
Automated Diagnosis of Product-line Configuration Errors in Feature Models∗

J. White and D. C. Schmidt
Vanderbilt University, EECS Department

Nashville, TN, USA
Email:{jules, schmidt}@dre.vanderbilt.edu

D. Benavides and P. Trinidad and A. Ruiz–Cortés
Dept. of Computer Languages and Systems

University of Seville
Avda. de la Reina Mercedes s/n

B-41012 Seville, Spain
Email:{benavides, ptrinidad, aruiz}@us.es

Abstract
Feature models are widely used to model software

product-line (SPL) variability. SPL variants are config-
ured by selecting feature sets that satisfy feature model con-
straints. Configuration of large feature models can involve
multiple stages and participants, which makes it hard to
avoid conflicts and errors. New techniques are therefore
needed to debug invalid configurations and derive the min-
imal set of changes to fix flawed configurations.

This paper provides three contributions to debugging
feature model configurations: (1) we present a technique
for transforming a flawed feature model configuration into
a Constraint Satisfaction Problem (CSP) and show how a
constraint solver can derive the minimal set of feature se-
lection changes to fix an invalid configuration, (2) we show
how this diagnosis CSP can automatically resolve con-
flicts between configuration participant decisions, and (3)
we present experiment results that evaluate our technique.
These results show that our technique scales to models with
over 5,000 features, which is well beyond the size used to
validate other automated techniques.

1 Introduction
Software Product-Lines (SPLs) are a technique for creat-

ing software applications composed from reusable parts that
can be re-targeted for different requirement sets. For exam-
ple, in the automotive domain, an SPL can be created that
allows a car’s software to provide Anti-lock Braking Sys-
tem (ABS) capabilities or simply standard braking. Each
unique configuration of an SPL is called avariant.

SPL variants cannot be constructed arbitrarily,e.g., a car
cannot have both ABS and standard braking software con-
trollers. A key step in building an SPL is therefore cre-
ating a model of the SPL’s variability and the constraints
on variant configuration. An effective technique for captur-
ing these configuration constraints isfeature modeling[14],
which documents SPL variability and configuration rules

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web–Factories
(TIN2006-00472).

via features. Each feature represents an increment in prod-
uct functionality. A feature model can capture different
types of variability, ranging fromSPL variability(e.g., vari-
ations in customer requirements) tosoftware variability
(e.g., variations in software implementation)[16].

SPL variants can be specified as a selection or config-
uration of features. Feature models of SPLs are arranged
in a tree-like structure where each successively deeper level
in the tree corresponds to a more fine-grained configuration
option for the product-line variant, as shown by the feature
model in Figure 1. The parent-child and cross-tree relation-
ships capture the constraints that must be adhered to when
selecting a group of features for a variant.

Existing research has focused on ensuring that fea-
tures chosen from feature models are correct and consis-
tent with the SPL and variant requirements. For exam-
ple, work has been done on using boolean circuit satisfia-
bility techniques [15] or Constraint Satisfaction Problems
(CSPs) [7, 21] to automate the derivation of a feature set
that meets a requirement set. Numerous tools have also
been developed, such as Big Lever Software Gears [9],
Pure::variants [8], FeAture Model Analyser (FAMA) [6],
and the Feature Model Plug-in [10], to support the construc-
tion of feature models and correct selection of feature con-
figurations.

Regardless of what tools and processes are used to con-
figure SPL variants, however, there is always the possibility
that mistakes will occur. For example, large SPLs often use
staged configuration[11, 12], where features are selected in
multiple stages to form a complete configuration iteratively,
rather than choosing all features at once. At a late stage
in the configuration process, developers may realize that a
critically needed feature cannot be selected due to one or
numerous decisions in some previous stages. It is hard to
debug a configuration to figure out how to change decisions
in previous stages to make the critical feature selectable [5].

Another challenging situation can arise when multiple
participants are involved in the feature selection processand
their desired feature selections conflict. For example, hard-
ware developers for an automobile may desire a lower cost
set of Electronic Control Units (ECUs) that cannot support

1

the features needed by the software developer’s embedded
controller code. In these situations, methods are needed to
evaluate and debug conflicts between participants. Methods
are also needed to recommend modifications to the partici-
pants feature selections to make them compatible.

Although prior research has shown how to identify
flawed configurations [4, 15], conventional debugging
mechanisms cannot pinpoint configuration errors and iden-
tifying corrective actions. More specifically, techniquesare
lacking that can take an arbitrary flawed configuration and
produce the minimal set of feature selections and deselec-
tions to bring the configuration to a valid state. This paper
focuses on addressing these gaps in existing research.

