
Scheduling Time-bounded Dynamic Software Adaptation

Serena Fritsch, Aline Senart Douglas C. Schmidt Siobhán Clarke
Lero

Distributed Systems Group Institute for Software Integrated Systems (ISIS) Distributed Systems Group
Trinity College Dublin Vanderbilt University Trinity College Dublin

Dublin, Ireland Terrace Place, USA Dublin, Ireland
fritschs, senarta@cs.tcd.ie d.schmidt@vanderbilt.edu sclarke@cs.tcd.ie

ABSTRACT

Component-based software increasingly needs dynamic adap-
tation to support applications in domains such as automo-
tive, avionics or robotic systems. Dynamic software adapta-
tion involves both the integration of new, previously unan-
ticipated features and the update of existing features with-
out requiring system downtime. Software adaptations must
often be time-bounded, e.g., due to mobility constraints. In-
consistent or inaccurate behaviour may result from an adap-
tation that does not complete within specified time con-
straints. Service providers must therefore take time con-
straints into account when scheduling adaptation actions.
This paper describes an algorithm for time-bounded schedul-
ing of adaptation actions and demonstrates the validity of
its results.

Categories and Subject Descriptors

D11 [Software/Software Engineering]: Software Archi-
tectures

General Terms

Algorithms

Keywords

Dynamic Software Adaptation, Timeliness, Scheduling algo-
rithm

1. INTRODUCTION
Emerging trends and challenges. Next-generation

embedded systems in domains such as automotive, avionics
or robotics need to adapt swiftly to changing environmen-
tal conditions [12]. In prior work [10] we have shown that
these systems require varying levels of support for dynamic
adaptation, ranging from limited support for fault tolerance
in safety-critical systems, to dynamic adaptation of resource

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS’08,May 12–13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-037-1/08/05 ...$5.00.

allocation in avionic systems, to content adaptation in multi-
media based systems, and to runtime adaptation of software
in component-based driver information systems.

In this paper, we focus on one type of software adaptation
called compositional adaptation, which allows the dynamic
integration and exchange of features and resulting applica-
tion behaviour at runtime [14]. Previously unanticipated or
updated features can be integrated into running systems in
response to external triggers, making these systems more
flexible and maintainable [15].

Software adaptations are often triggered when a server
that provides features is in close range. Since a server may
potentially handle thousands of requests concurrently—and
has knowledge of all feature characteristics it supports—it
can decide which adaptation actions to execute based on the
requester’s current configuration [19]. Adaptation actions
include the installation or upgrade of features.

Additionally, software adaptations must often be time-
bounded, e.g., due to mobility constraints. For example, a
plugin to the driver information system can only be down-
loaded when the vehicle is in the vicinity of a server provid-
ing this plugin. Since the vehicle is moving, however, this
download and integration must be executed before the vehi-
cle is out of communication range from the server. Likewise,
adaptations should minimise software update time to ensure
that software applications and data are fully integrated into
vehicles before they are used [10]. An adaptation that is out
of its time bound may result in inconsistent or inaccurate
behaviour. For example, the installation of a newer fea-
ture indicating gas stations on the managed highway should
be installed before the vehicle actually enters the highway.
The decision process that schedules the adaptations is also
affected by time constraints as the more time is spent on
adaptation scheduling, the less time is left to perform the
adaptations.

Adaptations can also be constrained by other factors, such
as priorities, dependencies and code features versions. For
example, high-priority features, such as security patches,
should be adapted before low-priority features, such as movie
clips. Likewise, dependencies between features can affect
adaptation since adapting one feature can require an update
or installation of other features, e.g., adding a gas station
feature might require an update of a map feature. The ver-
sion of a feature might require the update of other features,
and some platforms may support only specific versions of
features. Also, it might be not possible to download and in-
tegrate all necessary plugins because of a vehicle’s memory
limitations.

