
Towards a Solution for Synchronizing Disparate Models of
Ultra-Large-Scale Systems

James H. Hill, Jules White, Sean Eade,
Douglas C. Schmidt

Vanderbilt University
Nashville, TN, USA

{j.hill, jules.white, sean.eade,
d.schmidt}@vanderbilt.edu

Trip Denton
Lockheed Martin, Advanced Technology Lab

Cherry Hill, NJ, USA
ldenton@atl.lmco.com

ABSTRACT
Traditional model-driven engineering (MDE) techniques rely on
a paradigm where systems are developed using tightly coupled,
monolithic modeling tools. Such monolithic modeling tools ad-
dress many concerns, but operate largely in isolation of one an-
other. As system size and complexity grow to become ultra-large-
scale (ULS) systems, it is becoming clear that no single monolithic
modeling tool can capture all the concerns of an ULS system. It
is therefore essential that isolated modeling tools collaborate with
each other when realizing ULS systems.

This position paper presents our approach to facilitate collabora-
tion between disparate MDE tools and their models. Our approach
is based on model attributes, which are key/shared assumptions/-
concerns about an ULS system, extracted from a source model and
used to synchronize disparate models. Our approach is suitable for
ULS systems because the independent relation created between the
isolated models and the model attributes enables independent trade-
off analysis between models, decentralized development of models,
and integration with inconsistent and rapidly changing models that
are ideal for a particular domain or feature of a ULS system.

Keywords
continuous model integration, model-driven engineering, model syn-
chronization, ULS systems

1. INTRODUCTION
Key challenges of model-driven ULS system development.

Traditional model-driven engineering (MDE) [14] has shown great
promise when building medium- to large-scale systems [1,11]. MDE
helps raise the level of abstraction of system design and allows
developers to express their intent and work with artifacts that are
more closely related to domain constructs than third-generation
programming languages. MDE also alleviates many of the inherit
complexities associated with building large-scale systems, such as
documenting design specifications [12], verifying functional prop-
erties [2], validating non-functional properties [6], or solving de-
ployment & configuration (D&C) problems [15].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ULSSIS’08, May 10–11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-026-5/08/05 ...$5.00.

As systems grow larger and more complex to become ultra-large-
scale (ULS) systems [7], however, a single MDE technique or tool
(such as domain-specific modeling languages [10] or formal mod-
els [3]) is insufficient to provide all the required support. Different
system concerns, such as its fault-tolerance capabilities, real-time
schedulability, and software-to-hardware deployment topology, re-
quire different languages to precisely analyze the system [9]. It is
hard to leverage conventional MDE techniques for ULS systems if
(1) each modeling language or tool is used in isolation due to de-
pendencies between models and (2) decisions in one model have
unforeseen consequences in other models.

Figure 1: Intelligent Transportation System

For example, an intelligent transportation system [4], as shown
in Figure 1, that coordinates its operations with many intersections
in a city may have a UML model of the system’s conceptual im-
plementation (e.g., classes, sequence, and use-case diagrams), a
formal model to verify functional properties (e.g., deadlock and
state reachability), and a system execution model to validate non-
functional properties (e.g., worst-case system execution time). More-
over, different portions of the system may be developed by different
groups dispersed throughout a region, which implies different—
possibly conflicting—underlying concerns and assumptions of the
system under development. If system developers want to leverage
a new model (such as a D&C modeling language) or implement

new functionality (such as evaluating the effect of checkpointing
the system’s state), it is imperative that the ULS system’s models
collaborate to ensure each addresses their specific problem with
the same underlying system assumptions and remain appropriately
consistent with one another.

Maintaining consistency between models is necessary even for
small-scale systems because a single model of a system is rarely
sufficient to model all relevant aspects of a system. For small-
scale systems it is feasible to maintain this consistency manually.
Such an approach is problematic for ULS systems, however, since
they are created by many developers, working in different organiza-
tions, distributed across many regions and domains, using multiple
disparate MDE techniques and tools. When developers maintain
consistency between these different modeling boundaries manually
they often make assumptions about the ULS system to map the
conceptual model to a concrete model that fits within their span of
interest/responsibility.

For instance, in our intelligent transportation system example the
UML model and the system execution model may have different as-
sumptions about how checkpointing is implemented, or the formal
model and system execution model may differ in their checkpoint-
ing frequency assumptions. These different assumptions also will
affect how the D&C model deploys the realized ULS system. In
particular, these assumptions create diverging and inconsistent so-
lutions between models that need to collaborate to realize a work-
ing ULS system, such as the intelligent transportation system illus-
trated in Figure 1.

