
CISCO/MOTOROLA PROPOSAL

Using a Real-Time Embedded ORB for
ATM Switch Control and Management

Points of Contact:

Technical Matters:
Douglas C. Schmidt
Associate Professor & Director of the Center for Distributed Object Computing
Department of Computer Science
Washington University in St. Louis
TEL (314) 935-4215
FAX (314) 935-7302
EMAIL schmidt@cs.wustl.edu

Administrative Matters:
Fred Kuhns
Senior Research Associate
Department of Computer Science,
Washington University in St. Louis
TEL (314) 935-6598
FAX (314) 935-7302
EMAIL schmidt@cs.wustl.edu

Washington University 1

A Statement of Work

The scope of this effort is to create a real-time ORB that’s
compliant with the new OMG Minimum CORBA [8] speci-
fication and embed this ORB in a Cisco ATM switch. This
embedded ORB will leverage the advanced real-time fea-
tures [15, 14] developed by Washington University’s Center
for Distributed Object Computing to implement switch man-
agement protocols efficiently, in particular, the Virtual Switch
Interface (VSI) protocol [17].

This proposal describes the specific tasks to be performed
during the 12 months of the proposed project.

A.1 Introduction

During the past decade, there has been substantial R&D em-
phasis onhigh-speed networkingandperformance optimiza-
tionsfor network elements and protocols. This effort has paid
off such that networking products are now available off-the-
shelf that can support Gbps on every port,e.g., Gigabit Eth-
ernet and ATM switches. Moreover, 622 Mbps ATM connec-
tivity in WAN backbones is starting to appear. In networks
and GigaPoPs being deployed for the Next Generation Internet
(NGI), such as the Advanced Technology Demonstration Net-
work (ATDnet) [1] 2.4 Gbps (OC-48) link speeds are being de-
ployed. However, the general lack of robust and flexible tools
and middleware for programming, provisioning, and control-
ling these networks has limited the rate at which NGI applica-
tions have been developed to leverage advances in high-speed
networks.

What is required is a high-performance, real-time and QoS
aware communications middleware embedded in network ele-
ments, such as ATM switches and IP routers. This embedded
ORB provides a uniform access interface to network controls,
services, and resources to support control plane and manage-
ment plane activities.

The ACE ORB (TAO): The TAO CORBA 2.3-compliant
Object Request Broker (ORB) is developed at Washing-
ton University’s Center for Distributed Object Computing
(DOC) [2]. TAO is an open-source, standards-based, high-
performance, real-time ORB endsystem that supports appli-
cations with deterministic and statistical QoS requirements,
as well as “best-effort” requirements, and is the first ORB
to support end-to-end QoS guarantees over ATM/IP net-
works [13]. TAO’s features and optimizations include an
ORB Core that minimizes context switching, synchroniza-
tion, dynamic memory allocation, and data movement [16];
a highly-scalable Object Adapter that demultiplexes requests
in constant-time [14]; an optimizing IDL compiler [4]; real-
time I/O subsystem [6], and a global resource allocation and
scheduling framework [15].

CORBA Protocol model synopsis: CORBA Inter-ORB
Protocols (IOP)s define interoperability between ORB endsys-
tems. IOPs provide data representation formats and ORB mes-

saging protocol specifications that can be mapped onto stan-
dard and/or customized transport protocols. Regardless of the
choice of ORB messaging or transport protocol, a standard
programming model is exposed to the CORBA applications.
Figure 1 shows the relationships between these various com-
ponents and layers.