Solution overview and contributions. Our approach
to debugging feature model configurations transforms an
invalid feature model configuration into a Constraint Sat-
isfaction Problem (CSP) [20] and then uses a constraint
solver to derive the minimal set of feature selection mod-
ifications that will bring the configuration to a valid state.
We call this constraint-based diagnostic approach,Config-
uration Understanding and REmedy (CURE). This paper
shows how CURE provides the following contributions to
work on debugging errors in feature model configurations:

1. We provide a CSP-based diagnostic technique, in-
spired by [19] that can pinpoint conflicts and constraint
violations in feature models

2. We show how CURE can remedy a configuration error
by automatically deriving the minimal set of features
to select and deselect

3. We provide mechanisms for using CURE to cost-
optimally mediate conflicting configuration participant
feature selection desires

4. We show how CURE allows stakeholders to debug
a configuration error or conflict from different view-
points

5. We provide empirical results showing that CURE is
scalable enough to support industrial SPL feature mod-
els containing over 5,000 features.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the challenges of diagnosing configura-
tion errors and conflicts in SPLs; Section 3 presents the
CURE CSP-based technique for diagnosing configuration
errors and conflicts; Section 4 shows how CURE can be
extended to support conflict mediation, multi-viewpoint de-
bugging, and faster diagnosis times; Section 5 presents em-
pirical results demonstrating the ability of CURE to scale to
feature models with thousands of features; Section 6 com-
pares CURE with related research; and Section 7 presents
concluding remarks.

2 Challenges of Debugging Feature Model
Configurations

This section evaluates different challenges that arise in
realistic configuration scenarios; Section 3 describes ourso-

lutions to these challenges.

2.1 Challenge 1: Staged Configuration
Errors

Staged configuration is a configuration process whereby
developers iteratively select features to reduce the variabil-
ity in a feature model until a variant is constructed. Czar-
necki et al. [11, 12] use the context of software supply
chains for embedded software in automobiles to demon-
strate the need for staged configuration. In the first stage,
software vendors provide software components that can be
provided in different configurations to actuate brakes, con-
trol infotainment systems, etc. In the second stage, hard-
ware vendors of the Electronic Control Units (ECUs) that
the software runs on must provide ECUs with the correct
features and configuration to support the software compo-
nents selected in the first stage.

The challenge with staged configuration is that feature
selection decisions made at some point in timeT have ram-
ifications on the decisions made at all points in timeT ′ > T.
For example, it is possible for software vendors to choose
a set of software component features for which there are
no valid ECU configurations in the second configuration
stage. Identifying the fewest number of configuration mod-
ifications to remedy the error is hard because there can be
significant distance betweenT andT ′.

This challenge also appears in larger models, such as
those for software to control the automation of continuous
casting in steel manufacture [17]. In large-scale models,
configuration mimics staged configuration since develop-
ers cannot immediately understand the ramifications of their
current decisions. At some later decision point, critical fea-
tures that developers need may no longer be selectable due
to some previous choice. Again, it is hard to identify the
minimal set of configuration decisions to reverse in this sce-
nario. Section 3 describes how CURE addresses this chal-
lenge.

2.2 Challenge 2: Mediating Conflicts

In many situations the desired features and needs of mul-
tiple stakeholders involved in configuring an SPL variant
may conflict. For example, when configuring automotive
systems, software developers may want a series of software
component configurations that cannot be supported by the
ECU configurations proposed by the hardware developers.
To each party, their individual needs are critical and finding
the middle ground to integrate the two is hard.

Another conflict scenario arises when configuration de-
cisions made for an SPL variant must be reconciled with
constraints of the legacy environment in which it will run.
For example, when configuring automotive software for
next year’s car model, a variant may initially be configured
to provide the most desired customer features, such as dig-
ital infotainment. New model cars are rarely complete re-
designs, however, so developers must determine out how to

2

run new software configurations on existing ECU configu-
rations from previous models. If the new software configu-
ration is not compatible with the legacy ECU configuration,
developers must derive the lowest cost set of modifications
to either the new software or the legacy ECU configuration.
Section 4.3 describes how CURE addresses this challenge
by diagnosing the superset of the desired conflicts and lever-
aging an alternate CSP optimization goal.

2.3 Challenge 3: Viewpoint-dependent
Errors

The feature labeled as the source of an error in a feature
model configuration may vary depending on the viewpoint
used to debug it. In the feature model shown in Figure 1,
for example, if a configuration is created that includes both
Non-ABS Controllerand1 Mbit/s CAN Bus, either feature
can be viewed as the feature that is the source of the er-
ror. If we debug the configuration from the viewpoint that

Figure 1: Simple Feature Model for an Automobile

software trumps ECU hardware decisions, then the1 Mbit/s
CAN Busfeature is the error. If we assume that ECU de-
cisions precede software, however, then theNon-ABS Con-
troller feature is the error.

A feature model may therefore require debugging from
multiple viewpoints since diagnosing the feature that causes
an error in a feature model depends on the viewpoint used
to debug it. For small feature models, debugging from dif-
ferent viewpoints is relatively simple. When feature models
contain hundreds or thousands of features, the complexity
of diagnosing a configuration from multiple viewpoints in-
creases greatly. Section 4.2 describes how CURE addresses
this challenge by specifying feature selections that cannot
be modified by the solver during diagnosis.

3 Configuration Error Diagnosis
Our solution approach, called Configuration Under-

standing and REmedy (CURE), is based on creating au-
tomated SPL variant diagnosis tools. Developers can use
these tools to identify the minimal set of features to select
or deselect to transform an invalid configuration into a valid
configuration. Moreover, depending on the input provided
to CURE, a flawed configuration can be debugged from dif-
ferent viewpoints or conflicts between multiple stakeholder
decisions in a configuration process can be mediated.