Solution approach → Constraint-based Scheduling
of Adaptation Actions This paper describes a constraint-
based algorithm that schedules adaptation actions that can
be executed by a service provider. This algorithm takes
time constraints into account, by maximising the amount
of features that can be adapted within a given time on a
software platform. Moreover, the algorithm considers con-
straints, such as limited memory and feature importance.

The algorithm works as follows:

1. It assumes features are ranked in an ordered list via
certain criteria, such as priorities and amount of de-
pendencies or memory size.

2. The ordered list of features is obtained by applying
weighted functions on the features’ properties, e.g.,
priority and size. The ordering is not statically defined
but dynamically assessed to better reflect the current
requester’s constraints.

3. The algorithm iterates linearly through the ordered
list of code features and schedules all code features for
adaptation possible within a given time bound.

Paper organisation. The remainder of this paper is
organised as follows: Section 2 motivates our work with a
scenario from the automotive domain; Section 3 describes
the algorithm in detail and introduces our system model;
Section 4 discusses key design challenges and their solu-
tions; Section 5 shows some evaluation results of our ap-
proach; Section 6 compares our approach with related work
on scheduling and code distribution; and Section 7 presents
concluding remarks.

2. MOTIVATING SCENARIO
To motivate the need for time-bounded scheduling of adap-

tation actions, this section describes a scenario from the au-
tomotive domain. Figure 1 shows a intelligent lane reser-
vation system in a next-generation managed highway that
aims to reduce traffic congestion and control traffic flow, e.g.,
by allowing emergency vehicles to arrive safely and faster at
accidents [16]. One way to schedule and enforce vehicle QoS

Figure 1: Managed Highway Scenario

on a managed highway is to allow drivers to reserve lanes
“slots”.

To ensure proper admission control, vehicles wait in a
queueing lane for their reserved slot to become available be-
fore entering the highway. A highway entrance assistance

system (e.g., a tollgate) uses short-range communication and
relays between queued vehicles to ensure the vehicles have
proper software versions and necessary hardware before al-
lowing them to enter the highway. Example software in-
cludes warning applications, secure payment and communi-
cation algorithms, as well as infotainment applications, such
as hotel and restaurant finder or car-to-car gaming applica-
tions.

The scenario motivates the need for various software adap-
tations. For example, adaptations can involve the integra-
tion of software, previously not installed at the vehicle, as
well as the upgrade of software that is available with a newer
version on the tollgate. Other examples of software adap-
tations include the downgrade or deinstallation of software
due to memory limitations of the vehicle software platform
or expirations of licences [6].

A decision process located at the tollgate determines the
actual adaptations and affected software based on a vehicle’s
current software configuration. After the relevant software
is downloaded to the vehicle, the adaptations are executed
on the vehicle’s software platform. The overall adaption
process itself is time-bounded since deciding which adapta-
tions to perform and then downloading and adapting the
software must be executed before the vehicle can enter the
highway. This decision process can also be influenced by
(1) the available memory on a vehicle platform, (2) software
interdependencies, (3) software priorities and (4) software
versioning constraints.

3. CONSTRAINT-BASED ADAPTIVE

SCHEDULING
This section introduces our system model and defines the

different time bounds that are used in our constraint-based
scheduling algorithm. It also explains how the algorithm
schedules adaptation actions according to constraints (such
as time bounds) that are input as parameters at the start of
the adaptation process.

3.1 Software Adaptation
Software adaptation is traditionally performed on systems

composed of binary software components with specified in-
terfaces and explicit dependencies called modules [17]. Dy-
namic adaptation actions include (1) integration of code
modules, (2) deintegration of code modules and (3) exchange
with existing code modules for up- or down-grades. Our ap-
proach assumes the presence of a common underlying soft-
ware platform on which code modules and their dynamic
adaptations can be executed [8]. Code modules have ad-
ditional non-functional properties, such as priority, version
number, dependencies on other modules and timeliness prop-
erties, that are provided by a module’s developer in form of
meta-data.

