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Abstract—Product-line architectures (PLAs) designed for mo-
bile devices create a unique challenge for automated product
variant selection engines since variants must be derived on-the-fly
as devices are discovered. Current automation techniques do not
incorporate device resource consumption constraints intovariant
selection and do not address how a PLA can be designed to
improve automated variant selection speed. This paper presents
a tool called Scatter whose input is (1) the requirements of
PLA construction and (2) the resources available on a discovered
mobile device and whose output is the optimal variant that can
be deployed to the device. Scatter provides automatic variant
selection based on configuration and resource constraints and
also ensures that variant selection is optimal with regard to a
configurable cost function. The paper presents our results from
experiments with Scatter and how PLA design decisions affect a
constraint-based variant selection engine’s solving speed.

I. I NTRODUCTION

The increasing popularity and abundance of mobile and
embedded devices is bringing the promise of pervasive com-
puting closer to reality. A recent trend in mobile devices that
makes pervasive computing more realistic is the proliferation
of services that allow mobile devices to download software
on-demand. Mobile phones, for example, can now access web-
based applications, such as google mail, or download custom
applications from services, such as Verizon’s “Get It Now.”
Google delivers both a web-based interface to google mail
and an application that can be downloaded to a mobile phone.

In a pervasive computing environment, the ability to down-
load software on-demand will play a critical role in delivering
custom services to users where and when they are needed.
For example, when a mobile device enters a retail store,
software for browsing back room inventory, displaying store
circulars, and purchasing items can be downloaded by the
mobile device. When exiting the store, the device may be
carried onto a train, in which case applications for placing
food orders, checking train schedules, and reserving further
tickets could be downloaded by the mobile device.

Product-line architectures (PLAs) [4] are a promising ap-
proach to help developers manage the complexity of the
variability between mobile devices [1], [28], [19]. PLAs [4]
enable the development of a group of software packages that
can be retargeted for different requirement sets by leveraging
common capabilities, patterns, and architectural styles.The

design of a PLA is typically guided by scope, commonal-
ity, and variability (SCV) analysis [7]. SCV captures key
characteristics of software product-lines, including their (1)
scope, which defines the domains and context of the PLA, (2)
commonalities, which describe the attributes that recur across
all members of the family of products, and (3)variabilities,
which describe the attributes unique to the different members
of the family of products.

Using a PLA, developers can create software architectures
that can be rapidly retargeted to the capabilities of different
mobile devices. In a pervasive environment, however, the retar-
geting of a software application to produce a valid variant for a
device must happen online. When a device enters a particular
context, such as a retail store, the application provider service
must very quickly deduce and create a variant for the device.
With the large array of device types and rapid development
speed of new devices and capabilities, the system will not be
able to know about all device typesa priori. As devices enter a
context, their unique capabilities must be discovered and dealt
with efficiently and correctly.

Current techniques for automating variant construction from
component-based models or feature models, such as those
presented in [2], [14], [18], [21], [23], do not sufficiently
address various challenges of designing and implementing an
automated approach to selecting a product variant for a mobile
device. One common capability lacking in each of these
approaches is the ability to consider resource consumption
constraints, such as the total available memory consumed
by the features selected for the variant must be less than
256 kilobytes. Resource constraints are important for mobile
devices since resources are typically limited. Some resources,
such as cellular network bandwidth, also have a measurable
cost associated with them and must be conserved.

Another missing detail of these approaches is the archi-
tecture for how a device discovery service would be used to
characterize a device’s non-functional properties (such as OS,
total RAM, etc.) so that a variant can be selected for them. A
variant selection engine for mobile devices must have a way
to interface with a discovery mechanism. Finally, to provide
fast feature selection engines (which aids dynamic software
delivery for mobile devices) more research is needed on how
PLA design decisions impact the speed of different automation



techniques.
To address these gaps in online mobile software variant

selection engines, we have developed a tool calledScatterthat
first captures the requirements of a PLA and the resources of
a mobile device and then quickly constructs a custom variant
from a PLA for the device. This paper presents the architec-
ture and functionality of Scatter and provides the following
contributions to research on custom application deployment
in pervasive environments:

• We describe Scatter’s graphical requirement and resource
specification mechanisms and show how they facilitate
the capture and analysis of a wide variety of requirement
types

• We discuss how Scatter transforms requirement speci-
fications into a format that can be operated on by a
constraint solver and how we extend existing constraint-
based automation approaches [2] to include resource
constraints

• We describe the automated variant selection engine,
based on a Constraint Logic Programming Finite Domain
(CLP(FD)) solver [11], [24] and show how it can rapidly
produce both correct and optimal variants based on the
requirements

• We present data from experiments that show how PLA
constraints impact variant selection time for a constraint-
based variant selection engine.

