
Automated Configuration of Component-based
Distributed Real-time and Embedded Systems from

Feature Models

Jules White and Douglas C. Schmidt

Vanderbilt University
Department of Electrical Engineering and Computer Science

e-mail: {jules,schmidt}@dre.vanderbilt.edu).

Abstract: Component-based distributed real-time and embedded (DRE) systems facilitate the reuse of
software artifacts across applications. To achieve a high-level of reuse, component-based DRE systems
leverage late binding to allow dynamic system assembly at deployment time (e.g., via configuration
scripts) rather than statically at compile-time. The complexity of deriving a correct manual configuration
of an arbitrary set of components, however, is a key source of system failures, downtime, and missed
deadlines.
This paper presents a model-driven engineering tool called Fresh that uses (1) feature models to
codify the configuration rules of components, (2) a constraint solver to derive a correct application
configuration, and (3) an XML annotation engine to inject configuration decisions from the constraint
solver directly into an application configuration. We use an avionics mission computing case study
based on the Lightweight CORBA Component Model (CCM) to (1) demonstrate the complexities of
configuring components in/out of a component-based application and (2) motivate the reduction in the
configuration complexity when Fresh is used. The results show that Fresh achieves ∼80-90% reduction
in manual configuration effort, while also ensuring that the derived configuration is correct with respect
to application configuration constraints and QoS requirements.

1. INTRODUCTION

Distributed real-time and embedded (DRE) systems are in-
creasingly being built using component-based technologies.
Component technologies facilitate software reuse across ap-
plications by allowing the dynamic assembly of applications
at deployment time via configuration scripts. The late-binding
properties of component technologies allow application devel-
opers to reuse existing software and reduce costs by leveraging
commercial-off-the-shelf (COTS) components.

Application developers have traditionally used tightly-coupled
proprietary solutions to handle the tight requirements and re-
source restrictions of DRE systems. Composing a component-
based application from components that are not specifically
designed for the individual application poses a number of chal-
lenges. For example, highly specialized components can make
assumptions, such as the what type of underlying operation
system will be used, that reusable components cannot make.
These assumptions can help improve performance (e.g. using
specialized APIs) at the cost of reusability. Because DRE sys-
tems often operate in environments with little resource slack,
being unable to make these key assumptions makes it difficult
to find a configuration that meets the required timeliness, safety,
and other non-functional properties.

A further challenge of configuring DRE systems is that the
configuration process must integrate the concerns of numerous
participants divided into multiple roles, such as component
developers and hardware developers. Each role has a unique
viewpoint on what it considers the ideal solution. Thus, each
role attempts to pull the solution in the direction that best
meets the requirements it is responsible for, such as power

consumption or security functionality. These multiple opposing
viewpoints make it hard to find a configuration that satisfies the
requirements of each role simultaneously.

For example, in applications developed using the Lightweight
CORBA Component Model (CCM) (BEA Systems, et al.
[1999], Wang et al. [2000a]), component developers often pre-
fer to host the applications on the most powerful processing
hardware available and be allocated as much network band-
width as possible to make their realtime scheduling deadlines
easier to meet. Hardware developers, in contrast, will attempt
to use the least powerful processors that are adequate for the
job to minimize power consumption, weight, and cost to make
the system more efficient. Component assemblers (the role that
creates instances of components and wires them together) will
want to have the widest array of component types and imple-
mentations available to compose a solution. Testers and cer-
tification engineers, conversely, will want to limit the number
of possible application parts to reduce testing and verification
complexity.

Even after a configuration is found that satisfies the numerous/-
competing concerns of the roles, implementing the configu-
ration can be tedious and error-prone. In particular, multiple
roles must coordinate and correctly edit configuration scripts
required to assemble the application. Component developers
instruct component assemblers on the port functions and re-
quirements. Component assemblers wire the components to-
gether and dictate the CPU and memory requirements to appli-
cation deployers (the role responsible for placing components
on nodes). Deployers obtain the correct binaries from appli-
cation packagers and place them onto the appropriate nodes.
Miscommunication between roles, subtle mistakes in configu-



ration scripts, and other hard-to-diagnose errors can allow con-
figuration errors to creep into applications and are thus a major
contributor to application failure (D. Oppenheimer [2003]).