We distinguish two entities in our system model: (1) a ser-
vice provider, e.g., a tollgate, that stores code modules and
provides them for download and (2) a service consumer, e.g.,
a vehicle, that receives code modules and associated adapta-
tion actions from the service provider. An adaptation may
occur when a consumer is within communication range of
a service provider. The service provider then determines
the adaptation actions and the order to execute these ac-
tions based on the consumer’s current configuration, e.g.,
the code modules already integrated on the consumer’s soft-

ware platform and the hardware platform. After the service
provider determines the scheduling order of adaptation ac-
tions, it sends all the scheduled code modules and associated
adaptation actions to the consumer, which then executes the
actions on its local software platform.

Time bounds are imposed on the overall adaptation due
to the highly mobile environment in which consumers are
located. An adaptation action that executes too late may
result in inconsistent or inaccurate behaviour. Figure 2 illus-
trates the three different phases that subsume to the overall
time bound on the adaptation time (at).

Figure 2: Time Constraints of Software Adaptation

The scheduling time (st) is defined as the amount of time
needed to determine which adaptation actions to execute in
terms of code modules to install or replace. Its triggering is
denoted by the arrival time (arrt), e.g., when a vehicle is
in communication range of the tollgate. The download time
(dt) defines the actual time needed to download all code
modules. The integration time (it) is defined as the actual
execution time of the adaptation actions. The waiting time
(wt) is the duration between a completed adaptation process
and the adaptation deadline, e.g., a departure time (dept) for
the vehicle entering the motorway.

3.2 Time-bounded Basic Scheduling Algorithm
Our scheduling algorithm runs on the service provider

side and maximises the code modules that can be down-
loaded and adapted within the specified time bounds for
a specific consumer’s configuration. The algorithm uses a
greedy-approach [7] by iterating through an ordered list of
all available code modules and scheduling each module that
fits within the time bounds. The time bounds are deter-
mined for each consumer’s configuration.

For example, in our managed highway scenario from Sec-
tion 2, an entering vehicle sends its current configuration and
its departure time. A worst-case estimated download time is
calculated at the tollgate based on parameters, such as dis-
tance and number of waiting vehicles. The scheduling time,
i.e., the time available for determining the code modules
to integrate, is calculated as the difference of the download
time from the adaptation time. Within the scheduling time,
the algorithm iterates over the ordered list of code modules
to determine which ones can be scheduled for download and
integration. The determination depends on the integration
time of a code module and is defined by the following equa-
tion, with j denoting the amount of scheduled code modules
and n denoting the amount of available code modules.

n−1
X

i=0

st(i) +

j
X

i=0

dt(i) +

j
X

i=0

it(i) < at (1)

This equation states that the sum of the integration times of
all modules scheduled plus the overall scheduling and down-
load time for each scheduled module must be smaller than
the available adaptation time.

The scheduling of code modules involves determining which
adaptation actions to perform, depending on the consumer’s
current configuration. If a code module is not present on the
consumer’s platform, the action results in the download and
integration of this code module on the consumer’s platform.
Other adaptation actions include (1) the upgrade, i.e., ex-
change of a code module if there is a newer version available,
(2) the downgrade of a code module, or the (3) deletion of
a code module.

Code modules are ordered according to an evaluation func-
tion based on the multi-attribute utility theory (MAUT) [18].
MAUT defines a family of methods that are a means to
analyse situations and create an evaluation process when
prospective alternatives must be evaluated to determine which
alternative performs best. For example, code modules are
evaluated based on dimensions such as priorities, number of
dependencies, size and integration time. The theory defines
an overall evaluation function v(x) that is defined as the
sum of all weighted additions of the dimensions of an object
x that are relevant to its evaluation.

The basic algorithm orders code modules after their im-
portance, i.e., high-priority modules should always be sched-
uled (or at least attempted to schedule) since they might be
safety-critical. Two modules with the same importance can
differ, however, in their dependencies on other code mod-
ules. A module with less dependencies is preferred over a
module that depends on a significant number of modules. In
the following, we focus our discussion on how priorities and
dependencies are handled for space limitations.