• We describe PLA design rules that we have gleaned from
our experiments that help to improve variant selection
time when using a constraint-based approach.

The remainder of this paper is organized as follows: Sec-
tion II describes the challenges of selecting product variants
for mobile devices; Section III presents the problems of
capturing the requirements and resources for deploying PLA
variants to mobile devices and discusses how Scatter addresses
them; Section IV shows how Scatter automatically transforms
PLA requirements and mobile device resources into a model
that can be operated on by the CLP(FD) based variant selector;
Section V analyzes the performance results of applying Scatter
to variant selection for an example PLA; Section VI compares
our approach with related work; and Section VII presents
lessons learned and concluding remarks.

II. CHALLENGES OFAUTOMATED VARIANT SELECTION

FOR MOBILE DEVICES

The following are three key challenges associated with cre-
ating an automated variant selector in a pervasive environment:
• Unknown device signatures.Although devices may share

common communication protocols and resource description
schemas, a variant selection service will not know all device
signatures at design time. To provide on-demand variant se-
lection when a new device is encountered, the selection mech-
anism must be fast. Moreover, devices may possess different
signatures. On the one extreme, a laptop may be carried onto
a train with a relatively powerful Intel Core Duo processor
and a gigabyte or more of RAM. On the other extreme, a
Treo mobile phone may be discovered with a 312mhz XScale

processor and 64mb of RAM. A variant selector must be able
to handle these diverse device descriptions.
• Variant cost optimization. Each variant may have a cost

associated with it. There may be many valid variants that
can be deployed and the variant selector must possess the
ability to choose the best variant based on a cost formula. For
example, if the variant selected is deployed to a device across
a GPRS connection that is billed for the total data transferred,
it is crucial that this cost/benefit tradeoff be analyzed when
determining which variant to deploy. If one variant minimizes
the amount of data transferred over thousands or hundreds of
thousands of devices deployments, it can provide significant
cost savings.
• Limited selection time. A variant selection may need

to occur rapidly. On a train, for instance, a variant selection
engine may have tens of minutes or hours before the device
exits (although the traveler may become irritated if variant
selection takes this long). In a retail store, conversely, if
customers cannot get a variant of a sales application quickly,
they may become frustrated and leave. To provide a truly
seamless pervasive environment, automated variant selection
must happen rapidly. When combined with the challenge of
not knowing device signaturesa priori and the need for
optimization, achieving quick selection times is even harder.

III. C APTURING PLA AND MOBILE DEVICE

REQUIREMENTS

Traditional processes of identifying valid PLA variants in-
volve software developers manually determining the software
components that must be in a variant, the components to
configure, and how to compose and deploy the components. In
addition to being infeasible in a pervasive environment (where
the target device signatures are not known ahead of time
and variant selection must be done on demand), such manual
approaches are tedious and error-prone and are a significant
source of system downtime [9]. Manual approaches also do
not scale well and become impractical with the large solution
spaces typical of PLAs.

One way to overcome the speed and correctness deficiencies
of manual variant selection is to capture a formal model of
the PLA’s commonality and variability so that automation
can take place. In addition to capturing the composition
rules for building variants, a model is needed to analyze the
non-functional requirements of a variant to avoid selecting
variants that are compositionally correct, but whose functional
requirements fail due to being deployed on incompatible or
insufficient infrastructure. Figure 1 shows the cycle of device
discovery, variant selection based on requirements, and variant
deployment on a train.

For example, a ticket reservation service for a train may
require 1 megabyte of memory and 256 kilobits of data transfer
over a General Packet Radio Service (GPRS) connection. If
the reservation service is deployed to a device with insufficient
free memory, it will not function properly even if it adheres
to the PLA compositional rules. To properly configure and
select a variant dynamically, therefore, both compositional and



Fig. 1: Selecting a Train Ticket Reservation Service for a
Device

non-functional requirements must be considered and matched
against the target device.

Capturing and relating composition and non-functional re-
quirements to a mobile device is hard. The remainder of this
section describes key challenges of building a compositional
and non-functional requirements model of a PLA and outlines
how our Scatter tool addresses them.

