
GENERIC and GIMPLE: A New Tree
Representation for Entire Functions

Jason Merrill
Red Hat, Inc.

jason@redhat.com

1 Abstract

The tree SSA project requires a tree representa-
tion of functions for the optimizers to operate
on. There was an existing functions-as-trees
representation shared by the C and C++ front
ends, and another used by the Java front end,
but neither was adequate for use in optimiza-
tion. In this paper, we will discuss the design
of GENERIC, the new language-independent
tree representation, and GIMPLE, the reduced
subset used during optimization.

2 Introduction

For most of its history, GCC has compiled
functions directly to RTL (Register Transfer
Language) on a statement-by-statement basis.
RTL has been a very useful intermediate lan-
guage (IL) for low-level optimizations, but has
significant limitations that keep it from being
very useful for higher level optimizations:

• Its notion of data types is limited to ma-
chine words; it has no ability to deal with
structures and arrays as a whole.

• It introduces the stack too soon; taking
the address of an object forces it into the
stack, even if later optimization removes
the need for the object to be addressible.

GCC also has another IL: its abstract syntax
tree representation. In the past, the compiler
would only build up trees for a single state-
ment, and then lower them to RTL before mov-
ing on to the next statement. This began to
change in GCC 3.0: CodeSourcery, LLC mod-
ified the C++ compiler to store entire functions
as trees and only lower them to RTL as part
of compiling to assembly. As part of the same
work, they introduced the first tree-level opti-
mization pass, the inliner. Inlining at the tree
level partially addressed the second limitation
of RTL mentioned above, since C++ objects
passed as arguments to a function are usually
passed by address.

The tree SSA project is intented to expand on
this by performing a full set of optimizations at
the tree level. But to do this, we needed to re-
fine how we use trees to represent whole func-
tions. The result is GIMPLE, and its superset
GENERIC.

3 Existing Tree ILs

The C++ compiler work was later extended to
work with the C compiler as well, but never
became a language-independent tree IL. Initial
work on tree-ssa was based on the C front end
trees, but they were unsuited for use in opti-
mization.

The main shortcoming of C trees, from an op-

172 • GCC Developers Summit

timization standpoint, is that they are highly
context-dependent. Many_STMTcodes just
serve as placeholders for calls toexpand_
functions and rely on the RTL layer to keep
track of scoping. For a tree IL to be useful
for optimization, things such as the target of a
break or continue statement, or the scope
of a C++ cleanup, must be made explicit.

The other preexisting tree IL is the one in the
Java front end. Java made an effort to use back-
end tree codes whenever possible, added a few
new tree codes to the backend, and retained
a few in the front end. GENERIC is largely
based on Java front end trees, adjusted to be
entirely language independent.

4 GENERIC

The purpose of GENERIC is simply to pro-
vide a language-independent way of represent-
ing an entire function in trees. To this end,
it was necessary to add a few new tree codes
to the backend, but most everything was al-
ready there. If you can say it with the codes
in gcc/tree.def , it’s GENERIC.

Early on, there was a great deal of debate about
how to think about statements in a tree IL.
In GENERIC, a statement is any expression
whose value, if any, is ignored. A statement
will always haveTREE_SIDE_EFFECTSset
(or it will be discarded), but a non-statement
expression may also have side effects. A
CALL_EXPR, for instance.

It would be possible for some local optimiza-
tions to work on the GENERIC form of a func-
tion; indeed, the adapted tree inliner works fine
on GENERIC, but the current compiler per-
forms inlining after lowering to GIMPLE.

If necessary, a front end can use some
language-dependent tree codes in its
GENERIC representation, so long as it

provides a hook for converting them to GIM-
PLE and doesn’t expect them to work with any
(hypothetical) optimizers that run before the
conversion to GIMPLE.

5 GIMPLE

GIMPLE is a simplified subset of GENERIC
for use in optimization. The particular subset
chosen (and the name) was heavily influenced
by the SIMPLE IL used by the McCAT com-
piler project at McGill University [SIMPLE],
though we have made some different choices.
For one thing, SIMPLE doesn’t supportgoto ;
a production compiler can’t afford that kind of
restriction.