We have defined two weighted functions for the dimensions
priority and number of dependencies: FP and FD. Priori-
ties are fixed by the code module developer. Their value
can vary from 1 to 10, where 1 denotes the highest priority.
Dependency values range from 0 to the number of code mod-
ules -1 and can be automatically obtained by software tools
using the transitive dependency relationship. For example,
if code module ”A” depends on code module ”B”—and ”B”
itself is dependent from code module ”C”—the number of
dependencies of A is two.

The score denotes the relative importance of specific code
modules, i.e., the higher the score, the more important a
module is and the earlier it will be scheduled. The overall
score of a code module then is determined by subtracting
FD from FP . Table 1 gives an overview of the weighted
functions used and their according value range. The priority

Dimension Weighted Function Value Range

Priority Fp(m) = 100 - 10 * (m.p -1) Fp ǫ [10, 100]
Dependency FD(m) = m.d mod 10 FD ǫ [0, 9]
Score Value S = Fp- FD S ǫ [100, 1]

Table 1: Weighted Functions

of a code module m is denoted with m.p and the number
of dependencies is denoted with m.d. Note that the value
ranges of the two functions do not overlap. Example score
values are shown in Table 2.

Dimension Module 1 Module 2 Module 3

Priority 1 1 2
Dependencies 0 1 0

Score 100 99 90

Table 2: Example Score Values

3.3 Scheduling Examples
We now discuss two example schedules for the consumer

and service provider configuration shown in Figure 3. This

Figure 3: Configuration Example

example considers an estimated download time (dt) of 1 ms.
Scenario 1 has an overall worst-case adaptation time (at) of
1,500 ms, scenario 2 an overall worst-case adaptation time
(at) of 900 ms, i.e., after 1,500 and 900 ms respectively,
the vehicle will enter the motorway and all necessary adap-
tations must be executed by then. The code modules are
ordered according to their score value, i.e., code module ”A”
will be scheduled before code module ”B” and code module
”C”.

Table 3 summarises the time constraints for each scenario.
All values are given in ms.

Time Constraints Scenario 1 Scenario 2

adaptation time 1500 900
download time 1 1
integration time 1200 1200

Table 3: Time Constraints for Scenarios

In Scenario 1, equation 1 is fulfilled since the sum of the
integration times of all modules and the given download time
does not exceed the overall adaptation time. Hence, all code
modules can be scheduled and integrated at the consumer’s
side. As the vehicle does not contain any code modules,
the adaptation actions would result in the integration of the
three modules.

In scenario 2, equation 1 is not fulfilled since the sum of
all integration times exceeds the worst-case adaptation time
(1200 ms > 900 ms). Hence, it is not possible to schedule
all code modules for adaptation. The scheduler in this case
linearly schedules code modules until the time bounds are
exceeded. In this example, the first two modules are sched-

uled. Their overall integration time plus the download time
is still smaller than the available adaptation time. As with
scenario 1, the two code modules are scheduled for integra-
tion.

3.4 Adaptive Scheduling Algorithm
As described above, our algorithm can be seen as a static

scheduling approach because it orders code modules stat-
ically based on importance, e.g., at deployment time of a
repository

[19]. Some scenarios, however, might require a different
ordering of the code modules based on (dynamic) conditions
of the environment. For example, code modules may need to
be scheduled according to their size when dealing with con-
sumers with limited memory capabilities. Other scenarios
may require the ordering of code modules after integration
time, e.g., a code module with a very high or low integration
time should be scheduled first.

Our solution is to adapt the actual scheduling mechanisms
to better reflect the current conditions by adjusting the
weights on its evaluation function [11]. Different weighted
functions are provided that emphasise various aspects of the
system. For example, a weighted function for memory space
favours smaller code modules, whereas a weighted function
for integration times favours modules with higher integra-
tion times. The overall evaluation function is then chosen
depending on the current configuration of the consumer.