Solution approach → Model synchronization via model in-
terfaces and attributes. To address the problem of collaboration
and synchronization between models of ULS systems, develop-
ers need new techniques that will allow disparate MDE techniques
and tools to communicate seamlessly when creating and deploying
ULS systems. This paper describes our approach enabling synchro-
nization between disparate models of ULS systems.

Our approach uses model attributes, which are key/shared ass-
umptions/concerns about an ULS system, model interfaces and con-
nectors, which are used to described and insert/extract the model
attributes into/from their target/source model, respectively. Our ap-
proach also allows the seamless integration of new models (i.e.,
model plug-and-play) so they can collaborate with existing dis-
parate models of the ULS system. Our initial observations show
that this approach enables independent trade-off analysis between
models, decentralized development of models, and integration with
inconsistent and rapidly changing that are ideal for a particular do-
main, or feature, of a ULS system.

Paper organization. The remainder of this paper is organized as
follows: Section 2 elaborates our approach to model synchroniza-
tion for ULS systems; Section 3 describes initial results realized by
our approach; Section 4 compares our approach with related work;
and Section 5 presents concluding remarks and future research di-
rections.

2. SYNCHRONIZING DISPARATE MODELS
OF ULS SYSTEMS

In Section 1, we discussed the challenges of synchronizing dis-
parate models of ULS systems. To address these challenges, a
methodology is needed that allows disparate models—which can be
dispersed widely throughout regions—to exchange common knowl-
edge, such as functional (e.g., checkpointing frequency), imple-
mentation (e.g., portions of the systems affected by checkpointing
implementation) and deployment (e.g., target hardware/software)
requirements. Such a methodology should provide the following
features:

• A database that contains a disjoint subset of model attri-
butes, which are system properties that must be shared be-
tween multiple disparate models and stored in a well-defined
format, such as a scalar value, comma-separated values, or
verbose XML, of the realized ULS system. Model attributes
represent the minimal information needed to ensure disparate
models maintain consistent assumptions based on executing
the source model, i.e., evaluating it based on its current val-
ues. Moreover, the model attributes help to prevent diverging
solutions, similar to an invariant specified in formal model
checking [2].

• Model interfaces, which describe the input/output model at-
tributes for a particular model type, and model connectors,
which are implementations of a model interface and under-
stand how to read/write a subset of model attributes needed
to maintain a consistent view of the ULS system. Individ-
ual models read/write the model attributes to/from their tar-
get database via model connectors. Since multiple databases
may need to store a disjoint subset of the ULS system’s prop-
erties that must be shared between disparate models, model
connectors are responsible for resolving the location(s) of the
model attributes. Model connectors are also bound to a par-
ticular model type to promote reuse across multiple domains
and solutions.

• Generic and extensible plug-and-play support for modeling
languages and tools that is not bound to a particular format,
language, or specification. As the ULS system evolves, new/-
different models will be added to their current design space.
Such models will also begin to read/write their own model
attributes. A plug-and-play framework enables support of
future and unknown modeling languages because they only
have to describe their model interface and provide a model
connector to begin read/writing model attributes. By make
the plug-and-play framework extensible, different modeling
tools and languages can be used to specialize the existing
infrastructure without breaking it. For example, a new mod-
eling tool integrated into the framework may specialize it to
validate the value of an attribute using a XML schema def-
inition without requiring the other modeling tools and lan-
guages to implement the same functionality.

Our solution approach is shown in Figure 2. All model attributes

Figure 2: Conceptual Overview of ULS System Model Synchro-
nization

(1) are stored in well-defined location(s), such as a database or
repository. Due the scale of the system, it is possible to replicate
attribute database(s) as shown in Figure 2 so models use an appro-
priate database, e.g., one closest to their location. Each attribute

database contains a disjoint subset of properties, such as properties
for a specific version, concern, or feature, of the ULS system un-
der development. When developers need to update their model (2)
they use the model’s corresponding connector to read the appropri-
ate model attributes, which ensures the local working copy of the
model makes assumptions consistent with those of other models.

Figure 2 also shows that model connector’s write model attributes
back to the attribute database. After developers finish updating
the local working copy of their model, e.g., evaluating their model
based on the new/updated ULS system assumptions, they use the
model connector (3) to write their model attributes back to the ap-
propriate (replicated) database. Although this process could take
some time to converge due to ULS system scale, it ensures that
all models continue to maintain a unified view of the ULS system
consistent with the changes made.

3. INITIAL OBSERVATIONS OF MODEL
SYNCHRONIZATION

Section 2 described our solution approach to enable disparate
models to coordinate with one another in ULS systems. This sec-
tion presents some initial observations of using model attributes
and connectors to facilitate model synchronization.