The key component of CURE is the application of a
CSP-based error diagnostic technique. In prior work, Be-
navides et al. [7] have shown how feature models can be
transformed into CSPs to automate feature selection with
a constraint solver [13]. Trinidad et al. [19] subsequently
described how to extend this CSP technique to identifyfull
mandatory features, void features, anddead feature mod-
els using Reiter’s theory of diagnosis [18]. This section
presents an alternate diagnostic model for deriving the min-
imum set of features that should be selected or deselected
to eliminate a conflict in a feature configuration.

3.1 Background: Feature Models and
Configurations as CSPs

A CSP is a set of variables and a set of constraints over
those variables. For example,A+ B ≤ 3 is a CSP involv-
ing the integer variablesA andB. The goal of a constraint
solver is to find a validlabeling(set of variable values) that
simultaneously satisfies all constraints in the CSP. (A = 1,
B = 2) is thus a valid labeling of the CSP.

To build the CSP for the error diagnosis technique, we
construct a set of variables,F, representing the features in
the feature model. Each configuration of the feature model
is a set of values for these variables, where a value of 1 indi-
cates the feature is present in the configuration and a value
of 0 indicates it is not present. More formally, a configura-
tion is a labeling ofF, such that for each variablefi ⊂ F ,
fi = 1 indicates that theith feature in the feature model is se-
lected in the configuration. Correspondingly,fi = 0 implies
that the feature is not selected.

Given an arbitrary configuration of a feature model as
a labeling of theF variables, developers need the ability
to ensure the correctness of the configuration. To achieve
this constraint checking ability, each variablefi is associ-
ated with one or more constraints corresponding to the con-
figuration rules in the feature model. For example, iff j is
a required subfeature offi , then the CSP would contain the
constraint:fi = 1⇔ f j = 1.

Configuration rules from the feature model are captured
in the constraint setC. For any given feature model config-
uration described by a labeling ofF , the correctness of the
configuration can be determined by seeing if the labeling
satisfies all constraints inC. A more detailed description
of the steps for transforming a feature model to a CSP are
described in [7].

3.2 Configuration Diagnostic CSP

When diagnosing configuration conflicts, developers
need a list of features that should be selected or deselected
to make an invalid configuration a valid configuration. The
output of CURE is this list of features to select and deselect,
as shown in Figure 2.

In Step 1 of Figure 2, the rules of the feature model
and the current invalid configuration are transformed into
a CSP. For example,o1 = 1 because theAutomobilefeature

3

Figure 2: Diagnostic Technique Architecture for CURE

is selected in the current invalid configuration. In Step 2,
the solver derives a labeling of the diagnostic CSP. Step 3
takes the output of the CSP labeling and transforms it into
a series of recommendations of features to select or dese-
lect to turn the invalid configuration into a valid configura-
tion. Finally, in Step 4, the recommendations are applied
to the invalid configuration to create a valid configuration
where each variablefi equals 1 if the corresponding feature
is selected in the new and valid configuration. For example,
f7 = 1, meaning that the250 Kbit/s CAN Busis selected in
the new valid configuration.

To enable the constraint solver to recommend features to
select and deselect, two new sets of recommendation vari-
ables,S andD, are introduced to capture the features that
need to be selected and deselected, respectively, to reach a
valid configuration. For example, a value of 1 for variable
si ⊂ S indicates that the featurefi should be added to the
current configuration. Similarly,di = 1 implies that the fea-
ture fi should be removed from the configuration.

Thus, for each featurefi ⊂ F, there are variablessi ⊂ S
anddi ⊂D. After the diagnosis CSP is labeled, the values of
SandD serve as the output recommendations to the user as
to what features to add or remove from the current configu-
ration, as shown in Table 1. This table shows the complete
inputs and outputs to diagnose the invalid configuration sce-
nario shown in Figure 2.

The next step is to allow developers to input their current
configuration into the solver for diagnosis. Rather than di-
rectly setting values for the variables inF , developers use a
special set of input variables called theobservations, which
are contained in the set of variablesO. For each feature

Variables
Variable Expla-
nations

fi ⊂ F : feature variables for the valid
configuration that will be transitioned
to; oi ⊂ O: the features selected (oi =
1) in the current invalid configuration;
si ⊂ S: features to select (si = 1) to
reach the valid configuration;di ⊂ D:
features to deselect (di = 1) to reach the
valid configuration

Inputs
Current Config. o1 = 1,o2 = 1,o3 = 0,o4 = 1,o5 =

1,o6 = 1,o7 = 0
Feature Model
Rules

f1 = 1⇔ (f2 = 1), f1 = 1⇔ (f5 = 1),
f2 = 1⇒ (f3 = 1)⊕(f4 = 1), f5 = 1⇒
(f6 = 1)⊕ (f7 = 1), (f6 = 1)∨ (f7 =
1) ⇒ (f5 = 1), (f3 = 1)∨ (f4 = 1) ⇒
(f2 = 1), f3 = 1⇒ (f6 = 1), f4 = 1⇒
(f7 = 1)

Diagnostic
Rules

(fi ⊂F |{(fi = 1)⇒ (oi = 1⊕si = 1)∧
(di = 0),(fi = 0)⇒ (oi = 0⊕di = 1)∧
(si = 0)})

Outputs
Features to Se-
lect

s1 = 0,s2 = 0,s3 = 0,s4 = 0,s5 =
0,s6 = 0,s7 = 1

Features to Des-
elect

d1 = 0,d2 = 0,d3 = 0,d4 = 0,d5 = 0,

d6 = 1, d7 = 0
New Valid Con-
fig.

f1 = 1, f2 = 1, f3 = 0, f4 = 1, f5 =
1, f6 = 0, f7 = 1

Table 1: Diagnostic CSP Construction

fi present in the current flawed configuration,oi = 1; if fi
is not selected in the current invalid configuration,oi = 0.
Table 1 shows how observations capture the current invalid
configuration provided as input to the solver. Observations
can also be made for a correct configuration, in which case
CURE will state that no changes are needed. The rest of
this paper assumes that the observations represent an invalid
configuration.