4. PROTOTYPEOF THE TIME-BOUNDED

SCHEDULING APPROACH
This section describes the prototype implementation of

our time-bounded scheduling approach. We implemented
our approach on top of the open-source mobile application
server Funambol [2]. Funambol provides data and binary
synchronisation based on the standard SyncML data syn-
chronisation protocol [5]. Below, we discuss solutions to the
three main design challenges of our prototype: (1) deter-
mining necessary adaptation actions, (2) representing code
modules, and (3) realising a constraint-based scheduling al-
gorithm.

4.1 Determining Necessary Adaptation Actions
Problem. The adaptation actions to execute depend

on the consumer’s current configuration. A mechanism is
needed to send a description of the code modules that are
currently installed on the consumer’s platform. Based on
this description, a decision can be made on which adapta-
tions to execute.

Solution approach → Leverage Funambol’s built-
in synchronisation strategies. Figure 4 illustrates the
overall synchronisation process of Funambol. The Funam-
bol platform supports two synchronisation modes: partial
and full synchronisation. With partial synchronisation, only
modules that have been changed since the last timestamp are
compared against the service provider. With full synchroni-
sation, a complete comparison of a consumer’s and a service
provider’s code modules can be performed. The consumer
triggers the adaptation by sending the desired synchronisa-
tion mode, its currently contained code modules and addi-
tional capabilities, like memory constraints, to the service
provider. The actual decision of which adaptation actions
to execute is built into Funambol’s synchronisation strat-
egy and depends on the timestamps of code modules. If the

code module is not contained on the consumer’s platform,
the resulting adaptation action is an integration of this code
module. Otherwise, if the service provider contains a newer
version of the code module, the resulting adaptation action
is an update of the code module on the consumer’s plat-
form. The affected code modules and their operations are
then sent back to the consumer.

Figure 4: Funambol Synchronisation Process

In our implementation we always use the full synchroni-
sation approach as all code modules contained at the con-
sumer are sent to the service provider. Additionally, we sent
the maximum allowed overall memory consumption. We
extended Funambol’s synchronisation algorithm to support
our time-bounded scheduling algorithm, e.g., including han-
dling the priority and number of dependencies between code
modules. Hence, we leverage on Funambol’s synchronisation
strategy to decide which adaptation actions to execute.

4.2 Representating Code Modules
Problem. A representation format is needed that sup-

ports the additional of new non-functional properties, such
as priorities, memory size and amount of dependencies. These
properties can be set by code module developers.

Solution approach → Use SyncItems with addi-
tional properties in form of meta-data. SyncItems rep-
resent the smallest binary or textual information that can be
synchronised in the Funambol platform. Code modules are
realised in our approach as SyncItems with priorities, mem-
ory size, amount of dependencies and integration times as
non-functional properties. We have extended the basic class
of SyncItems to include these additional properties and have
also defined initialisation methods, e.g., a distribution func-
tion for the priority.

4.3 Realising Constraint-based Scheduling
Algorithm

Problem. Our constraint-based scheduling algorithm max-
imises the amount of adaptation actions and thus code mod-
ules within a fixed time bound. The code modules must be
ordered according to criteria specific to a consumer.

Solution approach → Use weighted functions for
the ordering of code modules. In our approach, code
modules are ordered according to the weighted functions de-
scribed in Section 3.2. The default ordering is based on the
priority and amount of dependencies of a code module. The
ordering can be adjusted according to different criteria, e.g.,
an ordering of code modules according to their memory size.