Support for loose coupling of modeling tools/environments/-
languages. Model attributes are pushed/pulled to/from the model,
respectively, via model connectors. Since model connectors are
responsible for handling model attributes, the actual models (i.e.,
those within a developers local workspace) are not concerned with
the format of the actual model attribute. This approach creates a
loose coupling between disparate modeling tools/environments/-
languages, such as those illustrated in Figure 3, and allows them
to remain independent from each other—similar to how the Bridge
and Adapter pattern [5] allow two unrelated objects to collaborate
without becoming tightly coupled.

Due to the loose coupling, the disparate models can collaborate
without becoming tightly coupled to other models. Moreover, we
can integrate (i.e., plug-and-play) new tools/environments/languages
that address specific concerns of the ULS system as needed, such
as the D&C modeling language for the intelligent transportation
system shown in Figure 3, without breaking existing models of the
ULS system.

Trade-off analysis of ULS system properties. Model attributes
are assumptions about the ULS system’s properties between mul-
tiple disparate models. Before system developers use one or more
models, they must be updated with the latest properties from the
model attribute database (e.g, the attribute repository in Figure 3).
Once the models are updated, they can be evaluated to understand
how the updated assumptions affect the current model, thereby en-
abling system developers to conduct trade-off analysis on key ULS
system properties, such as understanding how different checkpoint-
ing frequencies affect end-to-end worst case execution time. Such
trade-off analysis properties can be written to the model attribute
database via the model connectors to preserve the learned facts
about the ULS system, e.g., the intelligent transportation system
in Figure 3, and used by other disparate models.

Partial knowledge of model (and system) to achieve synchro-
nization. A challenge of using disparate models is maintaining
consistent information between them. In many cases, one model
may only need a fraction of the information in another model, i.e.,
a partial view of the system, to maintain a consistent view of the
entire system. By using model attributes we alleviate the complex-
ity of needing complete knowledge of a model (or the system) to
synchronize disparate models. Since each model synchronizes it-
self based on its desired model attributes, which are specified via

Figure 3: Model Synchronization for Intelligent Transporta-
tion System

model connectors, it only reads a subset of the model attributes
stored across all attribute databases to maintain a consistent view
of the system.

Automation of the model synchronization process. Each model
interface determines what model attributes to read/written to/from
the attribute repository. When the model interfaces and connectors
and the actual models are stored in a well-known location for inte-
gration, such as a repository—and we assume that no two mod-
els can write the same model attribute—we can use topological
sort [13] to build a dependency graph between each model based
on their model attributes. This graph determines the required or-
der that we must evaluate each disparate model to produce output
model attributes needed as input model attributes for other models.
By leveraging this capability, it should be possible to automatically
synchronize disparate models, ensure they maintain a consistent
view, and validate them based on the common assumptions speci-
fied by model attributes.

Support for decentralized MDE. As discussed in Section 2,
model attributes are stored in a database, which could be repli-
cated. These attributes can be spread across multiple locations,
where each location stores a disjoint subset of the ULS system’s
model attributes. The model connectors, however, are responsible
for resolving the actual location of a model attribute. Based on our
model attributes and model connectors, we provide a decentralized
MDE-based approach to synchronizing disparate models.

4. RELATED WORK
This section compares our work on synchronizing the assump-

tions between different models of a ULS system with related work
on model synchronization. Prior work on modeling has largely fo-
cused on small-scale systems where a single model or tool is suf-
ficient. Since ULS systems do not fit this single model/tool mold,
we do not compare with these existing monolithic modeling tech-
niques.

Zave et. al [16] describe techniques for collaborating between
disparate models in the domain of formal specification and verifi-
cation of programs. Their solution mapped all models to a com-
mon simplified predicate logic—similar to the MetaObject Facility
for domain-specific modeling languages. Although this approach

is valid, it means all disparate models have complete knowledge of
the entire program, which is not feasible for ULS system models
because they span many domains. Our approach differs from Zave
et. al because we do not map the model attributes to a common rep-
resentation. Mapping model attributes to a common representation
is particularly hard when disparate models of ULS systems have
overlapping concerns, but disjoint semantics, purposes, and under-
lying formalisms. Moreover, our approach alleviates the need for
disparate models to have complete knowledge of the system and
focuses on attributes (or assumptions) that are necessary for it to
solve its problem.

The (Web-based) Open Tool Integration Framework (OTIF) [8]
is a tool that provides collaboration between disparate models. OTIF’s
uses graph transformations and rewriting techniques to transform
models between isolated tools, which is more of a point-to-point
solution. Our solution approach is different in that we do not per-
form model transformations and rewriting techniques to achieve
model synchronization. Instead, we make model attributes, which
are common assumptions about the system, the primary artifacts
for synchronizing disparate models. Moreover, OTIF’s solution im-
plies that models have a complete view of the system and are tightly
coupled; whereas, our solution approach implies that models have
a partial view of the system, i.e., the minimal knowledge necessary
to synchronize disparate models, and are loosely coupled.

