amount of memory and disk; reliability; and
the overall size of the machine. All dollar figures quoted in
the remainder of this paper are US dollars.

The Intel Pentium III processors were chosen over Alpha
or SPARC processors for price/performance reasons. Dual-
CPU systems were preferable as overall cost and size per
CPU is lower than single-CPU or quad-CPU systems. Un-
fortunately, at the time of designing this machine AMD
Athlon and Motorola/IBM G4 systems were not available
in dual-CPU configurations. We were also keen to use the
SSE floating point instructions of the Pentium III range.
550 MHz CPUs were eventually selected as having the best
price/performance available in the Pentium III range at that
time.

For the networking requirements, we decided to go with a
commodity solution rather than a proprietary solution. Gi-
gabit ethernet was considered, but deemed too expensive
at around $300 per node for the NIC and around $1800
per node for the switch. Instead, a novel arrangement of
multiple 100 Mb/s NICs was selected with each node hav-
ing three NICs which contributed some $65 per node (plus
switch costs – see below).

The configuration for each node is dual Intel Pentium III
550 CPUs on an EPoX KP6-BS motherboard with 384
MBytes RAM, 13 GByte UDMA66 (IDE) hard disk and
three DEC Tulip compatible 100 Mb/s network interfaces,
one of which has Wake-On-LAN capability and provision
for a Boot ROM. The nodes have no removable media, no
video capability and no keyboards. Each node cost $1282.
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Figure 1. Bunyip architecture

With reference to figure 1, logically the 96 nodes are con-
nected in four groups of 24 nodes arranged as a tetrahedron
with a group of nodes at each vertex. Each node in a ver-
tex has its three NICs assigned to one of the three edges
emanating from the vertex. Each pair of vertices is con-
nected by a 48-port Hewlett-Packard Procurve 4000 switch
(24 ports connecting each way). The switching capacity of
the Procurve switches is 3.8 Gb/s. The bi-sectional band-
width of this arrangement can be determined by looking at
the bandwidth between two groups of nodes and the other
two groups through 4 switches, giving a total of 15.2 Gb/s.
The 48-port switches cost $2386 each.

Two server machines, more or less identical to the nodes,
with the addition of CD-ROM drives, video cards and key-
boards, are each connected to a Netgear 4-port Gigabit
switch which is in turn connected to two of the HP Procurve
switches via gigabit links. The two server machines also
act as connections to the external network. Two hot-spare
nodes were also purchased and are used for development
and diagnostic work when not required as replacements for
broken nodes.

2.1 Total Cost

All up we spent 98 x $1282 ($125,636) on the compu-
tational nodes (including the two hot-spares), $17,594 on
the six 48-port and the 4-port gigabit switches (6 x $2386,
2 x $894 (gigabit interfaces) and $1490 for the gigabit
switch), $3870 on servers (including gigabit NICs, moni-
tors etc.), $944 for network cables, $179 on electrical work,
$238 on power cables and power boards, and $298 on boot
EPROMs. The ex-library shelving was loaned to us, but
would have cost $354 from a local second-hand furniture



shop. Although no component was explicitly budgeted for
staff time, this amounted to about 3 weeks to assemble and
configure the machine which adds approximately $1800 to
the overall cost of the machine. All up, the total cost was
USD $150,913.

3. Emmerald: A SIMD SGEMM for Intel
Pentium III Processors

This section introducesEmmerald, the high performance
software kernel of our ULSNN training system. It provides
a single-precision, dense, matrix-matrix multiplication rou-
tine that uses the single instruction, multiple data (SIMD)
features of Intel PIII chips (SIMD Streaming Extensions, or
SSE). The SSE provide a set of new floating-point assem-
bler instructions that allow simultaneous operation on four
single-precision floating-point numbers. Emmerald outper-
forms a naive (3-loop) matrix-matrix multiply by 8 times
for square matrices of size64, and a peak of 29 times for
matrices of size672. Emmerald can be downloaded from
http://beaker.anu.edu.au/∼daa/research.html.