ORB MESSAGING

COMPONENT

ORB TRANSPORT

ADAPTER COMPONENT

TRANSPORT LAYER

NETWORK LAYER

GIOP

IIOP

TCP

IP

VME

DRIVER

AAL 5

ATM

GIOPLITE

VME-IOP

ESIOP

ATM -IOP
RELIABLE

SEQUENCED

PROTOCOL CONFIGURATIONS

STANDARD CORBA PROGRAMMING API

Figure 1: Relationship Between Inter-ORB Protocols and
Transport-specific Mappings

In the CORBA protocol interoperability architecture a stan-
dard General Inter-ORB Protocol (GIOP) is defined by the
CORBA specification [10]. The CORBA specification also
defines a transport-specific mapping of GIOP onto the TCP/IP
protocol suite. This mapping is called the Internet Inter-ORB
Protocol (IIOP) and is required for an ORB implementation to
be considered “interoperability compliant.” Other mappings
of GIOP onto different transport protocols are allowed by the
specification, as are different inter-ORB protocols, known as
Environment Specific Inter-ORB Protocols (ESIOP)s.

Regardless of whether GIOP or an ESIOP is used, a
CORBA IOP must define a data representation, an ORB mes-
sage format, an ORB transport protocol or transport protocol
adapter, and an object addressing format.

Pluggable protocol framework: Within the scope of the
CORBA interoperability architecture, ORB developers are
free to optimize internal data structures and algorithms [14].
Moreover, ORBs may use specialized inter-ORB protocols
and ORB services and still comply with the specification.1

We have leveraged this aspect of the standard and developed
a pluggable protocol frameworkwithin TAO. A key feature
of the framework’s design is its decoupling of ORB messag-
ing and transport interfaces from its transport-specific protocol
components. Figure 2 shows the partitioning of responsibili-
ties for pluggable protocols and how it relates to other ORB
services. This new framework is transparent to application de-

1An ORB must implement GIOP/IIOP, however, to be interoperability-
compliant.

Washington University 2

CLIENT

STUBS SKELETONS

TCP

MULTICAST

IOP

VMEUDP

ORB MESSAGING COMPONENT

ORB TRANSPORT ADAPTER COMPONENT

ESIOP

REAL -TIME

IOP
EMBEDDED

IOP

RELIABLE,
BYTE-STREAM

ATMUDP

OTHER

ORB
CORE

SERVICES

COMMUNICATION INFRASTRUCTURE
HIGH SPEED NETWORK INTERFACE

REAL -TIME I /O SUBSYSTEM

ORB MESSAGE

FACTORY

ORB TRANSPORT

ADAPTER FACTORY

OBJECT ADAPTER

GIOP GIOPLITE

ADAPTIVE Communication Environment (ACE)

OBJECT (SERVANT)operation (args)
IN ARGS

OUT ARGS & RETURN VALUE

RELIABLE,
BYTE-STREAM

POLICY

CONTROL

MEMORY

MANAGEMENT

CONCURRENCY

MODEL

Figure 2: TAO’s Pluggable Protocols Framework Architecture

velopers, since protocols can be (re)configured without modi-
fying the standard CORBA programming API.

This design allows custom ORB messaging and transport
protocols to be configured flexibly and used transparently
by CORBA applications. For example, if ORBs communi-
cate over a high-speed networking protocol with QoS sup-
port like ATM, then simpler, optimized ORB messaging and
transport protocols can be configured to eliminate unneces-
sary features and overhead of the standard CORBA General
Inter-ORB Protocol (GIOP) and Internet Inter-ORB Proto-
col (IIOP). Likewise, TAO’s pluggable protocols framework
makes it straightforward to support customized embedded sys-
tem interconnects, such as CompactPCI or VMEBus, under
standard CORBA inter-ORB protocols like GIOP.

TAO’s pluggable protocols framework supports the creation
of efficient, high performance inter-ORBin-line bridges. An
in-line bridge converts inter-ORB messages or requests from
one type of Inter-ORB protocol to another. This feature makes
it possible to efficiently bridge disparate ORB domains with-
out incurring unnecessary context switching, synchronization,
or data movement. An interesting side benefit of this feature is
the ability to ”plugin” a new ORB messaging protocol, such as
the Virtual Switch Interface (VSI) [17] or the General Switch
Management Protocol (GSMP) [12, 11].