A. Scatter Overview

The Scatter tool helps automate variant selection for mobile
devices by providing:

1) A graphical modeling tool that defines a domain-specific
modeling language (DSML) for specifying variant com-
position rules via a visio-like interface, as shown in
Figure 2. Scatter allows developers to visually model
(1) the components of their PLA, (2) the dependencies
and composition rules of components, and (3) the non-
functional requirements of each component.

2) A compiler that converts the graphical models from the
Scatter modeling tool into a both a Prolog knowledge
base and a Constraint Satisfaction Problem (CSP) [11],
[24] that can be operated on using a Prolog constraint
solver. Scatter’s formulation of the CSP is an extension
of the model presented in [2], that includes resource
constraints between components or features.

3) A remoting mechanism that allows a device discovery
service to communicate discovered devices to Scatter’s
variant selection engine. The remoting mechanism al-
lows the discovery service to report back key device non-
functional properties, such as OS, memory, and CPU
speed.

4) A variant selection engine, based on a Prolog constraint
solver, that can automatically select a correct and opti-
mal variant for a device. The Scatter selection engine

feeds the device specification, provided by a discovery
service, and Prolog knowledge base created by the
Scatter compiler, to the constraint solver. The selection
engine then translates the results from the constraint
solving back into configuration decisions for the variant.

Scatter is implemented using the open-source Generic
Eclipse Modeling System (GEMS) [26], [27], which is part of
the Eclipse Generative Modeling Technologies (GMT) project.
GEMS provides a convenient way to define the metamodel,
i.e., the visual syntax of the modeling language. Based on
the metamodel, GEMS automatically generates a graphical
editor that enforces the grammar specified in the metamodel.
Scatter extends our previous work using Role-based Object
Constraints (ROCs) and Model Intelligence [20], [25]. Models
created in Scatter are transformed via the ROCs infrastructure
into formats that can be operated on by a constraint solver.

B. Scatter Graphical PLA Models

To facilitate the analysis of the variant solution space
requires a formal grammar to describe the structure, com-
monality, and variability (SCV) analysis of the PLA and its
valid configurations. This customization grammar can then
be used to automatically generate and explore the variant
solution space. Scatter provides a visual modeling tool for
capturing the SCV of a PLA, as seen in Figure 2. This
view allows developers to formalize which components are
available in the PLA, what applications can be constructed,
and how each application is composed. The components can
be used as an abstraction to describe a PLA both on system
structure [16] or using feature modeling [2], [12]. In our
approach, configurations of components or features can be
modeled as variabilities using Scatter’s SCV model.

To capture a formal definition of the PLA, the components
on which it is based must be modeled. TheComponent
element is the basic building block in the Scatter DSML that
represents an indivisible unit of functionality, such as a Java
class or specific feature. For instance, the various food ordering
applications areComponentsin our train example.

Dependencies between components can be created by spec-
ifying a composition predicate (Required, Exclusive OR, Car-
dinality, or Exclusion) and theComponentsto which the predi-
cate should be applied. For our train example, theFoodService
component is connected to the Exclusive OR predicate, which
can be connected to thefirst class and coach class menu
components. This composition indicates that theFoodService
component can be deployed with exactly one of these menus.
The same composition rule could also be specified using the
Cardinalty predicate by specifying that 1..1 of the first class
and coach class menucomponents can be deployed with the
FoodServicecomponent.

Componentdependencies can be constructed hierarchically
from other components with dependencies to capture the
compositional variability in a PLA. Components can also have
composition rules with predicates that refer to arbitrary other
components in the model. This mechanism is identical to the
concept of feature references [8]. To specify the compositional



Fig. 2: Scatter PLA Composition and Non-functional Require-
ments

variability in the PLA, developers buildComponentandPredi-
categraphs that show the dependencies and composition rules
of the applications and their constituent pieces.

By capturing PLA compositional variability, developers can
formally specify how valid variants are composed. With a
formal specification of the variant construction rules, Scatter
can then automatically explore the variant solution space to
discover all valid compositional variants of the PLA for a given
device, as discussed in Section IV.

C. Non-functional Requirements Capture

One challenge when building a tool to model a PLA’s non-
functional requirements is providing a mechanism that not
only allows modelers to express a wide variety of constraint
types, but also captures them in a form that can be operated on
by a constraint solver. At one end of the spectrum are textual
specifications, such as “this component should only be de-
ployed to devices located in the first-class cabin running Palm
OS.” Although these specifications are intuitive to produceand
understand, they are imprecise in meaning and require manual
translation to the format expected by a constraint solver.