This paper extends our previous work White et al. [2007a] on
simplifying the configuration of enterprise Java applications.
We include new contributions that show how our original Java-
baed approach can be generalized to other types of component-
based systems. In particular, the paper shows the complex-
ity of configuring DRE component-based systems through a
Lightweight CCM avionics application. We demonstrate how
the same challenges that plague enterprise Java configuration
extend into DRE component-based systems (and are possibly
even more challenging). Moreover, the paper presents results
showing that the same reductions in manual configuration effort
we achieved applying Fresh to enterprise Java can be obtained
by applying Fresh to Lightweight CCM.

At the heart of our approach is a model-driven engineering
(MDE) tool called Fresh that is designed to reduce the com-
plexity of deriving a correct application configuration and im-
plementing the configuration in configuration scripts. Fresh
simplifies and improves the correctness of configuring DRE
component-based applications by:

(1) Capturing configuration rules through feature models,
which describe application variability in terms of differ-
ences in functionality.

(2) Translating an application’s feature models into a con-
straint satisfaction problem (CSP) and using a constraint
solver to automatically derive a correct application config-
uration for a requirements set,

(3) Facilitating configuration optimization for a requirements
set by providing a configurable cost function to the con-
straint solver to select optimal configurations, and

(4) Providing an XML configuration file annotation language
that allows it to inject configuration decisions into con-
figuration scripts directly and reduce configuration imple-
mentation errors.

Fresh uses feature models (Kang et al. [1990]) to describe the
rules for configuring an application. Feature modeling can be
used to describe an application’s configuration rules in terms
of variations in functionality. For example, an avionics mission
computing application that could be built using different satel-
lite positioning systems could be described by feature models
in terms of its:

(1) Variations in functional capabilities (e.g., GPS vs. Galileo
satellite positioning sensors),

(2) Variations in non-functional properties (e.g., processor
power consumption, weight, etc.), and

(3) Constraints between features (e.g., ARM binaries for the
Galileo positioning sensor require an ARM processor)

Feature modeling provides an intuitive model for describing
application variability and has been applied to a number of do-
mains ranging from automobiles Nechypurenko et al. [2007] to
applications for mobile phones White et al. [2007b]. Deriving a
valid configuration from a feature model involves:

(1) Selecting required features (e.g., Galileo),
(2) Selecting features corresponding to the capabilities of the

target platform (e.g., ARM), and
(3) Deriving any remaining features needed to create a com-

plete and valid configuration (e.g., ARM Galileo binaries)

The remainder of this paper is organized as follows: Section 2
presents a component-based avionics application, called Ba-
sicSP, which we use as a motivating example of a DRE sys-
tem throughout the paper; Section 3 describes the challenges
of configuring the BasicSP application; Section 4 introduces
Fresh and describes how it addresses the challenges of config-
uring component-based applications in DRE systems; Section 5
presents empirical results of applying Fresh to the configuration
of BasicSP and shows that Fresh produces ∼80-90% decrease
in configuration effort; and Section 6 presents concluding re-
marks.

2. AVIONICS APPLICATION EXAMPLE OF A DRE
SYSTEM

As a representative example of a component-based DRE sys-
tem, we use the BasicSP scenario, which is based on the Boeing
Bold Stroke avionics mission computing platform (Sharp and
Roll [2003]) shown in Figure 1. The BasicSP application in-

Fig. 1. Architecture of the BasicSP Avionics Example

cludes several Lightweight CCM components. One component
is an avionics navigational display that receives updated air-
frame position coordinates from a positioning sensor. The rate
generator component sends out a periodic pulse that causes the
positioning sensor to update its current coordinates. Once the
coordinates are updated, the positioning sensor sends a ready
signal to the display component to update its coordinates.