The Virtual Switch Interface (VSI): VSI is a protocol that
allows multiple independent signaling processors to interact
with an ATM switch control processor to (1) add and delete
connections on the switch, (2) automatically discover switch
resources, and (3) collect statistics. Key features of VSI are (1)
its support for distributed processing (e.g., multiple signaling
processors controlling a single ATM switch, as well as one
signaling processor controlling an ATM switch that contains
multiple control processors), (2) flexible support for QoS, (3)

windowing flow control between master controller and slave
controller, and (4) fault tolerance support.

VSI is gaining acceptance as a vendor-neutral standard for
controlling ATM switches and is the basis of a standardization
effort in the Multiservice Switch Forum (MSF) [7]. Given
Washington University’s pioneering research in ATM switch
and network design, real-time ORB middleware, and high-
speed network management, we recognize the importance of
open signaling and a standard switch management protocol,
such as VSI, to further the development and deployment of
large-scale ATM-based distributed systems.

When using VSI as the inter-ORB messaging protocol, the
TAO pluggable protocols framework can exchange VSI mes-
sages with a VSI-enabled network element that does not con-
tain an ORB. Thus, using VSI obviates the need for creating
proxy objects to translate CORBA method invocation into VSI
control messages.

In our project described in this proposal, we will combine
(1) our knowledge of ATM switching and ATM signaling with
(2) our expertise in ORB middleware technologies to conduct
a 12 month research program that synergistically couples VSI
and CORBA to create an OO VSI-based switch control frame-
work called VSI++, which is described below.

A.2 Proposal: Develop a Real-Time Embedded
ORB for ATM Switch Control and Man-
agement

In our proposed effort we will create a version of TAO that
conforms to the forthcoming Real-time CORBA [9] and Min-
imum CORBA [8] standards so it can be embedded in a Cisco

Washington University 3

TAO
VSI SLAVE

PROXYVSI MASTER

TAO

ATM
Switch

CONTROL PROCESSOR

Network Switch

(c)

VSI
MESSAGES

ATM
Switch

Control Processor

Network Switch

Traditional
VSI
slave

VSI MASTER

(SIGNALING PROCESSOR)

VSI
SLAVE

PROXY

LOCAL

METHOD

INVOCATION

Localhost

(a) (b)

ATM
Switch

Control Processor

Network Switch

GSMP
Messages

Traditional
VSI
slave

VSI MASTER

TAO

IIOP

VSI
SLAVE

TAO

SIGNALING PROCESSOR PROXY

IIOP

SIGNALING PROCESSOR

Figure 3: Three Configurations of VSI

ATM switch to improve the flexibility and control of appli-
cations and services across high-speed networks without sac-
rificing performance. Our target switch control environment
includes support for VSI 2.0 as defined in the MSF specifica-
tion [17]. We will use the resulting VSI middleware to build
robust, efficient, and scalable ATM signaling applications. In
particular, end-user applications can use our VSI++ frame-
work to transparently setup end-to-end flows with associated
Quality of Service (QoS) guarantees.

The result of this effort will be middleware-based ATM
switch control framework based on VSI and CORBA. Within
our VSI++ framework we will have ORBs (1) embedded on
the switches and (2) resident on the client hosts and the con-
trollers (e.g., switch controllers). The broader goal of our
work is to provide a switch/router control framework that can
provision end-to-end QoS guarantees for real-time and high-
bandwidth applications running over high-speed networks,
such as ATM, Gigabit Ethernet, and high-speed IP routers.

To provide a baseline architecture for this work, we will
construct three different CORBA- and VSI-based environ-
ments. Figure 3 depicts the three different configuration of
master controllers, slave controllers, and ORBs supported by
our VSI++ framework. These configuration are described fur-
ther below:

1. Conventional VSI configuration: Figure 3 (a) depicts a
conventional configuration of VSI. In this approach, we will
create a VSI proxy object that translates local method invoca-
tions in a master controller into VSI messages that are sent to
an ATM switch. These messages will be sent using the stan-
dard VSI ATM Encapsulation defined in Appendix A of the

Virtual Switch Interface (VSI) Implementation Agreement,
version 2. The only difference between this and the more tradi-
tional approach is that we have encapsulated the functionality
in a C++ object rather than simply providing low-level C li-
brary function APIs. This configuration will provide us with a
baseline implementation to compare against the results of the
next two configurations.