At the other end of the spectrum are the native formats,
such as matrices representing systems of linear equations or
constraint networks, used by constraint solvers to specify
requirements, such as required OS. These native constraint
solver formats are easy to operate on with a constraint solver.
It is hard, however, to map these formats back to the variant
selection for mobile devices, which makes it hard for applica-
tion developers and quality engineers to use.

Scatter provides a graphical modeling tool to address this
challenge and allow developers to express requirements. To
specify non-functional requirements, users drag-and-drop re-
quirements from the palette onto components. The child re-
quirement elements of a component specify the non-functional
requirements that must be satisfied by a device’s resources.
Each requirement has aName, Type, and Value attribute
associated with it:

• The Name specifies the name of the resource on the
device that it is restricting.

• The Type specifies the type of requirement, either ’>’,
’<’, ’ =’, ’ =<’, ’ >=’, or ’−’.

• The Value indicates the target amount of the resource to
which constraint is being applied.

For example, if a JVM with a version greater than 1.2 is
needed, the requirement would have the Name ’JVMVersion’,
Type ’>’, and Value ’1.2’. For a Resource constraint, such as
the amount of memory consumed by a software component,
the ’−’ Type is used,e.g., if a component consumed 200kb
of memory, the constraint would be Name ’RAM’, Type ’−’,
and Value ’200’.

Scatter’s approach strikes a careful balance between expres-
sivity and formalness outlined above by blending both the
flexibility and intuitiveness of a textual approach with the
concrete meaning of a constraint solver format. The Name
can be any string and thus modelers can create meaning by
providing very descriptive names. The Type provides a clear
definition of how the constraint is compared to the resources
available on a candidate device. The Type also indicates
exactly which constraint solver must be used to analyze the
constraint.

All types, except the ’-’ type, are local constraints gov-
erning the placement of one component and are solved by
an inferencing engine. These constraints are considered local
because their satisfaction is independent of the satisfaction of
constraints for other components. For example, if a component
requires a specific OS, that constraint does not restrict which
other components it can be deployed with. If a component
consumes a certain amount of memory, however, its placement
on a device will restrict the other components that can be
placed with it.

A key challenge in a pervasive environment is that variant
selection must take into account requirements based on busi-
ness and context data. For example, on a train, the first-class
and coach-class cabins may offer different meal services. In
coach, travelers may be able to pre-order food via a mobile
phone application, but still must physically go and pickup the
food. In first-class, however, train staff may be required to
deliver food orders to a traveler’s seat.

For first class, therefore, a variant that provides a component
for notifying the ordering system of where the traveler is
sitting may be required while it would not be required in
coach. Cabins may also offer different meal selections or meal
prices, in which case the variant selection must account for
the location-based rules when selecting which menu to deliver
with the ordering service. This train variant selection scenario
is shown in Figure 3.

At one extreme, a tool can limit the types of constraints
that can be solved to a small subset that is considered most
important. At the other extreme, a tool can allow developers
to capture any type of constraint, but provide no guarantee
of having a way of deducing a variant that satisfies them.
Capturing a wide variety of these types of non-functional
business and location-based constraints is hard.



Fig. 3: Cabin Class Constraints for Train Menu Variant Selec-
tion

Scatter employs a strategy that focuses on allowing the
datasources to change while the types of constraints remain
constant. This strategy allows it to capture and solve a wide
variety of constraint types. For example, a modeler could
specify the constraints:

JVMVersion > 1.2
WifiCapable = true
CabinClass = first
CPU - 100
RAM - 200
DisplayHResolution > 128
DisplayVResolution > 64

This specification mixes multiple different types of domain
constraints. A segment of a Scatter requirements model show-
ing these constraints is seen in Figure 4. TheJVMVersion
constraint relates to the software stack on the device,CPU
and RAM are resource consumption constraints,WifiCapable
and DisplayXResolutionare hardware capability constraints,
andCabinClassis a business/location based constraint.

The restrictions imposed by the specification format are
only on the types of comparisons that can be done and not
on the data that the comparison is based upon. This freedom
in constraint specification allows Scatter’s variant selection to
incorporate a large array of datatypes that a device discovery
service could provide. This setup allows other services to pre-
process the data used by the variant selector and thus allow it
to operate on very complex data sets.

For example, context processors based on GPS or RFID
can calculate a device’s position or type and correlate cabin
class. Business-rule engines can calculate customer priorities
and provide business analysis. Scatter’s architecture thus holds
constant the complex portions of variant selection—the con-
straint solvers—while still allowing the incorporation ofnew
datatypes from a discovery service. For scenarios where other

Fig. 4: Capturing Mixed Non-functional Requirement Types
in Scatter

types of constraints are needed, Scatter provides mechanisms
for plugging in new types and solvers.