GIMPLE retains much of the structure of the
parse trees: lexical scopes and control con-
structs such as loops are represented as con-
tainers, rather than markers. However, expres-
sions are broken down into a 3-address form,
using temporary variables to hold intermediate
values.

Similarly, in GIMPLE no container node is
ever used for its value; if aCOND_EXPRor
BIND_EXPR has a value, it is stored into a
temporary within the controlled blocks, and
that temporary is used in place of the container.

The compiler pass which lowers GENERIC to
GIMPLE is referred to as the “gimplifier.” The
gimplifier works recursively, replacing com-
plex statements with sequences of simple state-
ments. Currently, the only way to tell whether
or not an expression is in GIMPLE form is
by recursively examining it; in the future there
will probably be a flag to help avoid redundant
work.

GCC Developers Summit 2003 • 173

6 Interfaces

The tree representation of a function
is stored in DECL_SAVED_TREE. It
is lowered to GIMPLE by a call to
simplify_function_tree .

If a front end wants to include language-
specific tree codes in the tree represen-
tation which it provides to the back-
end, it must provide a definition of
LANG_HOOKS_SIMPLIFY_EXPR which
knows how to convert the front end trees to
GIMPLE. Usually such a hook will involve
much of the same code for expanding front end
trees to RTL. This function can return fully
lowered GIMPLE, or it can return GENERIC
trees and let the main gimplifier lower them
the rest of the way; this is often simpler.

The C and C++ front ends currently con-
vert directly from front end trees to GIMPLE,
and hand that off to the backend rather than
first converting to GENERIC. Their gimplifier
hooks know about all the_STMTnodes and
how to convert them to GENERIC forms. I
worked for a while on a genericization pass
which would run first, but the existence of
STMT_EXPRmeant that in order to convert all
of the C statements into GENERIC equivalents
would involve walking the entire tree anyway,
so it was simpler to reduce all the way. This
may change in the future if someone writes
an optimization pass which would work better
with higher-level trees, but currently the opti-
mizers all expect GIMPLE.

A frontend which wants to use the tree
optimizers (and already has some sort
of whole-function tree representation)
only needs to provide a definition of
LANG_HOOKS_SIMPLIFY_EXPR and
call simplify_function_tree and
optimize_function_tree before they
start expanding to RTL. Note that there ac-

tually is no real handoff to the tree backend
at the moment; in the future there will be a
tree_rest_of_compilation which
will take over, but it hasn’t been written yet.

Note that there are still a large number of func-
tions and even files in the gimplifier which use
“simplify” instead of “gimplify.” This will be
corrected before the project is merged into the
GCC trunk.

You can tell the compiler to dump a C-like rep-
resentation of the GIMPLE form with the flag
-fdump-tree-simple .

7 GIMPLE reference

7.1 Temporaries

When gimplification encounters a subexpres-
sion which is too complex, it creates a new
temporary variable to hold the value of the
subexpression, and adds a new statement to ini-
tialize it before the current statement. These
special temporaries are known as “expres-
sion temporaries,” and are allocated using
get_formal_tmp_var . The compiler tries
to always evaluate identical expressions into
the same temporary, to simplify elimination of
redundant calculations.

We can only use expression temporaries
when we know that it will not be reeval-
uated before its value is used, and that it
will not be otherwise modified (these restric-
tions are derived from those in [Morgan]
4.8). Other temporaries can be allo-
cated usingget_initialized_tmp_var
or create_tmp_var .

Currently, an expression likea = b + 5 is
not reduced any further, though in future this
may be converted to

T1 = b + 5;

174 • GCC Developers Summit

a = T1;

to avoid problems with optimizers trying to re-
fer to variables after they’ve gone out of scope.

7.2 Expressions

In general, expressions in GIMPLE consist of
an operation and the appropriate number of
simple operands; these operands must either
be a constant or a variable. More complex
operands are factored out into temporaries, so
that

a = b + c + d

becomes

T1 = b + c;

a = T1 + d;

The same rule holds for arguments to a
CALL_EXPR.