Our performance measurements will separate out the over-
head of the VSI messaging protocol and library implementa-
tion from the switch configuration time. This will enable us
to later quantify the overhead associated with an ORB-based
implementation from a straight OO library version.

2. VSI proxy server configuration: This configuration is
depicted in Figure 3 (b) and will employ a real-time ORB to
create a daemon proxy VSI slave controller that can reside on
a remote host. This daemon server will translate the command
method invocation into VSI messages and forward these to the
control processor. It will then wait for any reply and include
this in its response to the client. Our performance measure-
ments will isolate the inter-ORB messaging overhead from the
actual switch configuration latency. The goal is to isolate the
various sources of messaging latency.

The advantage of the proxy strategy is that the proposed
VSI++ framework can control switches that have an embed-
ded ORB (described next), as well as those that only accept
VSI messages or ATM control cells. In addition, one control
processor can control multiple switches. Thus, we can use the
VSI proxy server running on a host within the network to con-
trol multiple switches, each with the appropriate protocol.

Figure 4 depicts this situation where there are two master

Washington University 4

controllers requesting connections across three switches. The
proxy slave controller,i.e., VSI proxy, can invoke the appro-
priate VSI method for the first switch, which contains an em-
bedded VSI server built using an ORB. The middle switch
accepts standard VSI control messages from the proxy slave
controller. The third switch accepts ATM control cells to con-
figure individual ports using a custom ATM solution.

SIGNALING

PROCESSOR

TAO

SIGNALING

PROCCESSOR

PROXY

MASTER

CONTROLLER

TAO

PROXY CONTROL

PROCESSOR

SLAVE

CONTROLLER

TAO

ATM
SWITCH

ATM
SWITCH

ATM
SWITCH

NETWORK ELEMENT

Control cells
SLAVE

CONTROLLER

config port
CONTROL

PROCESSOR

NETWORK ELEMENTNETWORK ELEMENT

CONTROL

PROCESSOR

CONNECTION

REQUEST

SIGNALING

PROCESSOR

TAO

SIGNALING

PROCCESSOR

GSMP: ADD_BRANCH
VSI: CONNECT COMMIT

Inter-ORB Protocol

establish_connect()

Figure 4: The VSI Proxy Object Configuration

3. Embedded ORB configuration: Using TAO to develop
a network-embedded CORBA ORB configuration to provide a
uniform access interface to network controls, services, and re-
sources. The Embedded ORB configuration will support stan-
dard switch control operations and interfaces specified by VSI.
Unlike conventional middleware efforts, however, the Embed-
ded ORB configuration using TAO will be a minimal foot-
print [8] and real-time [9] version of CORBA that can be in-
stalled into a Cisco ATM switch. This configuration will im-
prove the flexibility and control of applications and services
across high-speed networks without sacrificing performance.

The Embedded ORB configuration is shown in Figure 3 (c),
where the ORB and a VSI object are embedded in the ATM
control processor (switch). This configuration is the most
powerful and flexible configuration since the ORB middleware
framework can be used to control the switch through out the
network.

By embedding the ORB in the switch and exposing the VSI
interface we can take advantage of the inherent semantics and
flexibility of CORBA. There is the immediate advantage of
simplifying the programming, provisioning, monitoring, and
control of ATM signaling applications. Plus, the applications
and services developed using our VSI middleware will yield
more modular, extensible, and standard solutions that can be

reused across multiple projects and application families. For
example, new switch control functionality or interfaces can
be added without exposing application developers to under-
lying details or complexities. Using this configuration, we can
add support for new signaling standards or enhanced features
while maintaining a consistent interface to developers of con-
trol plane and management plane applications.