To diagnose the CSP, we want to find an alternate but
valid configuration of the feature model and suggest a se-
ries of changes to the current invalid configuration to reach
the valid configuration. A valid configuration is a labeling
of the variables inF (a configuration) such that all of the
feature model constraints are satisfied. For each variablefi ,
the value should be 1 if the feature is present in the new
valid configuration that will be transitioned to. If a feature
is not in the new configuration,fi should equal 0.

We always requiref1 = 1 to ensure that the root feature
is always selected. For void feature models, there will be
no valid solution and the solver will respond that no solu-
tion was found. CURE could be used to detect void feature

4

models but it would be more appropriate to use a technique
designed for this purpose, such as [19].

One key input to CURE is the CSP describing the set
of all valid feature selections from the feature model (the
Feature Model Rules in Table 1). Since these valid feature
selections are described as constraints over the variablesin
F, a valid labeling of F will always yield a valid feature
selection. Once a valid labeling ofF is found, the goal is
to determine how to modify the labeling ofO to match the
valid feature selection denoted by the labeling ofF .

First, a constraint must be introduced to model when a
feature in the current invalid configuration needs to be des-
elected to reach the correct configuration. If theithfeature is
included in the current configuration (oi = 1), but is not in
the new valid configuration (fi = 0), we want the solver to
recommend that it be deselected (di = 1). For every feature,
we introduce the following constraint to determine if theith
feature inO needs to be deselected1:

(fi = 0) ⇒ (oi = 0⊕di = 1)∧ (si = 0)

If fi is not selected in the correct configuration (fi = 0),
then either the feature was also not selected in the current
invalid configuration (oi = 0), or the feature needs to be de-
selected (di = 1). Furthermore, if a feature is not needed in
the valid configuration (fi = 0) then clearly it should not be
a recommended selection (si = 0).

The solver must also recommend features to select. If the
ith feature is selected in the correct and valid configuration
fi = 1, and not selected in the current invalid configuration
(oi = 0), then it needs to be selected (si = 1). For each
feature, we introduce the constraint:

(fi = 1) ⇒ (oi = 1⊕si = 1)∧ (di = 0)

If a feature is needed by the correct configuration (fi =
1), then either the feature was present in the invalid config-
uration (oi = 1) or the feature was not present in the invalid
configuration and needs to be selected (si = 1). Clearly, a
feature should not be deselected iffi = 1 and thusdi = 0.

The state of each feature,oi , in the current invalid config-
uration is compared against the correct state of the feature,
fi , in the valid feature configuration. The behavior of each
comparison can fall into four cases:

1. A feature is selected and does not need to be dese-
lected. If the ith feature is in the current invalid config-
uration (oi = 1), and also in the new valid configuration
(fi = 1), no changes need be made to it (si = 0, di = 0)

2. A feature is selected and needs to be deselected.If
the ith feature is in the current invalid configuration
(oi = 1) but not in the new valid configuration (fi = 0),
it must be deselected (di = 1)

1The symbol "⊕" denotesexclusive or

3. A feature is not selected and does not need to be
selected.If the ith feature is not in the current invalid
configuration (oi = 0) and is also not needed in the new
configuration (fi = 0) it should remain unchanged (si =
0, di = 0)

4. A feature is not selected and needs to be selected.
If the ith feature is not selected in the current invalid
configuration (oi = 0) but is present in the new correct
configuration (fi = 1), it must be selected (si = 1)

3.3 Optimal Diagnosis Method

The next step in the CURE diagnosis process is to use
the solver to label the variables and produce a series of rec-
ommendations. For any given configuration with a conflict,
there may be multiple possible ways to eliminate the prob-
lem. For example, in the automotive example from Sec-
tion 2.3, the valid corrective actions were either (1) remove
the 1 Mbit/s CAN Busand select the250 Kbit/s CAN Bus
or (1) remove theNon-ABS Controllerand select theABS
Controller. We must therefore tell the solver how to select
which of the (many) possible corrective solutions to suggest
to developers.

The most basic suggestion selection criteria developers
can use to guide the solver’s diagnosis is to tell it to mini-
mize the number of changes to make to the current configu-
ration, i.e., prefer suggestions that require changing as few
things as possible in the current invalid configuration. To
implement this approach, we solve for a CSP labeling that
minimizes the sum of variables inS∪D, which is the total
number of changes that the solution requires the developer
to make. By minizing this sum we therefore minimize the
total number of required changes.

Each labeling of the diagnostic CSP will produce two
sets of features corresponding to the features that should be
selected (S) and deselected (D) to reach the new valid con-
figuration. Developers can ask the solver to cycle through
the different potential labelings of the diagnostic CSP to
evaluate potential remedies. Furthermore, each new label-
ing (new diagnosis) also causes the solver to backtrack and
create new values forF , which allows developers to evalu-
ate not only the suggested modifications but the configura-
tion that the remedy will produce. Another way to further
refine the guidance for the diagnosis is to constrain the new
state captured in the labeling ofF . This technique is utilized
by the extensions in Sections 4.2 and 4.3.