The target of an assignment is usually a vari-
able, but can also be anINDIRECT_REF or a
compound lvalue as described below.

7.2.1 Compound Expressions

The left-hand side of a C comma expression is
simply moved into a separate statement.

7.2.2 Compound Lvalues

Currently compound lvalues involving array
and structure field references are not bro-
ken down; an expression likea.b[2] = 42
is not reduced any further (though complex
array subscripts are). This restriction is a
workaround for limitations in later optimizers;
if we were to convert this to

T1 = &a.b;

T1[2] = 42;

alias analysis would not remember that the
reference toT1[2] came by way ofa.b ,
so it would think that the assignment could
alias another member ofa; this broke
struct-alias-1.c . Future optimizer im-
provements may make this limitation unneces-
sary.

7.2.3 Conditional Expressions

A C ?: expression is converted into anif
statement with each branch assigning to the
same temporary. So,

a = b ? c : d;

becomes

if (b)

T1 = c;

else

T1 = d;

a = T1;

Note that in GIMPLE,if statements are also
represented usingCOND_EXPR, as described
below.

7.2.4 Logical Operators

Except when they appear in the condition
operand of a COND_EXPR, logical ‘and’
and ‘or’ operators are simplified as follows:
a = b && c becomes

T1 = (bool)b;

if (T1)

T1 = (bool)c;

a = T1;

Note thatT1 in this example cannot be an ex-
pression temporary, because it has two differ-
ent assignments.

GCC Developers Summit 2003 • 175

7.3 Statements

Most statements will be assignment state-
ments, represented byMODIFY_EXPR. A
CALL_EXPRwhose value is ignored can also
be a statement. No other C expressions can ap-
pear at statement level; a reference to a volatile
object is converted into aMODIFY_EXPR.

There are also several varieties of complex
statements.

7.3.1 Blocks

Block scopes and the variables they declare in
GENERIC and GIMPLE are expressed using
theBIND_EXPRcode, which in previous ver-
sions of GCC was primarily used for the C
statement-expression extension.

Variables in a block are collected into
BIND_EXPR_VARS in declaration order.
Any runtime initialization is moved out of
DECL_INITIAL and into a statement in the
controlled block. When gimplifying from
C or C++, this initialization replaces the
DECL_STMT.

Variable-length arrays (VLAs) complicate this
process, as their size often refers to variables
initialized earlier in the block. To handle this,
we currently split the block at that point, and
move the VLA into a new, innerBIND_EXPR.
This strategy may change in the future.

DECL_SAVED_TREEfor a GIMPLE function
will always be aBIND_EXPRwhich contains
declarations for the temporary variables used
in the function.

A C++ program will usually contain more
BIND_EXPRs than there are syntactic blocks
in the source code, since several C++ con-
structs have implicit scopes associated with
them. On the other hand, although the

C++ front end uses pseudo-scopes to handle
cleanups for objects with destructors, these
don’t translate into the GIMPLE form; multi-
ple declarations at the same level use the same
BIND_EXPR.

7.3.2 Statement Sequences

Currently, multiple statements at the
same nesting level are connected via
COMPOUND_EXPRs. This representation
was chosen both because of precedent and
because it simplified the implementation of the
gimplifier. However, it makes transformations
during optimization more complicated, and
there is some concern about the memory
overhead involved.

The complication is mostly encapsu-
lated by the use of iterators declared in
tree-iterator.h . The representation
may be extended in the future, perhaps to use
statement vectors or a double-chained list, but
the iterators should also avoid the need for any
changes in the optimizers.

7.3.3 Empty Statements

Whenever possible, statements with no ef-
fect are discarded. But if they are nested
within another construct which cannot be dis-
carded for some reason, they are instead re-
placed with an empty statement, generated by
build_empty_stmt . Initially, all empty
statements were shared, after the pattern of the
Java front end, but this caused a lot of trouble
in practice, and they were recently unshared.