Lightweight CCM supports the deployment and configuration
of components based on XML configuration files. An emerg-
ing trend in the development of avionics systems is to use
component-based middleware along with a product-line archi-
tecture (PLA) (Clements and Northrop [2002]). A PLA consists
of a group of core assets, such as reusable software components
and test cases, and a set of rules for composing the assets
into a product variant. When an application for a new set of
requirements is needed, an application variant is configured
from the reusable assets to meet the new requirement set. A
PLA helps reduce development costs by reusing existing core
assets and codifying the process of correctly configuring assets
into an application variant.

The BasicSP product-line. To demonstrate the complexity
of declaratively configuring a set of assets into a variant, we
created a product-line from the BasicSP example. The modified
BasicSP example includes multiple satellite-based positioning
systems that can be leveraged as the positioning sensor to
provide the coordinates of the airframe. Moreover, the product-
line includes different variations in the processors that can be
leveraged to run the rate generator, positioning sensor, and
display.

Configuring a variant from the BasicSP product-line involves
several participants divided into different roles (Wang et al.



[2000b]). For example, component developers are responsi-
ble for producing software components, application assemblers
composes software components into applications, application
deployers determine which processing units host which com-
ponents, and infrastructure developers determine what process-
ing units are available in the airframe. Each role has its own
viewpoint and concerns regarding the properties of the con-
figuration. For example, component developers are focused on
the functional aspects of the components and their real-time
scheduling, whereas infrastructure developers are geared to-
wards the weight, power consumption, and cost of the available
processing units.

A valid BasicSP variant must integrate the concerns of each
viewpoint into a functioning application. To codify the rules
for configuring a proper variant, we produced feature models
that relate how the different points of application variability
(such as the number and types of processing units) affect
each other (e.g., the available processing power will restrict
the components that can be used). Feature modeling describes
an application’s points of variability in terms of variations in
functional and non-functional capabilities. Moreover, feature
modeling provides a method of codifying the rules that restrict
how selecting one feature affects how other features can be
selected.

An overview of the BasicSP feature modeling notation. Fig-
ure 2 shows the feature model for BasicSP. BasicSP requires the
Rate Gen, Position Sensor, and Display features, which is de-
noted by the filled oval above each of these features. Moreover,
BasicSP requires one to three processors, which is denoted by
the "[1..3]" cardinality label applied to the Processor feature.
Figure 3 contains additional feature modeling notations. The

Rate Gen

Satellite System

Position Sensor

5 CPU Units/Refresh

Display Processor

[1..3]

BasicSP

Fig. 2. Feature Model of BasicSP

Rate feature requires exactly one (an XOR relationship) of the
features 20hz, 25hz, and 30hz. Finally, Figure 6 contains the

.01 CPU Units/Refresh

20hz 25hz 30hz

Rate

RateGen

Fig. 3. Feature Model of the RateGen

notation for optional features. The x86 feature can (but is not
required to) include the GPS feature, which is denoted by the
unfilled oval.

3. CHALLENGES OF CONFIGURING
COMPONENT-BASED APPLICATIONS FOR DRE

SYSTEMS

This section outlines the key challenges of configuring a
component-based application (such as BasicSP) for DRE sys-
tems (such as avionics mission computing). In general, it is

16m Accuracy 1.1 CPU Units/Refresh

GPS

35m Accuracy 0.8 CPU Units/Refresh

Galileo

Sat System

Fig. 4. Feature Model of the Available Satellite Systems

25 CPU Units Weight 50 grams

x86

60 CPU Units Weight 75 grams

ARM

Processor

Fig. 5. Feature Model of the Processor Options for BasicSP

GPS Galileo Display RateGen x86 Ref

x86 Binaries

Display Galileo RateGen ARM Ref

ARM Binaries

Packages

Fig. 6. Feature Model of the Packaging Options for BasicSP

hard to configure component-based applications for DRE sys-
tems due to the numerous competing concerns, such as balanc-
ing processor power consumption against required processing
power. This problem is exacerbated by the multiple roles and
viewpoints in the configuration process.