3.1 Single precision general matrix-matrix multiply
(SGEMM)

Without resorting to the complexities associated with im-
plementing Strassen’s algorithm on deep-memory hierar-
chy machines [9, 10], dense matrix-matrix multiplication
requires2MNK floating point operations whereA : M ×
K andB : K × N define the dimensions of the two ma-
trices. Although this complexity is fixed, skillful use of the
memory hierarchy can dramatically reduce overheads not
directly associated with floating point operations. Memory
hierarchy optimization combined with the use of SSE gives
Emmerald its performance advantage.

Emmerald implements the SGEMM interface of Level-3
BLAS, and so may be used to improve the performance
of single-precision libraries based on BLAS (such as LA-
PACK [8]). There have been several recent attempts at au-
tomatic optimization of GEMM for deep-memory hierar-
chy machines, most notable are PHiPAC [6] and the more
recent ATLAS [11]. ATLAS in particular achieves per-
formance close to vendor optimized commercial GEMMs.
Neither ATLAS nor PhiPAC make use if the SSE instruc-
tions on the PIII for their implementation of SGEMM.

3.2 SIMD Parallelisation

A SIMD GEMM must aim to minimize the ratio of memory
accesses to floating point operations. We employed two
core strategies to achieve this:

• accumulate results in registers for as long as possible
to reduce write backs;
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Figure 2. Allocation of SSE registers (labelled asxmm[0-7] ),
showing progression of the dot products which form the inner-
most loop of the algorithm. Each black circle represents an ele-
ment in the matrix. Each dashed square represents one floating
point value in a SSE register. Thus four dotted squares together
form one 128-bit SSE register.
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Figure 3. L1 blocking for Emmerald:C′ ← A′B′ whereA′ and
B′ are in L1 andC′ is accumulated in registers.

• re-use values in registers as much as possible.

In [5] several dot-products were performed in parallel in-
side the innermost loop of the GEMM. Taking the same
approach we found experimentally that 5 dot-products in
the inner loop gave the best performance. Figure 2 shows
how these 5 dot products utilise SIMD parallelism.

3.3 Optimizations

A number of techniques are used in Emmerald to improve
performance. Briefly, they include:

• L1 blocking: Emmerald uses matrix blocking [5, 6,
11] to ensure the inner loop is operating on data in
L1 cache. Figure 3 shows the L1 blocking scheme.
The block dimensionsm andn are determined by the
configuration of dot-products in the inner loop (Sec-
tion 3.2) andk was determined experimentally.



• Unrolling: The innermost loop is completely unrolled
for all possible lengths ofk in L1 cache blocks, taking
care to avoid overflowing the instruction cache.

• Re-buffering: SinceB′ (Figure 3) is large(336 × 5)
compared toA′ (1 × 336), we deliberately bufferB′

into L1 cache. While bufferingB′ we re-order its
elements to enforce optimal memory access patterns.
This has the additional benefit of minimising transla-
tion look-aside buffer misses [12].

• Pre-fetching: Values fromA′ are not buffered into
L1 cache. We make use of SSE pre-fetch assembler
instructions to ensureA′ values will be in L1 cache
when needed.

• L2 Blocking: Efficient L2 cache blocking ensures that
peak rates can be maintained as long asA, B andC
fit into main memory.

3.4 Emmerald Results

The performance of Emmerald was measured by timing
matrix multiply calls with sizeM = N = K = 16 up
to 700. The following steps were taken to ensure a conser-
vative performance estimate:

• wall clock time on an unloaded machine is used rather
than CPU time;

• the stride of the matrices, which determines the sepa-
ration in memory between each row of matrix data, is
fixed to 700 rather than the optimal value (the length
of the row);

• caches are flushed between calls tosgemm() .

Timings were performed on a PIII 450MHz running Linux
(kernel 2.2.14).

Figure 4 shows Emmerald’s performance compared to AT-
LAS and a naive three-loop matrix multiply. The average
MFlops/s rate of Emmerald after size 100 is 1.69 times
the clock rate of the processor and 2.09 times faster than
ATLAS. A peak rate of 890 MFlops/s is achieved when
m = n = k = stride = 320. This represents 1.98
times the clock rate. On a PIII 550 MHz (the processors in
Bunyip) we achieve a peak of 1090 MFlops/s. The largest
tested size wasm = n = k = stride = 3696 which ran at
940 MFlops/s at 550 MHz. For more detail see [1].