D. Discovery and Device Signatures

The non-functional properties of a device, such as
JVMVersion and CabinClass, can be used by the variant
selection engine to select a variant only if values are provided
for them. The values for these variables can be obtained from
a mobile device discovery service, as shown in Figure 5.

Fig. 5: Scatter Integration with a Discovery Service

Scatter exposes a SOAP-based web service and a CORBA
remoting mechanism for remotely communicating device char-
acterizations as they are discovered. The properties of a device
are reported back to Scatter as key/value pairs. The keys match
the names of the non-functional properties constrained by the
non-functional requirements in the Scatter graphical model.
As discussed in Section IV, these constraints and key/value



pairs are used by the variant selection engine to filter the list
of variants that can be deployed to a device.

IV. SCATTER VARIANT SELECTION ENGINE

Scatter provides an automated variant selector that leverages
Prolog’s inferencing engine and a CLP(FD) constraint solver.
The Scatter solver uses a layered solving approach to help
reduce the combinatorial complexity of satisfying the resource
constraints. Scatter prunes the solution space using the PLA
composition rules and the local non-functional requirements
so that only variants that can run on the target infrastructure
are considered. The resource constraints are a form of bin-
packing an NP-Hard problem [5]. This layered pruning helps
improve selection speed and enables more efficient solving.As
shown in the Section V, this layered pruning can significantly
improve variant selection performance.

A. Layered Solution Space Pruning

Initially, the variant solution space contains many millions
or more possible component compositions. Solving the re-
source constraints is thus time consuming. To optimize this
search, Scatter first prunes the solution space by eliminating
components that cannot be deployed to the device because
their non-functional requirements, such a JVMVersion or Cab-
inClass, are not met. After pruning away these components,
Scatter evaluates the PLA composition rules to see if any
components can no longer be deployed because one of their
dependencies has been pruned in the previous step. After
pruning the solution space using the PLA composition rules,
the resource requirements are considered. After solving the
resource constraints, Scatter is left with a drastically reduced
number of deployment solutions to select from. At this point,
if there is more than one valid variant remaining, Scatter uses
a branch and bound algorithm to iteratively try and optimize
a developer-supplied cost function by searching the remaining
valid solutions.

The first two phases of the solution space pruning use a
constraint solver based on standard Prolog inferencing. A rule
is specified that only allows a component to be deployed to
a device, if for every local non-functional requirement on the
component, a resource is present that satisfies the requirement.
For example, if aComponentrequires a JVMVersion greater
than 1.2, the targetDevice must contain aResourcenamed
JVMVersion with a value greater that 1.2 or the component is
pruned from the solution space and not considered.

B. Using CLP(FD) to Solve Resource Constraints

After performing this initial pruning of the solution space,
the resource and PLA composition constraints are turned into
an input for a CLP(FD) solver. The transformation is an
extension of the model proposed in [2] to include resource
consumption constraints. The model is also extended to allow
for feature references.

A Constraint Satisfaction Problem (CSP) is a problem that
involves finding a labeling (a set of values) for a set of
variables that adheres to a set of labeling rules (constraints).

For example, with the constraint "X < Y", X = 3,Y = 4 is a
correct labeling of the values forX andY. Typically, the more
variables and constraints that are involved in a CSP, the more
complex it is to find a correct labeling of the variables.

Selecting a a product variant can be reduced to a CSP.
Scatter constructs a set of variablesDC0 . . .DCn, with domain
[0,1], to indicate whether or not the ith component is present
in a variant. A variant therefore becomes a binary string where
the ith position represents if theith component (or feature) is
present. Satisfying the CSP for variant selection is devising a
labeling ofDC0 . . .DCn such that the composition rules of the
feature model are adhered to.

Resource consumption constraints are created by ensuring
that the sum of the resource demands of binary string rep-
resenting a variant do not exceed any resource bound on
the device (e.g.∑variant_component_resource_demands<
device_resources). For eachComponent Ci that is deployable
in the PLA, a presence variableDCi , with domain [0,1] is
created to indicate whether or not theComponentis present
in the chosen variant. For every resource type in the model,
such as CPU, the individualComponentdemands on that
resource,Ci(R), when multiplied by their prescence variables
and summed cannot exceed the available amount of that
resource,Dvc(R), on theDevice.

