
CS 215: Intermediate Software Design

Programming Assignment Three
Part 1 due Wednesday, April5th; 2006
Part 2 due Wednesday, April12th; 2006
Part 3 due Wednesday, April19th; 2006
Part 4 due Wednesday, April26th; 2006

Problem Statement

In this programming assignment you will implement a system sort utility that contains a fully optimized
quick sortalgorithm. This system sort utility will give you a chance to apply many patterns and reusable
components that we covered in class.

Part One

The heart of this assignment is thesort() function, which you must write. In part one, you will implement
a genericsort() template function using C++ templates. The interface for this function should look as follows:

// Sort <array> in place.
// ARRAY::size() determines the length of <array>.
// ARRAY::operator[] to get/set array values
// ARRAY::TYPE defines array elements and temporary variables.
// ARRAY::TYPE operator< orders the data.

template <class ARRAY>
void sort (ARRAY &array);

You can use your generic sort routine in conjunction with the genericArray class you wrote earlier in
the semester as follows:

{
Array<int> int_array (10);
Array<double> double_array (100);
Array<Employee> employee_array (1000);

// Randomly initialize int_array and double_array.
init (int_array, double_array, employee_array);

// Make copies.
Array<int> int_copy (int_array);
Array<double> double_copy (double_array);
Array<Employee> employee_copy (employee_array);

sort (int_array);
sort (double_array);
sort (employee_array);

// Print the output and make sure it’s sorted.
}

You should use insertion sort since it’s very simple and you’ll need it for part two. If you’re having
problems understanding how the templatizedsort() function works, I recommend that you write a non-
templatizedsort() function first, which just sorts and array of integers,i.e.,



// Sort <array> in place.
void sort (Array<int> &array);

and then generalize it so that it works properly with theARRAYtemplate described above.
If you finish this section early I strongly suggest that you start on part 2 since it will require much more

effort to complete.

Part Two

In part two, you will modify yoursort() function to implementquick sort. Quick sortis a comparison
and exchange sort that has an average case running time ofO(nlogn). Thequick sortalgorithm can be found
in most algorithm and data structure textbooks, as well as via online search engines.

In addition to being correct, your solution must also implement the followingfour optimizations to the
basicquick sortalgorithm:

� Use an explicit stack: Use an explicit stack, rather than recursive procedure calls, to store unsorted
(LO, HI) pairs. This reduces the overhead associated with recursive calls.

� GuaranteeO(logn) stack utilization: pushthe larger of the 2 partitions onto the stack, and always
sort the smaller partition first. This guarantees an upper limit ofO(logn) stack space required for the
algorithm. Your stack should have the following interface:

template <class T, size_t SIZE>
class Fixed_Stack
{
public:

Fixed_Stack (void);
// ... typical push()/pop() operations

private:
size_t top_;
T stack_[SIZE];

};

This “fixed sized stack” can be a variant of theAStack you implemented in programming assignment 2,
with an addtional optimization for the fact that you needn’t have more thanlog2 (BITS (sizeof
(size t))) elements on the stack. To make your code portable, therefore, you need to parameterize
yourFixed Stack using theBITS (sizeof (size t)) macro from/usr/include/values.h
on UNIX. Those of you using Windows will need to include the following in your program somewhere:

#define BITSPERBYTE 8

#define BITS(type) (BITSPERBYTE * (long)sizeof (type))

� Use median-of-3 pivot selection: Choose the median-of-3 pivot element for the partition phase. This
decreases the likelihood of consistently picking the worst pivot value. Note that the pivot selection
strategy is likely to change, so design your program accordingly, i.e., using the Strategy pattern we
discussed in class.

� Use insertion sort for small items: The overhead associated withquick sortincreases as the partition
size becomes very small.1 Thus, discontinue partition ordering once the size of the partition falls below

1This is especially true of recursive implementations.



some pre-determined limit (e.g., 10 elements). This will result in a collection of partitions that are
unsorted within a partition and ordered between partitions. Use a single cleanup pass usinginsertion
sort to finish sorting the data.Insertion sortworks well on data that is almost completely sorted.

If you finish this section early I strongly suggest that you start on part 3 since it will require substantially
more time that the first two parts.