3.1 Challenge 1: Configuration Complexity

Each configuration choice in a component-based application
may affect numerous other decisions that can be made by
other roles. In many cases, no formal documentation of these
cause/effect relationships exists. Even when semi-formal doc-
umentation, (e.g., feature models) exists, the large number of
components, numerous cause/effect relationships, and complex
global constraints (e.g., limitations on available memory), make
it hard to derive a valid configuration manually.

In the BasicSP application, for example, selecting the GPS
component has numerous side effects on further configuration
decisions. The total number of CPU Units consumed per second
cannot exceed the rated CPU Units per second of the proces-
sors. If the GPS component is selected along with a RateGen
at 25hz, the GPS component will consume 27.5 CPU Units on
its host. This combination of a GPS at 25hz precludes using the
x86 based processor.

The problem with the feature combination outlined above, how-
ever, is that there are no binaries to run the GPS component
on the ARM processor. Although the configuration appears
correct, a subtle combination of a resource constraint and a
packaging limitation (that may not be realized until deployment
time) makes the combination invalid. These long chains of
cause/effect relationships are hard to predict and handle manu-
ally.

3.2 Challenge 2: Incorrect configuration implementation

Configuring a component-based application involves correctly
editing numerous configuration files (e.g., CCM XML deploy-



ment descriptors), preparing the target infrastructure (e.g., in-
stalling required libraries and starting supporting processes),
and installing the application’s own binaries on its target hosts.
These configuration tasks are spread across multiple roles par-
ticipating in the application’s configuration. For example, the
application deployer will install the application’s binaries on
the correct hosts and the application assembler will create the
XML configuration files specifying how to connect components
together.

The BasicSP example uses multiple XML deployment descrip-
tors, which provide standardized Lightweight CCM mecha-
nisms to specify configuration directives. Numerous changes
must be made to BasicSP’s XML deployment descriptor, how-
ever, to change the satellite system used as a position sensor.
First, the specification of the component used to implement
the position sensor must be changed (performed by component
assemblers). The new implementation specification of the posi-
tion sensor must also include the ids of its associated imple-
mentation artifacts (e.g., dynamic link libraries). The ids for
these artifacts are produced by component packagers. If the
new position sensor uses a different interface than the previous
position sensor, the component assembler must also update the
wiring of the components by changing the ports and facets
involved in the position sensor’s refresh signal, the display’s
coordinates input, and the display’s refresh signal.

The numerous configuration activities that must be coordinated
across the various participating roles makes manual config-
uration of a component-based application tedious and error-
prone. Simple mistakes, such as packaging the application with
binaries for the wrong processor architecture, can cause the
application to crash at launch. More subtle mistakes, such as
accidentally using the identifier for the 30hz RateGen instead
of the 20hz RateGen, will produce an application that launches
correctly but fails under load. Figure 7 shows the multiple de-
pendencies between roles responsible for configuring BasicSP.
As shown in this figure, coordinating multiple roles and execut-

Fig. 7. Configuration Dependencies between Roles for BasicSP

ing a complex configuration is tricky.

4. SOLUTION APPROACH: AN AUTOMATED
CONFIGURATION ENGINE FOR LIGHTWEIGHT CCM

APPLICATIONS

This section describes the Fresh configuration engine and how
it addresses the challenges of configuring component-based
applications for DRE systems described in Section 3.

4.1 Capturing Configuration Rules in Feature Models

One of the key steps towards correctly configuring a component-
based application is to capture the rules for configuring the
application. Fresh uses feature models (Kang et al. [1990]) to
describe the rules for configuring an application.

Fresh’s feature modeling language is implemented as both a
textual Domain-Specific Language (DSL) and a graphical mod-
eling tool in Eclipse. The graphical modeling tool is based on
top of the Generic Eclipse Modeling System (GEMS) (Nechy-
purenko et al. [2007]), which is an MDE tool for rapidly creat-
ing diagram-based modeling tools from a metamodel.