An outline of the implementation of the constraint-based
scheduling algorithm is shown in Listing 1.

double adaptationTime = Consumer . getAdaptationTime
() ;

double downloadTime= Consumer . getDownloadTime () ;
double schedul ingTime = adaptationTime −

downloadTime ;
double integrationTimeModule ;
double currentTime = 0 ;
f o r (i n t i = 0 ; i < moduleList . l enght ; i++) {

integrationTimeModule = m(i) . ge t Integrat ionTime
() ;

i f (m(i) . hasDependencies ()) {
dependentList = m(i) . getDependencies () ;
f o r (j =0; j < dependentLi st . l ength ; j++){

integrationTimeModule +=dependentList (j) .
ge t Integrat ionTime () ;

}

i f ((integrationTimeModule + currentTime) <

schedul ingTime)
currentTime= integrationTimeModule ;
schedu le (m(i)) ;
schedu le (dependentLi st) ;

}
}

Listing 1: Implemented Mechanism

The download time and adaptation time are given by the
consumer when the scheduling process begins. A remain-
ing scheduling time is then calculated. The ordered list of
code modules is traversed linearly and for each code module
the algorithm determines whether the remaining scheduling
time is smaller than the integration time of the code mod-
ule itself and its dependent modules. The overall runtime
complexity of this mechanism is O(n) with n denoting the
amount of code modules in the scheduling list.

5. EXPERIMENTAL EVALUATION
We conducted experiments to evaluate the effectiveness

of our scheduling algorithm, i.e., determine whether the al-
gorithm works correctly. First, the algorithm always needs
to schedule more important modules before less important
ones. Second, the algorithm needs to handle dependencies in
a correct way, i.e., if a code module that is currently sched-
uled depends on other code modules, these code modules
must be scheduled first.

5.1 Handling of priorities
We first want to evaluate how our algorithm handles pri-

orities. We therefore define an experiment where all code
modules have the same configuration (c.f., Table 4) except
for their priority. We distinguish three different simulation
runs: (1) Run1 – all modules are of high-priority, i.e., prior-
ity 1, (2) Run2 – priorities are equally distributed between
the modules, and (3) Run3 – the service provider contains
only two high-priority code modules, the remaining code
modules are of lower priority.

Figure 5 shows the percentage of high-priority modules
(i.e., modules with priority 1) received by the consumer for
an increasing adaptation time. The resulting sample values
are calculated as an average over 10 simulation runs. Al-
though Run 1 and Run 2 show similar increasing behaviour,
the percentage of high-priority modules is smaller in Run 1
and increases slower since it contains the most high-priority
modules. Our algorithm thus schedules all of them within

Constraint Value

Dependencies 0
Module Size 100kB

Integration Time 1ms
Download time 1 ms

Table 4: Evaluation Configuration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

R
e
c
e
iv

e
d
 h

ig
h
-p

ri
o
ri
ty

 m
o
d
u
le

s
 [
%

]

Adaptation Time [ms]

Run 1
Run 2
Run 3

Figure 5: Priority Runs

the time bounds. Since Run 3 must schedule only two high-
priority modules, the point in time when both modules can
be scheduled within the time bounds is reached much faster
than in the other two runs.

5.2 Handling of dependencies
We next want to evaluate the handling of dependencies

in our algorithm. We therefore changed the configuration of
code modules so all code modules have the same high prior-
ity (priority 1). We distinguish three different scenarios: (1)
No Dependencies – all code modules are independent from
each other, (2) Flat Dependencies – Code modules contain
a maximum dependency degree of one, and (3) Deep Depen-
dencies – Code modules can contain a maximum dependency
degree of more than one.

We first show the handling of dependencies by means of
an example code module set that contains 10 code modules.
Table 5 shows the scheduling results, i.e., the order in which
the code modules arrive at a consumer’s side for the differ-
ent scenarios under the assumption that the adaptation time
is large enough. In the ”No Dependency” scenario, all code
modules have the same overall score value (c.f., Section 3.2)
and will be scheduled linearly. In the ”Flat Dependency”
scenario, all code modules that do not have any dependen-
cies are scheduled first, as their score value is higher than
the score value of code modules with dependencies. In the
”Deep Dependency” scenario, module A is scheduled last
since it has the highest amount of dependencies and hence
the lowest score value.