Table 1 shows a complete set of inputs and output sug-
gestions for diagnosing the automotive software example
from Section 2.3. If there are multiple labelings of the CSP,
initially only one will be returned. After the first solution
has been found, however, the solver can much more effi-
ciently cycle through the other equally ranked sets of cor-
rective suggestions.

5

4 Solution Extensibility and Benefits
This section presents different benefits of CURE and

possible ways of extending it.

4.1 Bounding Diagnostic Method

Due to time constraints, it may not be possible to find the
optimal number of changes for extremely large feature mod-
els. In these cases, a more scalable approach is to attempt
to find any suggestion that requires fewer thanK changes or
with a cost less thanK. Rather than directly asking for an
optimal answer, we add the following constraint to the CSP
and ask the solver for any solution:

n

∑
i=1

si +di ≤ K

The sum of all variablessi ⊂ Sanddi ⊂ D represents the
total number of feature selections and deselections that need
to be made to reach the new valid configuration. Therefore,
the sum of both of these sets is the total number of modifica-
tions that must be made to the original invalid configuration.
The new constraint, ensures that the solver only accepts di-
agnosis solutions that require the developer to makeK or
fewer changes to the invalid solution.

The solver is asked forany answer that meets the new
constraints. In return, the solver will provide a solution that
is not necessarily perfect, but which fits our tolerance for
change. If no solution is found, we can incrementK by a
factor and re-invoke the solver or reassess our requirements.
As is shown in Section 5.4, searching for a bounded solution
rather than an optimal solution is significantly faster.

If the solver cannot find a diagnosis that makes fewer
thanK modifications, it will state that there is no valid so-
lution that fits aK change budget.

4.2 Debugging from Different Viewpoints

As we discussed in Section 2.3, we need the ability to
debug the configuration from different viewpoints. Each
viewpoint represents a set of features that the solver should
avoid suggesting to add or remove from the current config-
uration. For example, using the automobile scenario from
Section 2.3, the solver can debug the problem from the point
of view that hardware decisions trump software by telling
the solver not to suggest selecting or deselecting any hard-
ware features.

Debugging from a viewpoint works by pre-assigning val-
ues for a subset of the variables inF andO. For example,
to force the featurefi currently in the configuration to re-
main unaltered by the diagnosis, the valuesfi = 1 andoi = 1
are provided to the solver. Since(fi = 1) ⇒ (oi = 1⊕si =
1)∧(di = 0), pre-assigning these values will force the solver
to labelsi = 0 anddi = 0.

To debug from a given point of view, for each feature
fv, in that viewpoint, we first add the constraints,fv = 1,
ov = 1, sv = 0, anddv = 0, as shown in Figure 3. The

Figure 3: Debugging from a Viewpoint

solver then derives a diagnosis that recommends alterations
to other features in the configuration and maintains the state
of each featurefv. The CURE diagnostic model can there-
fore be used to debug from different viewpoints and address
Challenge 3 from Section 2.3.

Pre-assigning values for variables inF andO can also be
used to debug staged configuration errors from Challenge
1, Section 2.1. With staged configuration errors, at some
point in timeT ′, developers need to select a feature that is
in conflict with one or more features selected at timeT <

T ′. To debug this type of conflict, developers pre-assign the
desired (but currently unselectable) feature at timeT ′ the
value of 1 for itsoi and fi variables. Developers can also
pre-assign values for one or more other features decisions
from previous stages of the configuration that must not be
altered. The solver is then invoked to find a configuration
that includes the desired feature atT ′ and minimizes the
number of changes to feature configuration decisions that
were made at all points in timeT < T ′.

4.3 Cost Optimal Conflict Resolution
As shown in Section 2.2, conflicts can occur when mul-

tiple stakeholders in a configuration process pull the solu-
tion in different directions. Debugging tools are therefore
needed to mediate the conflict in a cost conscious manner.
For example, when a car’s software configuration is incom-
patible with the legacy ECU configuration, it is (probably)
cheaper to change the software configuration than to change
the ECU configuration and the assembly process of the car.
The solver should therefore try to minimize the overall cost
of the changes.

We can extend the CSP model to perform cost-based fea-
ture selection and deselection optimization. First, we extend
the CURE model to associate a cost variable,bi ⊂ B, with
each feature in the feature model. Each cost variable rep-
resents how expensive (or conversely how beneficial) it is

6

Figure 4: Constructing the Feature Selection Superset for Conflict Mediation

for the solver to recommend that the state of that feature be
changed. Before each invocation of the debugger, the stake-
holders provide these cost variables to guide the solver in
its recommendations of features to select or deselect.

Next, we construct the superset of the features that the
various stakeholders desire, as shown in Figure 4. The su-
perset represents the ideal, although incorrect, configuration
that the stakeholders would like to have. The goal is to find
a way to reach a correct configuration from this superset of
features that involves the lowest total cost for changes. The
superset is input to the solver as values for the variables in
O.