4.2 Automating Configuration Derivation

In addition to providing an intuitive interface for documenting
configuration rules, previous research (Benavides et al. [2005])
has demonstrated reductions from feature models to constraint
satisfaction problems (CSPs). Once a CSP formulation of a
feature model has been obtained, a constraint solver can be used
to derive a correct application configuration. Using a constraint
solver to derive an application solver addresses Challenge 1
from Section 3 by eliminating manual derivation. Moreover,
using a constraint solver to derive an application configuration
has the following benefits over a manual configuration process:

• The correctness of derived configurations is guaranteed
with respect to application constraints,

• The solver can identify if no valid solution exists that
meets the requirements,

• A cost function can be used to select a configuration that
optimizes key properties of the solution,

• No manual effort is required to reconcile the complex
cause/effect relationships described in Section 3.1, and

• The solver can find a solution that reconciles opposing
viewpoints and concerns involved in configuration (if such
a solution exists).

A missing element of existing mechanisms for translating fea-
ture models into CSPs and satisfiability problems (Mannion
[2002]), is that these approaches do not take into account re-
source constraints, which are important in DRE systems. In
previous work (White et al. [2007a]), we have extended the
work in (Benavides et al. [2005]) to incorporate resource con-
straints and show that it is feasible to consider them for certain
size problems. The exact upper bound on a feasible resource
problem varies from problem instance to problem instance but
is typically not a limitation of automated configuration from
CSPs.

4.3 Configuration Injection

Along with the difficulty of deriving a valid configuration, Sec-
tion 3 described the complex coordination needed to implement
a valid configuration in an application’s configuration scripts.
To help decrease the complexity of implementing a configu-
ration, Fresh includes an XML configuration file annotation
language that can be used to inject a derived configuration
directly into an application’s configuration files.

Fresh’s configuration annotation language includes a number
of annotations that can be used to match an XML configuration
file to a derived solution, including mechanisms for:



(1) Inserting different attribute values based on the selected
feature set,

(2) Removing configuration sections,
(3) Conditionally inserting configuration sections based on

the selection of specific feature combination, and
(4) Performing template-based duplication of configuration

directives for specific feature types.

Fresh’s annotation language is based on XML comments and
does not change the structure or semantics of the original con-
figuration language, as can be seen in Figure 8. If the applica-
tion must be configured without Fresh in certain circumstances,
therefore, the Fresh annotations need not be removed to config-
ure the application normally. By automatically injecting con-
figuration decisions directly into XML configuration scripts,
Fresh significantly reduces manual configuration effort, and
configuration errors, as shown in Section 5.

Fig. 8. Fresh XML Annotations

A final benefit of directly injecting configuration decisions into
application configuration files is that the bindings for each
configuration decision can be unit tested. For example, a unit
test can be built to ensure that when the GPS component in
BasicSP is selected, the correct XML configuration directives in
the component deployment descriptor are produced. After vali-
dating the injection of each feature into the configuration files,
application developers can be certain that future configurations
involving the tested features will be implemented correctly.

With a manual configuration process, conversely, each time a
new configuration is produced the configuration files must be
checked to ensure that no mistakes are made. In some cases, an
application may be delivered to customer who are responsible
for properly implementing a configuration, which they may not
do correctly. Using Fresh’s automated approach, in contrast,
enables customers that receive an application to ensure it is
configured correctly to meet its requirements.

5. EMPIRICAL RESULTS

To demonstrate the reduction in manual configuration com-
plexity provided by Fresh, this section evaluates a scenario in
which the BasicSP example from Section 2 has the position
sensor changed from GPS to Galileo. In this scenario, BasicSP
has a base deployment descriptor (the out-of-the-box descriptor
included with the CIAO Lightweight CCM container imple-
mentation) that must be modified to:

(1) Add the required implementation of Galileo,
(2) Create an instance of the Galileo component,
(3) Connect the Galileo component to the RateGen and Dis-

play, and
(4) Add Galileo to the deployment plan by specifying its

servant, executor, and stub along with their associated
implementation artifacts.