If the presence variable is assigned 0, indicating the com-
ponent is not in the variant, the resource demand contributed
by that component to the sum falls to zero. The constraint
∑Ci(R)∗DCi < Dvc(R) is created to enforce this rule. Com-
ponents that are not selected by the solver, therefore, will
have DCi = 0 and will not add to the resource demands of
the variant.

The solver supports multiple types of composition relation-
ships betweenComponents. For eachComponent Cj that Ci

depends on, Scatter creates the constraint:Ci > 0 → Cj = 1.
Scatter also supports a cardinality composition constraint that
allows at leastMin and at mostMax components from the
dependencies to be present. The cardinality operator creates
the constraint:Ci > 0→∑Cj > Min,∑Cj < Max. The standard
XOR dependencies from the metamodel are modeled as a
special case of cardinality whereMin/Max= 1. Finally, the
solver supports component exclusion. For eachComponent Cn
that cannot be present withCi , the constraintCi > 0→Cn = 0 is
created. The variables that can be referred to by the constraints
need not be direct children of a component or feature and thus
are references.

To support optimization, a variableCost(V) is defined using
the user supplied cost function. For example,Cost(V) = DC1∗

GPRSC1 + DC2 ∗GPRSC2 + DC3 ∗GPRSC3 . . .DCn ∗GPRSCn
could be used to specify the cost of a variant as the sum of the
costs of transferring each component to the target device using
a GPRS cellular data connection. This cost function would
attempt to minimize the size of the variant deployed within the
resource and PLA composition limits. Once the requirements
have been translated into CLP(FD) constraints, Scatter asks
the CLP solver for a labeling of the variables that maximizes
or minimizes the variableCost(V), which allows the variant



selector to choose components that not only adhere to the
compositional and resource constraints but that maximize the
value of the variant. The user therefore supplies a fitness
criteria for selecting the best variant from the populationof
valid solutions.

V. SCATTER PERFORMANCERESULTS

A key question is how fast Scatter performs and whether or
not online variant selection is possible. To test Scatter’sper-
formance, we developed a series of progressively larger PLA
models to evaluate solution time. We also tested how various
properties of PLA composition and local non-functional con-
straints affected the solution speed. Our test were performed
on an IBM T43 laptop, with an 1.86ghz Pentium M CPU and
1 gigabyte of memory.

Note that optimization and satisfaction of resource con-
straints is an NP-Hard problem, where it is always possible to
play the role of an adversary and craft a problem instance that
provides exponential performance [5]. Constraint satisfaction
and optimization algorithms often perform well in practice,
however, despite their theoretical worst-case performance. One
challenge when developing a PLA that needs to support online
variant selection is ensuring that the PLA does not induce
worst-case performance of the selector. We therefore attempted
to model realistic PLAs and to test Scatter’s performance and
better understand the effects of PLA design decisions.

A. Pure Resource Constraints

We first tested the brute force speed of Scatter when
confronting PLAs with no local non-functional or PLA com-
position requirements that could prune the solution space.We
created models with 18, 21, 26, 30, 40, and 50Components.
Our models were built incrementally, so each successively
larger model contained all of the components from the pre-
vious model. In each model, we ensured that not all of the
components could be simultaneously supported by the device’s
resources. Our device was initially allocated 100 units of CPU
and 16 megabytes of memory. Scatter’s performance results on
this model can be seen in Figure 6. As can be seen from the
large jump in time from the time to select a variant from 40
to 50Components, solving for a variant does not scale well if
resource constraints alone are considered.

B. Testing the Effect of Limited Resources

We next investigated how the tightness of the resource
constraints affected solution time. We incrementally increased
the available CPU on the modeled device from 100 to 2,500
units for the 50 Component model. The results can be seen
in Figure 7. As shown in Figure 7, expanding the CPU units
from 100 to 500 units dramatically dropped the time required
to solve for a variant. Moreover, after increasing the CPU units
to 2,500, there was no increase in performance indicating that
the tightness of the CPU resource constraints were no longer
the limiting bottleneck.

We then proceeded to increase the memory on the device
while keeping 2,500 units of CPU. The results are shown in

Fig. 6: Scatter Performance on Pure Resource Constraints

Fig. 7: Scatter Performance as CPU Resources Expand on
Device

Figure 8. Doubling the memory immediately halved the solu-
tion time. Doubling the memory again to 128 megabytes pro-
vided little benefit since the initial doubling to 64 megabytes
made deployment of all of the components possible. As we had
hypothesized initially, the solution speed when pure resource
constraints are considered is highly dependent on how tight
the resource constraints are.