Scenario Scheduling Order

No Dependencies A B C D E F G H I J
Flat Dependencies B D F H J A C E G I
Deep Dependencies J I H G F E D C B A

Table 5: Scheduling Order

Figure 6 shows the duration of the scheduling time results
for the handling of dependencies in the three scenarios for an
increasing number of code modules. In the ”No Dependency”

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

S
c
h
e
d
u
lin

g
 T

im
e
 [
m

s
]

Amount of modules

No Dependencies
Flat Dependencies

Deep Dependencies

Figure 6: Dependency Runs

scenario, code modules are scheduled the fastest, as they
do not contain any dependencies. The ”Flat Dependencies”
scenario schedules code modules faster than than the ”Deep
Dependencies” scenario, because the maximum dependency
degree of a code module, i.e., the amount of code modules to
check, is lower. In the worst case, the ”Deep Dependencies”
scenario has to check each code module whether it is already
scheduled. As a conclusion, our experiments show that our
algorithm works correctly.

6. RELATED WORK
This section compares our work on scheduling time-bounded

dynamic software adaptation with two areas of related work.
First, we compare our work with scheduling approaches for
data and binary modules in real-time and in grid comput-
ing systems since these systems have similar requirements,
e.g., timeliness of scheduled data. Second, we briefly discuss
two approaches for the distribution of code: code package
managers and over-the-air programming.

Scheduling algorithms. Jobs in real-time systems have
points in times (i.e., deadlines) by which their execution
must complete. A scheduling algorithm in a real-time sys-
tem tries to allocate the resources and processors of a sys-
tem in a way that all jobs are finished before their dead-
line. A common approach for scheduling jobs in real-time
systems is a priority-driven algorithm, e.g., earliest-deadline
first (EDF) or first-in-first-out (FIFO) [13]. Priority here
refers to the deadline of jobs, e.g., the earliest deadline first
algorithm schedules first the jobs that have the closest dead-
line. These approaches consider job scheduling and not mod-
ule adaptation scheduling per se and therefore they focus
mainly on a single dimension, such as the job importance or
weight. Our constraint-based scheduling algorithm differs
from these approaches by considering multiple dimensions
for the ordering of modules, c.f., Section 3.2.

Scheduling is also an issue in data-intensive grid-based ap-
plications where data items must be efficiently allocated and
transferred over intermediate nodes to their destination to
meet predefined deadlines. For example, real-time tracking
of storm data for air traffic management has stringent time
constraints and non-trivial data scheduling issues due to the
amount of flights a single avionics system controls [9].

The authors of [9] propose a scheduling algorithm that
schedules the requests for data items based on a path selec-
tion heuristic. Multiple data items are transferred at the
same time to different destinations. The approach max-
imises the amount of satisfied requests but only considers
the scheduling of data items based on the location. In con-
trast, our algorithm addresses the scheduling of adaptation
actions associated with the data items, c.f., Section 3.2.

Code distribution approaches. Code package man-
agers, such as the Debian Advanced Packaging Tool (APT)
[1] or Redhat Package Manager (RPM) [4], allow the auto-
matic download and integration of software modules into a
running system. They provide integrated dependency detec-
tion and resolution, i.e., software modules are downloaded
and installed together with all their dependent modules.
These systems schedule the code modules, as well as their as-
sociated actions, like installation and upgrades. Unlike our
algorithm, however, they do not take any time constraints
into account.

Over-the air-programming (OTA) is a technique for dis-
tributing software updates to mobile phones [3]. The soft-
ware is delivered to a mobile phone’s hardware platform ei-
ther automatically or by explicit user action. Often after a
software update, however, a mobile phone must be restarted
to take over the changes. This approach therefore does not
address dynamic adaptation/reconfiguration, unlike our ap-
proach, c.f., Section 3.1.