The Galileo and GPS position sensors possess the same basic
functionality but name their ports/facets slightly differently.
Thus, although the two can be swapped, their connections and

various deployment descriptor configuration lines must also be
swapped. We evaluate the reduction in manual configuration
complexity in terms of the total lines of configuration direc-
tives, total steps, possible points of where mistakes can be
made, and total roles that must be coordinated to acheive the
swap. Although we assert that using a constraint solver to derive
configurations adds a mental complexity reduction, this cannot
be quantified readily and is thus not included in our results.

A key characteristic that we evaluate is the number of possible
steps at which a configuration error can occur. With a manual
approach, each time a new configuration is produced, it must
be tested to ensure that the configuration file producer has not
made any errors, which adds significant overhead. With the
Fresh approach, conversely, the injection of each feature into
the configuration file can be unit tested. Once it is certified that
Fresh correctly injects each feature into the configuration files,
therefore, Fresh is guaranteed to produce a correct configura-
tion.

As seen in the inital implementation section of Figure 9, the
base configuration file for BasicSP contains 650 lines of con-
figuration directives. Adding Fresh XML annotation directives,

Fig. 9. Results of Configuring BasicSP with Fresh vs. a Manual
Approach

building a simple feature model of BasicSP, and creating values



to be injected into the configuration file by Fresh adds a total of
58 configuration directives. Fresh thus adds ∼8% to the total
lines of configuration directives required for BasicSP.

Modifying the BasicSP configuration file to use Galileo re-
quires removing the old GPS implementation, connections, etc.
As seen in the “Manual Configuration Steps to Use Galileo”
section in Figure 9, a significant number of steps and lines
of configuration directives are involved. At each step in the
process, the role modifying the configuration directives can
make mistakes and introduce errors.

The “Fresh Configuration Steps to Use Galileo” section in
Figure 9 shows the total lines of configuration directives to
reconfigure the BasicSP configuration file with Fresh. Fresh
requires the addition of one configuration directive to enable the
Galileo feature and the execution of Fresh from the command
line to regenerate the BasicSP deployment descriptor.

The “Fresh Complexity Reduction Summary” section in Fig-
ure 9, compares the total manual configuration effort of the
manual approach versus the Fresh approach. If the initial over-
head of setting up Fresh is included in the calculations, Fresh
yields an 80% reduction in the total lines of configuration direc-
tives. If the intial overhead is not considered (for cases where
the application is configured by a customer), Fresh creates a
99.3% reduction in total lines of configuration directives.

In the manual approach, if component assemblers decide to
change to the Galileo component, the component developers
and deployment planners must be involved in updating the
deployment descriptor. With the Fresh approach, component
developers and deployment planners initially encode their ex-
pertise into the configuration file as Fresh XML annotations.
Thus, each time application assemblers need to swap a compo-
nent, Fresh uses the XML annotations produced by the other
two roles and does not require their involvement. As can be
seen in the “Fresh Complexity Reduction Summary” section in
Figure 9, Fresh reduces the total roles involved in the change by
two-thirds. Limiting the number of roles required to implement
a change reduces the cost of coordinating the participants and
the chances of miscommunication.

Finally, as shown in the “Fresh Complexity Reduction Sum-
mary” section in Figure 9, Fresh reduces the total number of
configuration steps that must be performed by 91.67%. More-
over, each eliminated manual configuration step was a poten-
tial source of errors in the process, so the overall number of
steps where errors can be made are also reduced by 91.67%.
Although an intial cost is incurred by adding Fresh configu-
ration directives, it allows for the configuration process to be
unit-tested and certified. After the Fresh configuration process
is certified correct, there is a large reduction in the potential
sources of configuration errors, which are a major contributor
to system downtime and failure (D. Oppenheimer [2003]).