4. Training Neural Networks using SGEMM

In this section we describe one-hidden-layer artificial neu-
ral networks and, following [3], how to compute the gra-
dient of a neural network’s error using matrix-matrix mul-
tiplication. We then describe our conjugate-gradient ap-
proach to training neural networks.
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Figure 4. Performance of Emmerald on a PIII running at 450MHz
compared to ATLAS sgemm and a naive 3-loop matrix multiply.
Note that ATLAS does not make use of the PIII SSE instructions.

4.1 Artificial Neural Networks

A one-hidden-layer artificial neural network maps input
vectorsx = (x1, . . . , xni) ∈ Rni to output vectorsy =
(y1, . . . , yno) ∈ Rno according to the formula:

yi(x) = σ

 nh∑
j=1

whoij hj(x)

 , (1)

whereσ : R → R is some squashing function (we use
σ = tanh), whoij are the adjustable parameters connecting
the hidden nodes to the output nodes, andhj(x) is the acti-
vation of thej-th hidden node:

hj(x) = σ

(
ni∑
k=1

wihjkxk

)
. (2)

In the last expression,wihjk are the adjustable parameters
connecting the input nodes to the nodes in the hidden layer.
Given a matrixX of np training patterns and a matrixT of
desired outputs for the patterns inX,

X =

 x11 . . . x1ni
...

...
...

xnp1 . . . xnpni

 , T =

 t11 . . . t1no
...

...
...

tnpno . . . tnpno

 ,
the goal is to find sets of parameterswhoij andwihkl minimiz-
ing themean-squared error:

E =
np∑
i=1

no∑
j=1

[yj(xi)− tij ]2 , (3)

wherexi is thei-th row of the data matrixX. Usually (3)
is minimized by some form of gradient descent.



4.2 Computing The Gradient Using Matrix-Matrix
Multiply

If we write Y for the matrix of outputsyj(xi), H for the
matrix of hidden activationshj(xi), andW ih andWho for
the parameter matriceswihkl andwhoij respectively, then

H = σ
(
X ∗WT

ih

)
Y = σ

(
H ∗WT

ho

)
where “∗” denotes ordinary matrix multiplication andσ(A)
means applyσ elementwize to the components ofA. Defin-
ing

Y∆ = (I − Y ∗∗Y ) ∗∗ (T − Y ) ,
H∆ = (I −H ∗∗H) ∗∗ (Y∆ ∗Who) ,

where “∗∗” denotes elementwize matrix multiplication, we
have

∇ihE = HT
∆ ∗X,

∇ohE = Y T∆ ∗H,

where∇ihE is the gradient ofE with respect to the param-
etersWih and∇hoE is the gradient ofE with respect to
Who [3].

Thus, computing the gradient of the error for an artifi-
cial neural network can be reduced to a series of ordinary
matrix multiplications and elementwize matrix multiplica-
tions. For large networks and large numbers of training pat-
terns, the bottleneck is the ordinary matrix multiplications,
which we implement using Emmerald’s SGEMM routine.
In all our experiments we found 32 bits of floating-point
precision were enough for training. For neural networks
with ≈ 10,000 parameters, as few as 16 bits are sufficient
[2].

Armed with the gradient∇E, we can adjust the parame-
tersW by a small amount in the negative gradient direc-
tion W := W − α∇E and hence reduce the error. How-
ever, because the gradient computation can be very time-
consuming (a total of 52.2 Tera-floating point operations
in our largest experiment), it is more efficient to employ
some form of line search to locate a local maximum in the
direction∇E. For the experiments reported in the next sec-
tion we used the Polak-Ribiére conjugate-gradient descent
method [4, §5.5.2] to choose the search direction, com-
bined with an exponential step-size scheme and quadratic
interpolation in order to locate a maximum in the search
direction. We were also able to speed the search for a max-
imum by using gradient information to bracket the maxi-
mum, since only thesignof the inner product of the gradi-
ent with the search direction is required to locate the max-
imum in that direction, and the sign can be reliably esti-

mated with far fewer training patterns than is required to
estimate the error.

4.3 Training Set Parallelism

Since the errorE and gradient∇E areadditiveover the
training examples, the simplest way to parallelize the train-
ing of a neural network is to partition the training data into
disjoint subsets and have each processor compute the error
and gradient for its subset. This works particularly well if
there are a large number of training patterns so that each
processor can work with near-optimal matrix sizes. The
communication required is the transmission of the neural
network parameters to each slave processor, and the trans-
mission of the error and gradient information back from
each slave to a master node which reduces them to a single
error or gradient vector.