Extra Capabilities for CS 291 Students
If you are signed up for CS 291 please add the following extension to the original assignment:

1. Add a second “function object” generic parameter to thesort() function that definesoperator()
and can be used to control whether the sorting is done in ascending or descending order. This should
work similar to theless andgreater function objects in STL,e.g.,

// Sort in descending order: note explicit ctor for greater
sort (int_array, greater<int> ());

// Sort in ascending order: note explicit ctor for greater
sort (double_array, less<double> ());

By default, yoursort() function should use theless function object.

Part Three

Your system sort utility should be able to process its input data very efficiently. In particular, it should
perform the minimal number of dynamic allocations for theentiredata stream from stdin. To implement this
you’ll need to create anInput class that reads an arbitrarily long sequence of characters fromstdin or cin
and returns a copy of these characters as a dynamically-allocated buffer. The trick to making this work is to
define a recursive helper method that stores fixed portions of the input stream on the run-time stack. The class
handouts describes the interface for theInput class and outlines how it works.

Part Four

Use thesort() function you wrote for part 1 and part 2 in conjunction with the reusableInput class
you wrote for part 3 to write a general-purpose system sort utility that sorts all lines from stdin and writes the
result to stdout. A line is a sequence of characters terminated by a newline. Your sort utility will therefore
need to sort an input sequence consisting of an array of characters.

The following is the programmer’s manual page for your system sort utility, which is inspired by the Linux
system sort utility. Your solution must support the options described below and provideat leastthis level of
functionality.

SORT(1) CS242/291 Programmer’s Manual SORT(1)

NAME
sort - sort a file

SYNOPSIS
sort [-c<num> -k<num> -f -n -r -t<char>]

DESCRIPTION
Sort sorts lines from stdin and writes the result to stdout.

Default sort key is an entire line, which is a sequence of
characters terminated by a newline. Default ordering is
lexicographic by bytes in machine collating sequence. The



ordering is affected globally by the following options, one or
more of which may appear. All options are prefixed by the ’-’
delimiter.

f Fold upper case letters onto lower case (i.e. ignore case).

n A numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is
sorted by arithmetic value.

r Reverse the sense of comparisons (i.e., sort by descending
rather than ascending order).

k Begin sorting at specified key <num>. Fields are nonempty
nonblank strings separated by the field separator character (see
the following option).

t Specifies the field separator character, which defaults to ’ ’
(ASCII blank).

c Begin sorting at the specified column <num> (range starts at 1)
There must be NO space after the ’c’ and before the column number.
If this option is specified along with the field option (-k),

then the designated column is treated as the starting point
within the designed field.

EXAMPLES
Print in reverse numerical order the contents of the sixth field of each
line in the file.

sort -r -n -k6 < file

Print in alphabetical order treating the 10th column as the beginning of
the sort key. Capitalized words do not differ from uncapitalized.

sort -f -c10 < file

BUGS
Strictly an "in memory sort"; only deals with fixed sized files of input
that do not exceed the internal buffer sizes.

Implementation Issues for Part 4

The following are implementation issues you’ll need to consider when implementing part 4 of this assign-
ment.

� Building an Access Table– Another key abstraction you’ll need for part 4 of this program is an
Access Table class. This class is an adapter for the type parameter expected by thesort() func-
tion you developed in parts 1 and 2. TheAccess Table stores all the character data received from
stdin by theInput class,2. In addition, theAccess Table also contains anArray that stores the
beginning of each “line” from the stdin. The reason for this scheme is to save time and space by al-
lowing efficient storage of variable length lines, as well as to permit fast swapping of lines by simply
exchangingArray entries (which point to lines in theAccess Table buffer) rather than copying the
lines themselves.

2Hint, translate all newlines into the ASCIINUL character.



� Precomputing the Access Table offsets– In addition to storing the beginning of a line, theAccess Table
Array also stores the beginning field where the comparison takes place. The functionality of this sys-
tem sort derives from its ability to specify sort keys starting at certain fields and columns.3 To save time
during later phases of the sort, the offset of the beginning field is pre-computed when the data is initially
read into theAccess Table . All comparisons of lines made by thesort() function begin with the
starting field (which may or may not be different from the start of the line).

� Developing I/O adapters– The trick to making all this work is to define an implementation of global
operator <(const Array Adapter &, const Array Adapter &) thatadaptsthe inter-
face expected by thesort routine to an interface that supports the flexible comparison and exchange
functionality provided by theAccess Table . In this case, whereArray Adapter is theTYPEof
the classArray <T> that sort sees by usingARRAY::TYPE.

We will discuss the various issues and the design patterns that can be applied to address them in class
based on class handouts.

3See the manual page shown above for details.