C. Testing the Effect of PLA Composition Constraints

Our next set of experiments evaluated how well the depen-
dency constraints within a PLA could filter the solution space
and reduce solution time. We modified our models so that
the Componentscomposed sets of applications that should be



Fig. 8: Scatter Performance as Memory Resources Expand on
Device

deployed together. For example, ourTrainTicketReservation-
Servicewas paired with theTrainScheduleServiceand other
complementary components.

As with the first experiment V-A, we used our 50 component
model as the initial baseline. We first constructed a tree of
dependencies that tied 10 components into an application set
that led the root of the tree, the reservation service, to only
be deployed if all children where deployed. Each level in the
tree depended on the deployment of the layer beneath it. The
max depth of the tree was 5. We continued to create new
dependencies between the components to produce trees and
see the effect. The results are shown in Figure 9.

Fig. 9: Scatter Performance as PLA Dependency Trees are
Introduced

As can be seen from the results in Figure 9, by adding
dependencies between components and creating a dependency
tree, there was an immediate drop in selection time. This
is presumably because it reduces the number of possible
combinations of the components that must be considered for a
variant. Adding more dependencies to the model to add other
trees provided only a very small gain over the original large
performance increase.

D. Results Analysis: Mobile PLA Design Strategies

Based on the results we collected from the experiments, we
devised a set of mobile PLA design rules to help improve
variant selection performance. The remainder of this section
presents the lessons we learned from our results.

a) Exploit non-functional requirements:Non-functional
requirements can be used to further increase the performance
of Scatter. Each component with an unmet non-functional re-
quirement is completely eliminated from consideration. When
PLA dependency trees are present, this pruning can have
a cascading effect that completely eliminates large numbers
of components. One PLA construction rule based on non-
functional requirements that was particularly powerful and
natural to implement in Scatter exploited the relative lackof
variation in packaging of a PLA variant.

b) Prune using low-granularity requirements:The re-
quirements with the lowest granularity filter the largest num-
bers of variants. For example, when deploying variants, espe-
cially from a PLA with high configuration-based variability,
such as varying input parameters, the disk footprint of various
classes of variants can be used to greatly prune the solution
space. If a PLA with 50 components is composed of 5 Java
Archive Resource (JAR) files, although there are a large
number of ways that the PLA can be composed, there are
relatively few valid combinations of the JAR files.

Many variants may also require common sets of these JAR
files with various footprints. These variants can be grouped
based on their JAR configurations. For each group, a non-
functional requirement can be added to the components to
ensure that a target Device provide sufficient disk space or
communication bandwidth to receive the JARs. For small
devices that usually have little availabe disk space, where
resource constraints are tighter and solving takes more time,
large numbers of Components can be pruned solely due to the
lack of packaging variability and need for disk space. This
footprint-based strategy works even if there are few functional
PLA dependencies between components.

c) Limit resource tightness:Due to the increased cost
of finding a variant for small devices where resources are
more limited, we developed another design rule. To decrease
the difficulty of finding a deployment on small devices, PLA
developers should provide local non-functional constraints
to immediately filter out unessential resource consumptive
Componentswhen the resource requirements of the deployable
Componentsgreatly exceed the available resources on the
device. Although the cost function can be used to perform
this tradeoff analysis and filter theseComponentsduring



optimization, this method is time consuming. Filtering some
components out ahead of time may lead to less optimal
solutions but it can greatly improve solution speed. Even by
selecting only the least valued components to exclude from
consideration, performance can be increased significantly.

d) Create service classes:Another effective mechanism
for pruning the solution space with non-functional require-
ments is to provide various classes of service that divide
the components into broad categories. In our train example,
for instance, by annotating numerousComponentswith the
CabinClassand other similar context-based requirements, the
solution space can be quickly pruned to only search the
correct class of service for the target device. In general, the
more non-functional requirements that can be specified, the
quicker Scatter can prune away invalid solutions and hone in
on the correct configuration. Moreover, each non-functional
requirement gives the solver more insight into how Compo-
nents are meant to be used and thus reduces the likelihood of
unanticipated variants that fail.

From our experiments, we have seen that when a PLA for
a mobile device is properly specified with good constraints,
Scatter can solve models involving 50 or fewer components in
seconds. This performance should be more than adequate for
many pervasive environments, particularly when device signa-
ture and variants are cached to eliminate repetitive solving for
known solutions. In future work, we intend to test Scatter with
larger models and evaluate more characteristics of PLAs that
can be used to reduce variant selection time.