Finally, we alter our original optimization goal so that
the solver will attempt to minimize (or maximize) the cost
of the features it suggests selecting or deselecting. We de-
fine a global cost variableG and letG capture the sum of
the costs of the changes that the solver suggests:

G =
n

∑
i=1

(di ∗bi)+ (si ∗bi)

G is thus equal to the sum of the costs of all features that the
solver either recommends to select or deselect. Rather than
instructing the solver to minimize the sum ofS∪D, we ask
it to minimize or maximizeG.

The result of the labeling is a series of changes needed to
reach a valid configuration that optimally integrates the de-
sires and decisions of the various stakeholders. Of course,
one particular stakeholder may have to incur more cost than
another in the interest of reaching a globally better solution.
Further constraints, such as limiting the maximum differ-
ence between the cost incurred by any two stakeholders,
could also be added. The mediation process can be tuned to
provide numerous types of behavior by providing different
optimization goals. This CSP diagnostic method enables
CURE to address Challenge 2 from Section 2.2.

5 Empirical Results
Effective automated diagnostic methods should scale to

handle feature models of production systems. This section

presents empirical results from experiments we performed
to evaluate the scalability of CURE. We compare the scala-
bility of both CURE’s optimal and bounding methods from
Sections 3.3 and 4.1.

5.1 Experimental Platform

To perform our experiments, we used the implementa-
tion of CURE that is provided by the Model Intelligence li-
braries from the Eclipse Foundation’s Generic Eclipse Mod-
eling System (GEMS) project [3]. Internally, the GEMS
Model Intelligence implementation of CURE uses the Java
Choco Constraint Solver [1] to derive labelings of the diag-
nostic CSP. The experiments were performed on a computer
with an Intel Core DUO 2.4GHZ CPU, 2 gigabytes of mem-
ory, Windows XP, and a version 1.6 Java Virtual Machine
(JVM). The JVM was run in client mode using a heap size
of 40 megabytes (-Xms40m) and a maximum memory size
of 256 megabytes (-Xmx256m).

A challenging aspect of the scalability analysis is that
CSP-based techniques can vary in solving time based on
individual problem characteristics. In theory, CSP’s have
exponential worst case time complexity, but are often much
faster in practice. To evaluate CURE, therefore, it was nec-
essary to apply it to as many models as possible. The key
challenge with this approach is that hundreds or thousands
of real feature models are not readily available and manu-
ally constructing them is impractical.

To provide the large numbers of feature models needed
for our experiments, therefore, we built a feature model
generator that randomly creates feature models with the de-
sired branching and constraint characteristics. We also im-
bued the generator with the capability to generate feature
selections from a feature model and probabilistically insert
a bounded number of errors/conflicts into the configuration.
The feature model generator and code for these experiments
is available in open-source form from [2].

From preliminary feasibility experiments we conducted,
we observed that the branching factor of the tree had lit-
tle effect on the algorithm’s solving time. We also com-
pared diagnosis time using models with 0%, 10%, and 50%

7

cross-tree constraints and saw that the each increment in
the percentage of cross-tree constraints improved perfor-
mance. For example, with the optimal method and 1,000
feature models, the average diagnosis time gradually de-
creased from 47 seconds with 0% cross-tree constraints to
36 seconds with 50% cross-tree constraints. The key indi-
cator of the solving complexity was the number of XOR-
or cardinality-based feature groups in a model. XOR and
cardinality-based feature groups are features that require the
set of their selected children to satisfy a cardinality con-
straint (the constraint is 1..1 for XOR).

For our tests, we limited the branching factor to at most
five subfeatures per feature. We also set the probability
of XOR- or cardinality-based feature groups being gener-
ated to 1/3 at each feature with children. We chose 1/3
since most feature models we have encountered contain
more required and optional relationships than XOR- and
cardinality-based feature groups. The total number of cross-
tree constraints was set at 10%. We also eliminated all di-
agnosis results from void feature models, since void feature
models produced faster diagnostic times and would have
skewed the results towards smaller solving times.

To generate feature selections with errors, we used a
probability of 1/50 that any particular feature would be con-
figured incorrectly. For each model, we bounded the to-
tal errors at 5. In our initial experiments, the solving time
was not affected by the number of errors in a given feature
model. Again, the prevalence of XOR- or cardinality-based
feature groups was the key determiner of solving time.

5.2 Bounding Method Scalability

First, we tested the scalability of the less computation-
ally complex bounding diagnosis method. The speed of the
bounding technique allowed us to test 2,000 feature models
at each data point (2,000 different variations of each size
feature model) and test the bounding method’s scalability
for feature models up to 500 features. With models above
500 features, we had to reduce the number of samples at
each size to 200 models due to time constraints. Although
these samples are small, they demonstrate the general per-
formance of our technique. Moreover, the results of our
experiments with feature models up to 500 features were
nearly identical with sample sizes between 100 and 2,000
models.

Figure 5 shows the time required to diagnose feature
models ranging in size from 50 to 500 features using the
bounded method. The figure captures the worst and average
solving time in the experiments. As seen from the results,
our technique could diagnose 500 feature models in an av-
erage of≈300ms.

The upper bound used for this experiment was a max-
imum of 10% feature selection changes. When the fea-
ture bound was too tight for the diagnosis (i.e., more were
needed to reach a correct state) the solver quickly declared

there was no valid solution. We therefore discarded all in-
stances where the bound was too tight to avoid skewing the
results towards shorter solving times.