Figure 5 shows another view of the embedded VSI server
configuration where multiple signaling processors communi-
cate with a network switch. In this case, all control and
management communication occurs within the context of the
ORB. An application running on an endstation will request
that a connection be established from between itself and an-
other endstation. The signaling processors will process the re-
quest, determine a route, and request each switch along the
route to allocate the necessary resources. The master con-
troller communicates with a slave controller using the exported
VSI-based interfaces.

SLAVE

CONTROLLER

TAO

CONTROL PROCESSOR

NETWORK ELEMENT

ATM
SWITCH

MANAGEMENT

AGENT

NETWORK OPERATIONS

CENTER

SIGNALING

PROCESSOR

MASTER

CONTROLLER

SIGNALING

PROCESSOR

ADD NEW

CONNECTION

GET PORT

STATUS
EVENT

PORT DOWN

TAOTAO

INTER -ORB PROTOCOL

HOST A HOST B

Figure 5: Using the Embedded ORB Configuration for VSI
Signaling and Control

The following subsections describe the specific tasks we
will perform during the 12 months of the proposed VSI
project.

A.2.1 Task 1: Create an Enhanced OO Version of VSI

Activities: In this task, we will build on the ATM signaling
work already performed at Washington University. In partic-
ular, we will develop a composite VSI++ model that includes

Washington University 5

functionality defined in VSI version 2 [17]. The specific steps
involved in this task include the following:

Step 1 – Develop an object model: We will survey ex-
isting VSI-based implementations and simulators for ATM
switch management. Using this information, we will then
create an object model and integrate this model into the core
classes created in our earlier ATM signaling efforts. This step
is primarily concerned with refining the VSI interface, key ob-
jects, and their implementation.

Step 2 – Develop Proxy Object In this step we will im-
plement the classes and algorithms identified in step 1. We
will use this to create a convention OO application that con-
trols an ATM switch using the VSI messaging protocol. As
a result of this step, the VSI objects and class hierarchy will
implement the VSI object model identified in step 1.

Step 3 – Develop a Proxy Server: We will enhance the
application written in step 2 to use CORBA in order to im-
plement a proxy server configuration. In this scenario, client
objects will communicate with the VSI server using CORBA
and IIOP. We will experiment with collocating the server ob-
ject with the client, as well as placing it on a remote host. In
order to expedite this step, we plan to use the VSI master/slave
controller simulator developed by Cisco.

Step 4 – Test and analysis: In the final step we will
perform tests and compare the performance of the two ap-
proaches.

Deliverables: The deliverables for Task 1 will include the
VSI++ class definitions, IDL definitions, testing results, and
a report documenting the reference architecture that we have
formulated. This report will identify and describe the key com-
ponents, policies, and mechanisms related to the OO definition
of VSI using CORBA. The deliverables in Task 1 will provide
the basis for subsequent tasks described below.

A.2.2 Task 2: Port TAO to an ATM switch and Imple-
ment Optimal IOP

Activities: In this task, we will embed TAO in a Cisco ATM
switch and add appropriate VSI protocol support into TAO us-
ing its newpluggable protocols framework. The specific steps
involved in this task include the following:

Step 1 – ATM switch evaluation:

1. Acquire Cisco ATM switch and control processor soft-
ware and verify operation.

2. Evaluate the configurability of the switches and develop
mappings from VSI configuration messages to ATM
switch specific control cells and/or commands.

3. Determine available computing resources,e.g., memory
footprint and processor cycles, that are necessary to sup-
port the ORB and VSI objects in the switch.