An empty statement is represented as
(void)0 .

176 • GCC Developers Summit

7.3.4 Loops

All loops are currently expressed in GIMPLE
using LOOP_EXPR, which represents an in-
finite loop. Loop conditions,break and
continue are converted into explicit gotos.

A future loop optimization pass may repre-
sent canonicalized loops using another tree
code, perhapsDO_LOOP_EXPR, but this has
not been implemented yet.

7.3.5 Selection Statements

A simple selection statement, such as the C
if statement, is expressed in GIMPLE using a
void COND_EXPR. If only one branch is used,
the other is filled with an empty statement.

Normally, the condition expression is reduced
to a simple comparison. If it is a shortcut (&&
or ||) expression, however, we try to break up
the if into multiple if s so that the implied
shortcut is taken directly, much like the trans-
formation done bydo_jump in the RTL ex-
pander. Currently, this is only done when it
can be done simply by adding moreif s; in
the future, this transformation will handle more
cases and usegoto if necessary.

The representation of aswitch is still un-
settled. Currently, aSWITCH_EXPRcontains
the condition, the body, and aTREE_VECof
the LABEL_DECLs which theswitch can
jump to, andcase labels are represented in
the body byCASE_LABEL_EXPRs. In future,
we may want to move even more information
about the cases into theSWITCH_EXPRitself,
and reduce theCASE_LABEL_EXPRs to plain
LABEL_EXPRs.

7.3.6 Jumps

Other jumps are expressed by either
GOTO_EXPRor RETURN_EXPR.

The operand of aGOTO_EXPRmust be either
a label or a variable containing the address to
jump to.

The operand of aRETURN_EXPRis ei-
therNULL_TREEor aMODIFY_EXPRwhich
sets the return value. I wanted to move
the MODIFY_EXPR into a separate state-
ment, but the special return semantics in
expand_return make that difficult. It may
still happen in the future.

7.3.7 Cleanups

Destructors for local C++ objects and similar
dynamic cleanups are represented in GIMPLE
by a TRY_FINALLY_EXPR. When the con-
trolled block exits, the cleanup is run.

TRY_FINALLY_EXPR complicates the flow
graph, since the cleanup needs to appear on
every edge out of the controlled block; this
reduces our freedom to move code across
these edges. In the future, we will want
to lower TRY_FINALLY_EXPR to simpler
forms at some point in optimization, proba-
bly by changing it into aTRY_CATCH_EXPR
and inserting an additional copy of the cleanup
along each normal edge out of the block.

7.3.8 Exception Handling

Other exception handling constructs are rep-
resented usingTRY_CATCH_EXPR. The han-
dler operand of aTRY_CATCH_EXPRcan be
a normal statement to be executed if the con-
trolled block throws an exception, or it can
have one of two special forms:

GCC Developers Summit 2003∼∼•∼∼177

• A CATCH_EXPRexecutes its handler
if the thrown exception matches one
of the allowed types. Multiple han-
dlers can be expressed by a sequence of
CATCH_EXPRstatements.

• An EH_FILTER_EXPRexecutes its han-
dler if the thrown exception does not
match one of the allowed types.

Currently throwing an exception is not di-
rectly represented in GIMPLE, since it is im-
plemented by calling a function. At some point
in the future we will want to add some way to
express that the call will throw an exception of
a known type.

8 Example

struct A { A(); ∼A(); };

int i;

int g();

void f ()

{
A a;

int j = (−−i, i ? 0 : 1);

for (int x = 42; x > 0; −−x)

{
i += g() ∗4 + 32;

}
}

becomes

void f() ()

{
struct A ∗ a.1;

int iftmp.2;

int T.3;

int T.4;

int T.5;

struct A ∗ a.6;

{
struct A a;

int j;

a.1 = &a;

__comp_ctor (a.1);

try

{
i = i − 1;

if (i == 0)

iftmp.2 = 1;

else

iftmp.2 = 0;

j = iftmp.2;