5. CONCLUDING REMARKS
As ULS systems become more prevalent, multiple models will

be needed to express different system design concerns. To ensure
that each model has a consistent view of the system’s assumptions,
disparate models will need to exchange information. This paper
described our solution approach to enable disparate models to col-
laborate, which is based on storing common assumptions about the
system in model attributes and using model interfaces and connec-
tors to manage model attributes for individual models. Our initial
results indicate that this approach enables disparate models to col-
laborate without needing complete knowledge of the entire system.

The following list summarizes our future research directions for
enabling model synchronization between disparate models in ULS
systems:

• Automatically maintaining consistency between models sh-
ould ideally occur continuously throughout the development
lifecycle of the system. Our future work therefore involves
understanding the benefits of using continuous integration
environments to enable the continuous model integration.

• When synchronizing many disparate models there will be
times when different models will have conflicting results or
assumptions based on the evaluation of their subset of model
attributes. Our future work therefore involves understanding
how to locate such problems and how to resolve them both
autonomously and manually.

• There can be use cases where the dependencies between model
attributes form a cyclic graph, such as a feedback loop be-
tween two models. Our future work therefore includes un-
derstanding how to handle such use cases to prevent the syn-
chronization process from entering infinite loops.

Acknowledgements
This work was funded in part by Lockheed Martin Advanced Tech-
nology Labs in Cherry Hill, NJ. We would particularly like to thank
Rick Buskens, Edward Jones, and Srini Srinivasan for their help on
this project.

6. REFERENCES
[1] K. Balasubramanian, A. Gokhale, J. Sztipanovits, G. Karsai,

and S. Neema. Developing Applications Using
Model-Driven Design Environments. IEEE Computer,
39(2):33–40, Feb. 2006.

[2] G. Behrmann, A. David, and K. G. Larsen. A tutorial on
uppaal. In SFM, pages 200–236, 2004.

[3] M. Chechik and A. Wong. Formal Modeling in a
Commercial Setting: A Case Study. Journal of Systems and
Software, 60(1):59–82, 2002.

[4] S. Fritsch, A. Senart, D. C. Schmidt, and S. Clarke.
Time-bounded Adaptation for Automotive System Software.
In Proceedings of the Experience Track on Automotive
Systems at the 30th International Conference on Software
Engineering, Leipzig, Germany, May 2008.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[6] J. H. Hill, J. Slaby, S. Baker, and D. C. Schmidt. Applying
System Execution Modeling Tools to Evaluate Enterprise
Distributed Real-time and Embedded System QoS. In
Proceedings of the 12th International Conference on
Embedded and Real-Time Computing Systems and
Applications, Sydney, Australia, August 2006.

[7] S. E. Institute. Ultra-Large-Scale Systems: Software
Challenge of the Future. Technical report, Carnegie Mellon
University, Pittsburgh, PA, USA, Jun 2006.

[8] G. Karsai, A. Lang, and S. Neema. Design Patterns for Open
Tool Integration. Software and Systems Modeling (SoSym),
4(2):157–170, 2005.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming, pages
220–242, June 1997.

[10] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai. Composing Domain-Specific
Design Environments. IEEE Computer, pages 44–51,
November 2001.

[11] G. Madl and S. Abdelwahed. Model-based analysis of
distributed real-time embedded system composition. In
EMSOFT ’05: Proceedings of the 5th ACM international
conference on Embedded software, pages 371–374, New
York, NY, USA, 2005. ACM Press.

[12] Object Management Group. Unified Modeling Language
(UML) v1.4, OMG Document formal/2001-09-67 edition,
Sept. 2001.

[13] D. J. Pearce and P. H. J. Kelly. A Dynamic Topological Sort
Algorithm for Directed Acyclic Graphs. Journal of
Experimental Algorithmics (JEA), 11:1.7, 2006.

[14] D. C. Schmidt. Model-Driven Engineering. IEEE Computer,
39(2):25–31, 2006.

[15] J. White, D. C. Schmidt, and A. Gokhale. Simplifying
autonomic enterprise java bean applications via
model-driven development: a case study. Journal of Software
and System Modeling, 2007.

[16] P. Zave and M. Jackson. Where Do Operations Come From?:
A Multiparadigm Specification Technique. IEEE
Transactions on Software Engineering, 22(7):508–528, July
1996.