VI. RELATED WORK

In [14], Mannion et al present a method for specifying
PLA compositional requirements using first-order logic. The
validity of a variant can then be checked by determining if a
PLA satisfies a logical statement. Although Scatter’s approach
to PLA composition also checks variant validity, it extends
the work in [14] by including the evaluation of non-functional
requirements not related to composition. In particular, Scatter
automates the variant selection process using these boolean
expressions and augments the selection process to take into
account resource constraints, as well as optimization criteria.
Although the idea of automated thereom proving is enhanced
in [15], this approach does not provide a requirements-driven
optimal variant selection engine like Scatter. Further differ-
ences between Scatter’s constraint-based and Mannion’s logic-
based approaches is available in [2].

A mapping from feature selection to a CSP is provided by
Benavides et al. [2]. Scatter uses this same reduction but also
extends it with the capability to handle references and resource
constraints. Resource constraints are a key requirement type
in mobile devices with limited capabilities. Moreover, the
approach presented by Benavides does not show how this
constraint-based mechanism could utilize a mobile device
discovery service as Scatter does. Finally, Benavides et al. do
not address how PLA design decisions can be used to improve
constraint solver performance as this paper does.

In [13], Lemlouma et. al, present a framework for adapting
and customizing content before delivering it to a mobile de-
vice. Their strategy takes into account device preferencesand
capabilities, as does Scatter. The approaches are comparable in
that each attempts to deliver customized data to a device that
handles its capabilities and preferences. Resource constraints
are a key difference that makes the selection of software
for a device more challenging than adapting content. Unlike
[13], Scatter not only provides adaptation for a device, but
also optimizes adaptation of the software with respect to its
provided PLA cost function.

Many complex modeling tools are available for describing
and solving combinatorial constraint problems, such as those
presented in [17], [6], [22], [3], [10]. These modeling tools
provide mechanisms for describing domain-constraints, a set
of knowledge, and finding solutions to the constraints. These
tools, however, do not provide a high-level mechanism to
capture non-functional requirements and PLA composition
rules geared towards mobile devices. These tools also do not
provide a mechanism for incorporating data from a device
discovery service. Finally, these papers have not addressed
how PLA design decisions influence variant selection speed.

VII. C ONCLUDING REMARKS

Online PLA variant selection for mobile devices is a
challenging domain that can benefit from automation since
there are too many complexities and unknown device char-
acteristics to manually account for all possibilities ahead
of time. Constraint-solver based automation is a promising
technique for online variant selection. This paper describes
how our Scatter tool supports efficient online variant selection.
Moreover, by carefully evaluating and constructing a PLA
selection model based on the rules we presented, developers
can alleviate the effects of worst-case solver behavior.

From our experience developing and evaluating Scatter, we
learned the following lessons:

• PLA composition and non-functional requirements can be
used to efficiently prune the variant selection space and
provide good performance. There are many patterns of
requirements specification that can be used to optimize a
PLA for automated variant selection. In future work, we
intend to further explore these patterns.

• Although Scatter can automate variant selection, it works
best when a PLA is crafted with performance in mind.
An arbitrary PLA may or may not allow for rapid variant
selection. PLA’s that will be used in conjunction with an
automated variant selector should be carefully constructed
to avoid poor performance.

• A key challenge of automating product variant selection is
debugging mistakes in the product-line’s specification. A
simple mistake, such as a misplaced exclusion constraint
between components, can cause variant selection to fail.
Moreover, the failure may only appear intermittently
for certain device types and be hard to identify during
testing. Even once it is discerned that there is a problem,



identifying the source of the problem can be extremely
challenging (we have experienced this phenomenon).

• More work must be done to understand how to merge
and integrate the various information sources that will
provide device characterizations. Device characterizations
may come from customer databases, discovery services,
and location services. Finding the right transformations
to correlate and utilize these diverse information streams
is important to provide customized and correct variant
selection.

• Developers normally focus on the functional variability
in a product, looking at other aspects of variability, such
as packaging variability, is important too. As we have
shown, although a product may have high functional vari-
ability, it can be significantly less variable with respect
to packaging or memory footprint. These non-functional
aspects can be exploited to reduce the complexity of
automated variant selection.

In future work, we plan to integrate and test various dis-
covery mechanisms and resource, context, and device charac-
terization schemas to see how Scatter performs. We also plan
to extend Scatter to interface with various types of runtime
deployment middleware infrastructure.
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