Step 2 – Port TAO to ATM switch: Evaluate both the
ATM switch environment and required ORB functionality and
determine which TAO and ACE subsets are required. Based on
this analysis, build a minimal TAO with only the components
required for the Cisco ATM switch environment. As part of
this step, we will port ACE+TAO to the Greenhills Embed-
ded C++ (EC++) compiler. EC++ will significantly reduce
the memory footprint of ACE+TAO. This porting effort will
require removing the use of multiple inheritance in ACE, as
well as other minor changes to conform to the embedded C++
features.

Step 3 – Evaluate inter-ORB protocol requirements:
The standard CORBA general inter-ORB protocol (GIOP)
uses the Internet inter-ORB protocol (IIOP) as its transport
protocol [10]. Since IIOP is implemented over TCP cer-
tain functionality like adaptive retransmissions, deferred trans-
missions, and delayed acknowledgments can cause excessive
overhead and latency for ATM signaling applications with
real-time QoS requirements. Therefore, we will evaluate al-
ternate Environment-Specific Inter-ORB Protocols (ESIOP)
that are customized for ATM/AAL5 and potentially UDP over
ATM.

One approach is to use VSI as the Inter-ORB messaging
protocol since it has several desirable features that lend itself
to this role:

1. Request/response semantics are consistent with a stan-
dard IOP communication model.

2. Ability to communicate with switches that speak the VSI
protocol, but which do not have an embedded ORB.

Step 4 – Implement inter-ORB messaging protocols:
We will leverage TAO’spluggable protocols frameworkto de-
fine an optimized Inter-ORB Protocol that uses ATM and the
ATM adaptation layer type 5 (AAL5). Three potential mod-
ification to the Inter-ORB protocol will be considered during
this phase of the project. The first possibility is to use a mod-
ified version of the IIOP. The modifications will be minimal
and targeted to supporting the ORB within the switch environ-
ment. For example, a lighterweight version of GIOP [14] may
be employed to reduce overall message size. This IOP will
operate over TCP/IP and ATM.

The second set of modification will be centered on devel-
oping a new ORB transport protocol that will operate under
either GIOP or the lightweight version of GIOP identified
above. In this case we will not require TCP/IP to be used as
the underlying transport protocol. Instead, we will develop a
lightweight ORB transport protocol using ATM and the ATM
adaptation layer type 5 (AAL5). This will be augmented to
provide a byte-stream interface to the ORB messaging com-
ponent (GIOP). Depending on the switch environment UDP
also may be considered before the underlying communications
transport protocol.

The third set of modification will consider the creation of
a new ORB messaging protocol. This new ESIOP will use

Washington University 6

VSI as the ORB messaging protocol. This will operate over
an unreliable, datagram protocol, such as UDP over AAL5 or
simply ATM AAL5. Naturally, it will also be possible to use
the standard GIOP/IIOP protocols to interoperate with other
CORBA ORBs.

We plan to conduct extensive empirical tests using these
three Inter-ORB protocols.

Deliverables: The deliverables for this step will be the em-
bedded ORB, VSI and Inter-ORB Protocol. In addition, we
will write papers and technical reports detailing the porting
process and selection of IOP for optimal ATM switch control.

A.2.3 Task 3: Prototyping and Benchmarking the Real-
Time Embedded ORB for ATM Switch Control
and Management

Activities: This task will bring together the elements devel-
oped in tasks 1 and 2 to develop a prototype implementation
of VSI with the ORB embedded in the ATM switch. We will
perform extensive empirical testing of the embedded ORB and
VSI implementation in the Cisco switch. These results will be
compared to those collected in Task 1, where we used a proxy
server and a proxy object that forwards requests to the switch
using the standard VSI messaging protocol.

Our implemented VSI protocol will support the definition
of QoS attributes. To the extent this is supported by the under-
lying network/end-system hardware/software we will experi-
ment with defining classes of service and allocating network
resources to applications. The specific steps involved in this
task include the following:

Step 1 – Implement VSI within the Cisco ATM switch
and Embedded ORB environment: We will first port our
VSI server application to the switch environment on the con-
trol processor.