{
int x;

x = 42;

while (1)

{
if (x ≤ 0)

goto break_label;

T.3 = g ();

T.4 = T.3 ∗ 4;

T.5 = i + T.4;

i = T.5 + 32;

x = x − 1;

};
break_label:;

}
}

finally

{
a.6 = &a;

__comp_dtor (a.6);

}
}

}

178∼∼•∼∼GCC Developers Summit ∼

9 Rough GIMPLE Grammar

function:

FUNCTION_DECL

DECL_SAVED_TREE→ block

block:

BIND_EXPR

BIND_EXPR_VARS→ DECL chain

BIND_EXPR_BLOCK→ BLOCK

BIND_EXPR_BODY

→ compound−stmt

compound−stmt:

COMPOUND_EXPR

op0 → non−compound−stmt

op1 → stmt

stmt: compound −stmt

| non−compound−stmt

non−compound−stmt:

block

| loop −stmt

| if −stmt

| switch −stmt

| jump−stmt

| label −stmt

| try −stmt

| modify −stmt

| call −stmt

loop −stmt:

LOOP_EXPR

LOOP_EXPR_BODY

→ stmt | NULL_TREE

| DO_LOOP_EXPR

(to be defined later)

if −stmt:

COND_EXPR

op0 → condition

op1 → stmt

op2 → stmt

switch −stmt:

SWITCH_EXPR

op0 → val

op1 → stmt

op2 → TREE_VEC of LABEL_DECLs

jump−stmt:

GOTO_EXPR

op0 → LABEL_DECL | ‚*‚ ID

| RETURN_EXPR

op0 → modify −stmt

| NULL_TREE

label −stmt:

LABEL_EXPR

op0 → LABEL_DECL

| CASE_LABEL_EXPR

CASE_LOW→ val | NULL_TREE

CASE_HIGH→ val | NULL_TREE

CASE_LABEL→ LABEL_DECL

try −stmt:

TRY_CATCH_EXPR

op0 → stmt

op1 → handler

| TRY_FINALLY_EXPR

op0 → stmt

op1 → stmt

handler:

catch −seq

| EH_FILTER_EXPR

| stmt

catch −seq:

CATCH_EXPR

| COMPOUND_EXPR

op0 → CATCH_EXPR

op1 → catch −seq

modify −stmt:

MODIFY_EXPR

op0 → lhs

op1 → rhs

call −stmt: CALL_EXPR

op0 → _DECL | ‚&‚ _DECL

op1 → arglist

arglist:

NULL_TREE

| TREE_LIST

op0 → val

op1 → arglist

varname : compref | _DECL

lhs: varname | ‚*‚ _DECL

pseudo −lval: _DECL | ‚*‚ _DECL

compref :

GCC Developers Summit 2003 • 179

COMPONENT_REF

op0 → compref | pseudo −lval

| ARRAY_REF

op0 → compref | pseudo −lval

op1 → val

condition : val | val relop val

val : _DECL | CONST

rhs: varname | CONST

| ‚*‚ _DECL

| ‚&‚ varname

| call_expr

| unop val

| val binop val

| ‚(‚ cast ‚)‚ varname

(cast here stands for all valid C

typecasts. Use of varname here seems

odd; it may change to val.)

unop: ‚+‚ | ‚-‚ | ‚!‚ | ‚~‚

binop: relop | ‚-‚ | ‚+‚ | ‚/‚ | ‚*‚

| ‚%‚ | ‚&‚ | ‚|‚ | ‚«‚ | ‚»‚ | ‚^‚

relop: All tree codes of class ‚<‚

References

[SIMPLE] L. Hendren and C. Donawa and
M. Emami and G. Gao and Justiani
and B. Sridharan,Designing the McCAT
Compiler Based on a Family of Struc-
tured Intermediate Representations, Lec-
ture Notes in Computing Science no. 757
(1992) p. 406-420

[Morgan] Robert Morgan.Building an Opti-
mizing Compiler, Digital Press (1998).

180 • GCC Developers Summit