5. Communication

This section discusses the communication costs associated
with distributed NN training, arguing that these costs are
non-trivial for ULSNNs. A reduce algorithm optimised for
Bunyip’s topology is also discussed.

5.1 Communication Costs

The inter–process communication costs during network
training arise frombroadcastingthe network parameters to
all processes andreducingthe network error and gradients
from each process to the master process. The parameter
broadcasting is cheap, since many copies of the same data
is sent to all processes. Broadcasts can take advantage of
features such as TCP/IP broadcasting. The reduce process
is more difficult with each process generating unique vec-
tors which must be collected and summed by the master
process. The time taken to reduce data grows with both the
number of parameters and the number of processes. The
remaining communication consists of start and stop mes-
sages which are insignificant compared to the aforemen-
tioned costs.

A typical neural network with 100 inputs, 50 hidden layer
neurons, and 50 output neurons, requires 7500 parameters,
or 30 KBytes of data (single precision), to be sent from
every node to the master node. A naive reduction over
194 processes using a 1Gb/s link, such as used in Bunyip,
would take 0.05 seconds assuming 100% network utilisa-
tion. Our ULSNN with 400 inputs, 480 hidden layer neu-
rons and 3203 output neurons requires 1,729,440 parame-
ters or 6.6 MBytes of data per process which would require
10.1 seconds. There is sufficient memory on each node to
occupy both processors for 446 seconds calculating gradi-
ents before a reduce operation is required. Consequently
the reduce operation would cost at least 2.3% of the avail-



able processing time, more if not enough training data is
available or the network size is increased.

This demonstrates that although communication costs for
distributed NN training are minimal for commonly im-
plemented network sizes, ULSNN training must optimise
inter–process communication to achieve the best perfor-
mance.

We reduced communication as much as possible by only
distributing the neural-network parameters to all the slaves
at the very start of training (rather than at each step), and
thereafter communicating only the search direction and the
amount to step in that direction. One significant reduce op-
eration is required per epoch to send the error gradient vec-
tor from each process to the master which then co-ordinates
the step size search with the slaves.

All communication was done using the LAM implementa-
tion of MPI (http://www.mpi.nd.edu/lam). Communicat-
ing parameters or directions to all processors required a
6.6 MBytes broadcast operation from the server to each of
the 194 processors in the cluster, while reducing the gra-
dient back to the master required 6.6 MBytes of data to
be communicated from each processor back to the server.
LAM/MPI contains a library reduce operation which uses
a simpleO(log n) algorithm that distributes the load of the
reduce over many processes instead of naively sending 194
gradient vectors to one node [7]. This results in a reduce
operation on Bunyip which takes 8.5 seconds over 8 stages.

5.2 Optimising Reductions

There are two problems with existing free implementations
of MPI reduce operations. The first is the lack of shared
memory protocols on clusters with multi-processor nodes,
instead using slow TCP/IP communications between pro-
cessors on the same motherboard. Secondly, the reduce
operation does not take advantage of the topology of the
cluster. For example, the best reduce algorithm to use on a
ring network might be to send a single vector to each node
on the ring in turn, which adds its contribution before pass-
ing the vector to the next node. On a star network the best
algorithm might be to send each contribution to the central
server and sum as they arrive.

To decrease the time taken per reduce, we wrote a cus-
tomized routine utilising shared memory for intra-node
communication and MPI non-blocking calls for inter-node
communication. This routine is summarised by Figure 5. It
is split into 4 stages, each of which takes advantage of an
aspect of Bunyip’s topology shown in Figure 1.

1. Each node contains two processors, both running an
instance of the training process. All 97 nodes (in-
cluding the server), reduce 6.6 MBytes of data though
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Figure 5. The four stages of our customized reduce: Stage 1:
SHM intra-node reduce; stage 2: all nodes in group A and C
reduce to their counterparts; stage 3: groups B and D reduce to
12 nodes using 3 NICs; stage 4: MPI library reduce to the server
node.

shared memory between processes, taking 0.18 sec-
onds. The time taken to add the two sets of data to-
gether is approximately 0.005 seconds.