Step 2 – Implement VSI QoS features: VSI version 2
can be used to support different QoS classes required for
multimedia support and telecommunication call-setup. QoS-
related features we will explore include:

1. Real-time characterization and measurement;

2. Repeat Task 1 to check if QoS guarantees are being met;

3. Admission control policies at ATM switches;

4. Mapping admission controlled method invocations to
real-time scheduling primitives,e.g., thread-per-request,
thread-per-object, and thread-per-client;

5. ORB modifications at switches to implement chosen poli-
cies.

A final dimension to be explored is providing a mecha-
nism for associating QoS guarantees to the switch control
and management messages,i.e., the VSI messages them-
selves. For example, switch configuration messages, such as

connect commit , could be assigned a high priority both
within the network and the embedded ORB. While routine
management messages such as statics collection could have
a relatively low, best effort priority. Alternatively, event noti-
fication messages that signal an error condition could have the
highest priority and lowest latency.

As a part of this task we will explore the possibilities and
their impact on non-control traffic, connection establishment
latencies, error reporting latencies and overall endstation QoS
negotiation times.

Step 3 – Conduct fault tolerance experiement with
VSI++: The MSF VSI specification describes a set of fault
tolerance features that allow a master controller and switch to
resynchronize following a loss of connectivity. In this step,
we will conduct experiements using the fault tolerance mech-
anisms being added to TAO under a proposed project with Mo-
torola to determine how well they can be used to support the
VSI++ fault tolerance policies.

Deliverables: The deliverables for this task will include a
modified implementation of the VSI protocol in the QNX Neu-
trino operating system and TAO’s CORBA IDL compiler, as
well as sample applications and benchmarking results. In addi-
tion, we will work with the OMG to integrate TAO’s pluggable
protocols framework and QoS extensions into the CORBA
standard.

A.3 Related Work

There are several efforts underway to define an open pro-
gramming interface for network control and signaling. The
OPENSIG group focuses on issues dealing with network con-
trol issues related to signaling, middleware, and service cre-
ation for various environments. This has resulted in Proposed
IEEE Standard for Application Programming Interfaces for
Networks, known as IEEE P1520 [5].

The P1520 effort is also based on VSI. Thus, we plan
to follow it closely. This standardization effort is based on
the XBIND and qGSMP research at the Columbia University
COMET group [3]. We expect our proposed effort of embed-
ding an ORB on an ATM switch and providing an VSI inter-
face will be particularly relevant to the work of OPENSIG.

The Multiservice Switching Forum (MSF) is actively in-
volved with architectural and switch interface issues. The
MSF switching framework is designed so that alternative sig-
naling and routing protocols can be employed without conflict.
Consequently, different services and signaling protocols that
are being defined by several IETF working groups, the ATM
Forum, ITU, and others can operate in within the same infras-
tructure.

This multi-protocol, multi-service, and multi-vendor ap-
proach is at the heart of the MSF standardization effort for
the Virtual Switch Interface (VSI). The VSI has a similar pur-
pose to GSMP however it provides a much richer interface

Washington University 7

Task 2
Port TAO
to ATM switch

1

Task 1
Developing
VSI++

124 8

Task 3
Prototyping and
Benchmarking
VSI++

Step 1
Step 2

Step 3
Step 4

Step 1

Step 2

Step 3
Step 4

Step 2
Step 1

Figure 6: Timeline for Completion of Tasks.

specification. In fact the VSI is defined to avoid limiting the
signaling protocols used and allows for multiple independent
controllers, such as PNNI and MPLS, to simultaneously con-
trol the same switch. Thus using VSI a switch can support
traffic for native ATM applications, IP over ATM and MPLS
with each controller maintaining a separate view of the switch
and responsible for its own resources.

B Personnel, Schedule, and Budget

The participants in this effort include the following personnel:

1. Faculty member (i.e., Douglas C. Schmidt – Ph.D., As-
sociate Professor, Washington University) at 10% during
the period of performance.