Figure 5 shows the results of testing the solving time of
the bounding method on feature models ranging in size from
500 to 5,000 features.

Figure 5: Diagnosis Time for Both Methods for Large Fea-
ture Models

Models of this size were sufficient to demonstrate scal-
ability for common production systems. The results show
that for a 5,000 feature model, the average diagnosis time
was≈ 50 seconds.

Another key variable we tested was how the tightness
of the bound on the maximum number of feature changes
affected the solving time of the technique. We took a set
of 200 feature models and applied varying bounds to see
how the bound tightness affected solution time. Figure 6
shows that tighter bounds produced faster solution times.
These results indicate that tighter bounds allow the solver

Figure 6: 500 Feature Diagnosis Time with Bounding
Method and Varying Bounds

to discard infeasible solutions more quickly and thus arrive
at a solution faster.

5.3 Optimal Method Scalability

Next, we tested the scalability of the optimal diagnosis
method using 2,000 samples below 500 features and 200
samples for all larger models. Figure 5 shows the results
from feature models up to 500 features. At 500 features,
the optimal method required an average of∼1.5 seconds
to produce a diagnosis. Figure 5 also shows the tests from

8

larger models ranging in size up to 5,000 features. For a
model with 5,000 features, the solver required an average
of ∼3 minutes per diagnosis.

5.4 Comparative Analysis of Optimal and
Bounding Methods

Finally, we compared the scalability and quality of re-
sults produced with the two methods. Figure 5 shows the
bounding method performs and scales significantly better
than the optimal method. For feature models of up to 1,000
features, however, both techniques take less than 5 seconds
and the optimal method is the better choice. This result
raises the question of how much of a tradeoff in solution
quality for speed is made when the bounding method is used
over the optimal method for larger models.

The bound that is chosen determines the quality of the
solution that is produced by the solver. The optimality of a
diagnosis given by the bounding method is the number of
changes suggested by the bounding method,Bounded(S∪
D), divided by the optimal number of changes,Opt(S∪D),

which yieldsBounded(S∪D)
Opt(S∪D) . Since the bounding method uses

the constraint(S∪D)≤ K to ensure that at mostK changes
are suggested, we can state the worst case optimality of the
bounded method as K

Opt(S∪D)
. The closer our bound,K, is to

the true optimal number of changes to make, the better the
diagnosis will be.

Since tighter bounds produce faster solving timesand
better results, debuggers should start with very small
bounds and iteratively increase them upward as needed.
One approach is to layer an adaptive algorithm on top of the
diagnosis algorithm to move the bound by varying amounts
each time the bound proves too tight. Another approach is
to employ binary search to hone in on the ideal bound. We
will investigate both techniques in future work.

5.5 Debugging Scenarios

Staged configuration and viewpoint debugging (Chal-
lenges 1 & 3) are special cases of the technique where the
solver is not allowed to modify the selection state of one
or more features (i.e., the viewpoint or the feature at time
T ′). Both of these special cases of debugging actually re-
duce the search space by fixing values for one or more of
the CSP variables. For example, performing staged config-
uration debugging, which fixes the value for one CSP vari-
able, on a model with 1,000 features, reduced the optimal
method’s average solving time by≈ 2.5 seconds and the
bounding method by≈ .1 seconds.

Cost-based conflict mediation (Challenge 2) performs
identically to the standard diagnosis technique. Cost-based
mediation merely introduces a series of coefficients,bi ⊂ B
into the optimization goal. These coefficients do not in-
crease solving time. Furthermore, initiating the diagnosis
method with the superset of the configuration participants’
desired feature selections also did not impact performance.

6 Related Work
In prior work [19], Trinidad et al. have shown how fea-

ture models can be transformed into diagnosis CSPs and
used to identifyfull mandatory features, void features, and
dead feature models[19]. Developers can use this diagnos-
tic capability to identify feature models that do not accu-
rately describe their products and to understand why not.
The technique we described in this paper builds on this idea
of using a CSP for automated diagnosis. Whereas Trinidad
focuses on diagnosing feature models that do not describe
their products, we build an alternate diagnosis model to
identify conflicts in feature configurations. Moreover, we
provide specific recommendations as to the minimal set of
features that can be selected or deselected to eliminate the
error.

Batory et al. [4] also investigated debugging techniques
for feature models. Their techniques focus on translat-
ing feature models into propositional logic and using SAT
solvers to automate configuration and verify correctness of
configurations. In general, their work touches on debugging
feature models rather than individual configurations. Our
approach focuses on another dimension of debugging, the
ability to pinpoint errors in individual configurations and
to specify the minimal set of feature selections and des-
elections to remove the error. Furthermore, propositional
logic-based approaches do not typically provide maximiza-
tion or minimization as primitive functions provided by the
solver. Since, CURE uses a CSP-based approach, mini-
mization/maximization diagnosis functionality is built-in.

Mannion et al. [15] present a method for encoding
feature models as propositional formulas using first-order
logic. These propositional formulas can then be used to
check the correctness of a configuration. Mannion, how-
ever, does not touch on how incorrect configurations are de-
bugged. In contrast, our technique provides this capability
and can therefore recommend the minimal feature modifi-
cations to rectify the problem.