2. Each node in group A can open a 100 Mb/s connec-
tion to any node in group B via switch 0. Thus all
24 nodes in A can reduce to their B counterparts in
parallel. This requires 0.66 seconds. The same trick
is used for reducing from group C to D. The reduced
data now resides only on the B and D nodes. The total
bandwidth for all 96 nodes in this stage is 4.03 Gb/s.

3. Each node contains 3x100 Mb/s NICs. This allows a
node to receive data from three other nodes simultane-
ously provided the TCP/IP routing tables are correctly
configured. We split the 24 nodes in each group into 6
sets of 4 nodes. The first of each set (see node BA in
Figure 5) is designated as the root and the other three
nodes send to it via different NICs. This takes 0.9
seconds achieving a bandwidth of 185 Mb/s into each
root node, or 2.22 Gb/s across all 12 root nodes.

4. The final step is a standard MPI library reduce from
6 B nodes and 6 D nodes to the master process. This
is the slowest step in the process taking 3.16 seconds,
including the time spent waiting for the the nodes to
synchronize since they do not start reducing simulta-
neously.

The overall time taken for the optimised reduce to com-
plete is 4.9 seconds. The actual time saved per reduction
is 3.6 seconds. The training performance speedup from
this saving varies with the duration of the gradient calcula-
tion which depends linearly on the number of training pat-
terns. Figure 6 illustrates the expected speedup achieved
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ter replacing the MPI library reduce with our optimised reduce
against the total number of training patters used.

by using the optimised reduce instead of the MPI library
reduce, against the total number of training patterns used.
In practice our peak performance of 163.3 GFlops/s ben-
efits by roughly 1% from the optimised reduce, however
the speedups are much more marked for smaller (and more
frequently encountered) data sets.

6. Japanese Optical Character Recognition

In this section we describe our distributed application of
the matrix-matrix multiply technique of Section 3 used to
train an artificial neural network as a classifier for machine-
printed Japanese characters.

6.1 The Problem, Data and Network Architecture

Japanese optical character recognition (Japanese OCR) is
the process of automatically recognizing machine-printed
Japanese documents and converting them to an electronic
form. The most difficult aspect of Japanese OCR is cor-
rectly classifying individual characters, since there are ap-
proximately 4000 characters in common usage.

The training data for our neural network consisted of
168,000 scanned, segmented, hand-truthed images of
Japanese characters purchased from the CEDAR group at
the University of Buffalo. The characters were scanned
from a variety of sources, including books, faxes, newspa-
pers and magazines. Figure 7 gives an idea of the varying
quality of the character images.

Each character in the CEDAR database is represented as a
binary image of varying resolution. We down-sampled all
the images to a20× 20 grey-scale format. The neural net-
work had400 input nodes, one for each pixel. The database
contained examples of3203 distinct characters, hence the
neural-network had3203 output nodes. The hidden layer

Figure 7. Example Japanese characters used to train the neural
network.

was chosen to have480 nodes. In total, the network had
1.73 million adjustable parameters.

168,000 training examples are not sufficient to avoid over-
fitting in a network containing 1.73 million adjustable pa-
rameters, so we generated synthetic data from the original
characters by applying random transformations including
line thickening and thinning, shifting, blurring and noise
addition. The total number of training examples includ-
ing the artificial ones was 9,264,000 approximately5.4 per
adjustable network parameter. These were distributed uni-
formly to 193 of the processors in Bunyip. A further 6320
examples of the CEDAR data set were used for testing pur-
poses.

6.2 Training

With reference to equations (1), (2), and (3), the total num-
ber of floating point operations required to compute the er-
ror E in a neural network is2 × np × (ni + no) × nh,
which equals32 Tera floating-point operations for the
Japanese OCR experiment. A gradient calculation uses
np× (4×ni×nh+6×nh×no), or 92 Tera floating-point
operations.

To assist with load balancing, each slave processor stepped
through its training patterns320 at a time. Between each
step the master node was polled to determine whether more
steps were required. Once80% of the total training data
had been consumed, the master instructed all slaves to halt
computation and return their results (either the error or
the gradient). In this way the idle time spent waiting for
other slaves to finish was reduced to at most the length
of time needed by a single processor to process320 pat-
terns. With80% of the data, an error calculation required
26 TFlops and a gradient calculation requires74 TFlops, or
135 GFlops and383 GFlops per processor respectively.