2. Senior research associate (i.e., Fred Kuhns, M.S.) at 50%
during the period of performance.

3. Graduate student (i.e., Vishal Kachroo, M.S. candidate
Washington University) at 100% during the period of per-
formance.

The time-table for completion of these task in the 12 month
period of performance is shown in Figure 6. The total cost of
the proposed effort is$117,468, split 50/50 between Motorola
and Cisco. The following table provides a cost breakdown for
this project.

Description Amount
50% full time staff (salary & fringe) 40,000
1 graduate research assistant 25,300
10% Schmidt (salary & fringe) 10,000
overhead at 56% 42,168

total budget 117,468

References
[1] ATD. Advanced Technology Demonstration Network.

http://www.atd.net/.

[2] Center for Distributed Object Computing. TAO: A
High-performance, Real-time Object Request Broker (ORB).
www.cs.wustl.edu/�schmidt/TAO.html, Washington
University.

[3] Constantin M. Adam, Aurel A. Lazar, and Mahesan
Nandikesan.Draft Technology Submission Working Document,
Programming Interfaces for Networks. Princeton, January
1999.

[4] Aniruddha Gokhale and Douglas C. Schmidt. Optimizing a
CORBA IIOP Protocol Engine for Minimal Footprint
Multimedia Systems.Journal on Selected Areas in
Communications special issue on Service Enabling Platforms
for Networked Multimedia Systems, to appear, 1999.

[5] IEEE. IEEE P1520, Proposed IEEE Standard for Application
Programming Interfaces for Networks.
http://www.ieee-pin.org/.

[6] Fred Kuhns, Douglas C. Schmidt, and David L. Levine. The
Design and Performance of a Real-time I/O Subsystem. In
Proceedings of the5th IEEE Real-Time Technology and
Applications Symposium, Vancouver, British Columbia,
Canada, June 1999. IEEE.

[7] MSF. Multiservice Switching Forum.
http://www.msforum.org/.

[8] Object Management Group.Minimum CORBA - Joint Revised
Submission, OMG Document orbos/98-08-04 edition, August
1998.

[9] Object Management Group.Realtime CORBA 1.0 Joint
Submission, OMG Document orbos/98-12-05 edition,
December 1998.

[10] Object Management Group.The Common Object Request
Broker: Architecture and Specification, 2.2 edition, February
1998.

Washington University 8

[11] P. Newman, W. Edwards, R. Hinden, E. Hoffman, F. Ching
Liaw, T. Lyon, and G. Minshall. Ipsilon’s General Switch
Management Protocol Specification Version 1.1. Standards
Track RFC 1987, Network Working Group, August 1996.

[12] P. Newman, W. Edwards, R. Hinden, E. Hoffman, F. Ching
Liaw, T. Lyon, and G. Minshall. Ipsilon’s General Switch
Management Protocol Specification Version 2.0. Standards
Track RFC 2297, Network Working Group, March 1998.

[13] Guru Parulkar, Douglas C. Schmidt, and Jonathan S. Turner.
a
I
t
P
m: a Strategy for Integrating IP with ATM. InProceedings

of the Symposium on Communications Architectures and
Protocols (SIGCOMM). ACM, September 1995.

[14] Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor
Wang, Vishal Kachroo, and Aniruddha Gokhale. Applying
Optimization Patterns to the Design of Real-time ORBs. In
Proceedings of the5th Conference on Object-Oriented
Technologies and Systems, San Diego, CA, May 1999.
USENIX.

[15] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee.
The Design and Performance of Real-Time Object Request
Brokers.Computer Communications, 21(4):294–324, April
1998.

[16] Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan,
and Aniruddha Gokhale. Software Architectures for Reducing
Priority Inversion and Non-determinism in Real-time Object
Request Brokers.Journal of Real-time Systems, To appear
1999.

[17] VSI/1.0. Virtual Switch Interface (VSI) Specification, version
1.0. http://www.msforum.org/switchcontrol.pdf.