6. CONCLUDING REMARKS

Component-based DRE systems achieve a high-level of soft-
ware reuse and flexibility by assembling applications dynam-
ically at deployment time via configuration scripts rather than
statically at compilation time. Configuring a component-based
applications, however, involves integrating the opposing con-
cerns and requirements of numerous unique viewpoints, such
as component developers and application deployers. The large
number of competing concerns, conflicted roles, and configura-

tion steps required to configure component-based applications
makes it hard to find and implement correct configurations.

This paper describes how Fresh leverages feature modeling to
capture the configuration rules of a component-based applica-
tion. Fresh transforms the application’s feature models into a
CSP that allows a constraint solver to be leveraged to derive
a correct (and possibly optimal) configuration. Fresh also in-
cludes an XML annotation language that allows Fresh to inject
a derived configuration directly into an application’s configura-
tion scripts and eliminate manual configuration implementation
steps.

The results of an experiment based on the Boeing BasicSP
avionics mission computing scenario shows that Fresh can
reduce the total configuration cost (in terms of lines of con-
figuration directives) by ∼80-90%. Moreover, Fresh ensures
that derived configurations are correct with respect to the ap-
plication’s configuration constraints and produces a 91% drop
in the number of possible points in the configuration process
were errors can be introduced. Finally, Fresh helps to further
decrease configuration effort by eliminating the involvement of
two of the original three roles (i.e., deployment planner and
component developer) required to update avionics application
deployment descriptors.

REFERENCES

BEA Systems, et al. CORBA Component Model Joint Revised Submission.
Object Management Group, OMG Document orbos/99-07-01 edition, July
1999.

D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated Reasoning on
Feature Models. 17th Conference on Advanced Information Systems En-
gineering (CAiSE 2005, Proceedings), LNCS, 3520:491–503, 2005.

Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, 2002.

D. Patterson D. Oppenheimer, A. Ganapathi. Why do internet services fail,
and what can be done about it? Proceedings of the USENIX Symposium on
Internet Techňnologies and Systems, March 2003.

K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-oriented Do-
main Analysis (FODA) Feasibility Study. Software Engineering Institute,
Technical Report CMUSEI90TR21, Carnegie Mellon University, 1990.

M. Mannion. Using first-order logic for product line model validation. Pro-
ceedings of the Second International Conference on Software Product Lines,
2379:176–187, 2002.

Andrey Nechypurenko, Egon Wuchner, Jules White, and Douglas C. Schmidt.
Application of Aspect-based Modeling and Weaving for Complexity Re-
duction in the Development of Automotive Distributed Realtime Embedded
System. In Proceedings of the Sixth International Conference on Aspect-
Oriented Software Development, Vancouver, British Columbia, March 2007.

David C. Sharp and Wendy C. Roll. Model-Based Integration of Reusable
Component-Based Avionics System. In Proc. of the Workshop on Model-
Driven Embedded Systems in RTAS 2003, May 2003.

Nanbor Wang, Douglas C. Schmidt, and David Levine. Optimizing the CORBA
Component Model for High-performance and Real-time Applications. In
‘Work-in-Progress’ session at the Middleware 2000 Conference. ACM/IFIP,
April 2000a.

Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan. An Overview of the
CORBA Component Model. In George Heineman and Bill Councill, ed-
itors, Component-Based Software Engineering. Addison-Wesley, Reading,
Massachusetts, 2000b.

Jules White, Krzysztof Czarnecki, Douglas C. Schmidt, Gunther Lenz,
Christoph Wienands, Egon Wuchner, and Ludger Fiege. Automated model-
based configuration of enterprise java applications. In EDOC 2007, 2007a.

Jules White, Andrey Nechypurenko, Egon Wuchner, and Douglas C. Schmidt.
Optimizing and Automating Product-Line Variant Selection for Mobile De-
vices. In 11th International Software Product Line Conference, September
2007b.