Patterns % Error
343800 51
611200 46

1833600 33

Table 1. Generalisation error decreases as the total number of pat-
terns increases.

7. Results

This section describes the classification accuracy achieved;
then concentrates on the performance scalability over pro-
cessors before finishing with peak performance results
which result in our claim of a price/performance ratio of
92.4¢ /MFlop/s.

7.1 Classification Accuracy

The network’s best classification error on the held-out
6,320 examples is 33%, indicating substantial progress on
a difficult problem (an untrained classifier has an error of
1 − 1/3200 = 99.97%). We observed an error rate of 5%
on the 40% of the data which contained the most exam-
ples of individual characters. Continued training after the
33% error rate was achieved improved the performance on
the common characters at the cost of greatly decreased per-
formance on the rare ones. This leads to the conclusion
that overfitting is occurring on characters with only one or
two examples from the original data set, despite the num-
ber of transformations being generated. A more uniform
accuracy could be achieved by generating more transforms
of rare characters, or preferably, using a greater number of
original examples.

A very large amount of data is required for two reasons.
The first is to avoid overfitting. Table 1 compares the
generalisation accuracy with the total number of training
examples used (including transformations of the original
168,000 patterns). Each data point in this graph represents
approximately 48 hours training time. Training was halted
after 10 epochs result in no classification improvement on
the test set.

7.2 Communication Performance

Recalling from Section 5.1 that communication overhead
increases with decreasing patterns then the second motiva-
tion for large training sets is to reduce such overhead. Fig-
ure 8 demonstrates how the performance scales with the
number of processors used. The bottom line is the perfor-
mance versus processors curve for a small network of 400
input nodes, 80 hidden layer nodes, 200 output nodes and
a total of 40,960 training patterns. The middle line is our
JOCR ULSNN with 163,480 total patterns. The top line
is the JOCR network again, however, for this test we al-
lowed the number of patterns to scale with the processors,
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Figure 8. Performance scaling with the number of processors used
for training a small network and our large JOCR network with a
fixed number of patterns, and the JOCR problem when the total
patterns scales with the number of processors.

minimizing the frequency of reduce operations. The max-
imal patterns test uses 32,000 patterns per processor. All
performance values quoted in this paper represent the to-
tal flops that contribute to feed forward value and gradient
calculations divided by the wall clock time. Implementa-
tion specific flops, such as the reduce operations, were not
included. Bunyip was under a small load during the perfor-
mance testing for Figure 8.

For a small number of processors, both networks exhibit
linear performance scale up, but we observe that for many
processors the larger problem scales better despite the in-
creased number of network parameters. This is due to
the communication overhead in the small network increas-
ing dramatically as each processor has less data to process
before needing to initiate a reduce. The effect would be
clearer for a large network (causing long gradient vectors
to be reduced) with few training patterns, however this sce-
nario is not usually encountered due to overfitting. Finally
we observe that with a large enough data set to fill the mem-
ory of every node, we achieve near linear scaling.

7.3 Price/Performance Ratio

Bunyip was dedicated to running the JOCR problem for
four hours with 9,360,000 patterns distributed across 196
processors. Bunyip actually consists of 194 processors,
however, we co-opted one of the hot-spare nodes (included
in the quoted price) to make up the other two processors.

Over this four hour period a total of 2.35 PFlops were per-
formed with an average performance of 163.3 GFlops/s.
This performance is sustainable indefinitely provided no
other processes use the machine. To calculate the
price/performance ratio we use the total cost derived in
Section 2.1 of USD$150,913, which yields a ratio of



92.4¢ /MFlop/s2.

8. Conclusion

We have shown how a COTS (Commodity-Off-The-Shelf)
Linux Pentium III cluster costing under $151,000 can
be used to achieve sustained, Ultra-Large-Scale Neural-
Network training at a performance in excess of 160
GFlops/s (single precision), for a price/performance ratio
of 92.4¢/MFlop/s.

Part of the reason for the strong performance is the use of
very large training sets. With the current networking set-
up, performance degrades significantly with less data per
processor, as communication of gradient information starts
to dominate over the computation of the gradient.
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