Pure::variants [8], Feature Modeling Plugin (FMP) [10],
FeAture Model Analyser (FAMA) [6], and Big Lever Soft-
ware Gears [9] are tools developed to help developers create
correct configurations of SPL feature models. These tools
enforce constraints on modelers as the features are selected.
None of these tools, however, addresses cases where feature
models with incorrect configurations are created and require
debugging. The technique described in this paper provides
this missing capability. These tools and our approach are
complementary since the tools help to ensure that correct
configurations are created and our technique diagnoses in-
correct configurations that are built.

7 Concluding Remarks
It is hard to debug conflicts and errors in large feature

models created through staged or multi-stakeholder config-
uration [5]. This paper described a technique, called CURE,

9

that uses CSPs to diagnose errors and conflicts in configu-
rations. CURE’s diagnoses can specifically recommend the
minimum or cost optimal set of features that should be se-
lected or deselected in a faulty configuration.

CURE’s CSP-based diagnosis model is extensible and
can be modified to perform conflict mediation, run faster,
or debug from different viewpoints. Moreover, empirical
results show CURE can scale to production feature models
with 5,000 features and still provide a diagnosis in between
45 seconds and 4 minutes. These time bounds should be
sufficient for the design-time use of this algorithm.

The following are lessons learned from our efforts:
• CURE can scale to feature models with several thou-

sand features.
• The optimality of the diagnosis provided by the bound-

ing method is determined by how closeK is set to
the true minimum number of features that need to be
changed to reach a valid state. Setting an accurate
bound forK is not easy. In future work, we plan to
investigate different methods of honing the boundary
used in the bounding method.

• The same CSP can often be stated in multiple ways.
Different formulations can yield different performance
characteristics. In future work, we intend to see if it
is possible to vary the diagnosis CSP formulation and
show that the technique can scale to even larger models
while still providing reasonable runtimes.

The diagnosis technique has been implemented as part of
the GEMS EMF Intelligence project and is available from
www.eclipse.org/gmt/gems. We intend to integrate this
technique into the FAMA tool [6] as well.

References

[1] Choco constraint programming system.
http://choco.sourceforge.net/.

[2] Experimental platform,
http://www.dre.vanderbilt.edu/˜jules/splc08.zip.

[3] Generic eclipse modeling system (gems)
http://eclipse.org/gmt/gems.

[4] D. Batory. Feature Models, Grammars, and Prepositional
Formulas.Software Product Lines: 9th International
Conference, SPLC 2005, Rennes, France, September 26-29,
2005: Proceedings, 2005.

[5] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated
analysis of feature models: Challenges ahead.
Communications of the ACM, December, 2006.

[6] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés.
FAMA: Tooling a framework for the automated analysis of
feature models. InProceeding of the First International
Workshop on Variability Modelling of Software-intensive
Systems (VAMOS), 2007.

[7] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated
Reasoning on Feature Models.17th Conference on
Advanced Information Systems Engineering (CAiSE05,
Proceedings), LNCS, 3520:491–503, 2005.

[8] D. Beuche. Variant Management with Pure:: variants.
Technical report, Pure-Systems GmbH,
http://www.pure-systems.com, 2003.

[9] R. Buhrdorf, D. Churchett, and C. Krueger. Salion’s
Experience with a Reactive Software Product Line
Approach. InProceedings of the 5th International
Workshop on Product Family Engineering, Siena, Italy,
November 2003.

[10] K. Czarnecki, M. Antkiewicz, C. Kim, S. Lau, and
K. Pietroszek. InFMP and FMP2RSM: Eclipse Plug-ins for
Modeling Features Using Model Templates, pages 200–201.
ACM Press New York, NY, USA, October 2005.

[11] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
Configuration Using Feature Models.Software Product
Lines: Third International Conference, SPLC 2004, Boston,
MA, USA, August 30-September 2, 2004: Proceedings,
2004.

[12] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration through specialization and multi-level
configuration of feature models.Software Process
Improvement and Practice, 10(2):143–169, 2005.

[13] J. Jaffar and M. Maher. Constraint Logic Programming: A
Survey.constraints, 2(2):0.

[14] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
FORM: A Feature-Oriented Reuse Method with
Domain-specific Reference Architectures.Annals of
Software Engineering, 5(0):143–168, January 1998.

[15] M. Mannion. Using first-order logic for product line model
validation.Proceedings of the Second International
Conference on Software Product Lines, 2379:176–187,
2002.

[16] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of variability
in software product lines: A separation of concerns,
formalization and automated analysis. InRequirements
Engineering Conference, 2007. RE ’07. 15th IEEE
International, pages 243–253, 2007.

[17] R. Rabiser, P. Grunbacher, and D. Dhungana. Supporting
Product Derivation by Adapting and Augmenting
Variability Models.Software Product Line Conference,
2007. SPLC 2007. 11th International, pages 141–150, 2007.

[18] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57–95, 1987.

[19] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and
M. Toro. Automated error analysis for the agilization of
feature modeling.Journal of Systems and Software, in
press, 2007.

[20] P. Van Hentenryck.Constraint Satisfaction in Logic
Programming. MIT Press Cambridge, MA, USA, 1989.

[21] J. White, K. Czarnecki, D. C. Schmidt, G. Lenz,
C. Wienands, E. Wuchner, and L. Fiege. Automated
Model-based Configuration of Enterprise Java Applications.
In The Enterprise Computing Conference, EDOC,
Annapolis, Maryland USA, October 2007.

10