7. CONCLUDING REMARKS
In prior work [10] we identified the need for dynamic soft-

ware adaptation in next-generation embedded systems, such
as automotive systems. This paper presented a constraint-
based scheduling algorithm that maximises the available adap-
tation actions that can be execute on modules within given
time bounds. The algorithm schedules modules in a greedy
manner from an ordered list. Weighted functions are ap-
plied on properties of modules, such as their priority and
dependencies, to calculate their rank in the list.

We showcased our algorithm via an example from the do-
main of managed highways. Early evaluation results show
that the algorithm works correctly. The lessons that we
have learned designing and developing our constraint-based
adaptive scheduling algorithm so far include:

• Current synchronisation frameworks can be leveraged
to provide the basic functionality of determining the
adaptation actions to execute based on a client’s cur-
rent configuration. Our algorithm is implemented on
top of the Funambol synchronisation framework and
provides time-bounded scheduling of adaptation ac-
tions on code modules that are ordered according to a
configurable ranking.

• The default scheduling algorithm orders code modules
based on importance, but the ranking of code modules
can also be dynamically adapted according to client’s
limitations. Some scenarios, for example, require a
dynamic ordering of the code modules, e.g., taking
into account current available memory or dynamic con-
straints versioning of code modules.

• Our current prototype assumes stable bandwidth be-
tween the service provider and a client. In mobile en-
vironments, however, unstable and rapidly changing

network conditions are common. Our future work will
therefore take into account the varying download time
(dt) for each client, in a way that reflects the actual
bandwidth availability.

• Our algorithm is only concerned with the decision-
process relating to which adaptation actions to execute
and which code modules are affected. In our future
work, we plan to develop a platform that supports the
actual execution of the adaptations within time con-
straints.

Acknowledgements

The work described in this paper is funded by Science Foun-
dation Ireland under the Research Frontiers Program and
Lero - the Irish Software Engineering Research Centre.

8. REFERENCES
[1] Advanced packaging tool (apt).

http://www.debian.org/doc/manuals/apt-howto/.

[2] Funambol. http://www.funambol.com.

[3] Ota. http://www.openmobilealliance.com.

[4] Redhat package manager (rpm).
http://www.rpm.org/.

[5] Syncml protocol specification.
http://www.openmobilealliance.com.

[6] R. Anthony and C. Ekeling. Policy-driven
self-management for an automotive middleware. In
PBAC ’07: First International Workshop on
Policy-Based Autonomic Computing, 2007.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. McGrawHill,
2002.

[8] I. Crnkovic. Component-based approach for embedded
systems. In Ninth International Workshop on
Component-Oriented Programming (WCOP), 2004.

[9] M. Eltayeb, A. Dogan, and F. Ozguner. A data
scheduling algorithm for autonomous distributed
real-time applications in grid computing. In ICPP ’04:
Proceedings of the 2004 International Conference on
Parallel Processing (ICPP’04), 2004.

[10] S. Fritsch, A. Senart, D. C. Schmidt, and S. Clarke.
Time-bounded dynamic adaptation for automotive
system software. In Proceedings of the 30th
International Conference on Software Engineering
(ICSE), Experience Track on Automotive Systems,
2008.

[11] M.T. Gervasio, W. Iba, and P. Langley. Learning user
evaluation functions for adaptive scheduling
assistance. In Proceedings of the Sixteenth
International Conference on Machine Learning
(ICML), 1999.

[12] C. Gill, R. Cytron, and D.C. Schmidt. Middleware
scheduling optimization techniques for distributed
real-time and embedded systems. In WORDS ’02:
Proceedings of the The Seventh IEEE International
Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS 2002), 2002.

[13] J. W. S. Liu. Real-Time System. Prentice Hall, 2000.

[14] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and
B. H. C. Cheng. Composing adaptive software.
Computer, 37(7):56–64, 2004.

[15] P. Oreizy, M. M. Gorlick, R. N. Taylor,
D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
architecture-based approach to self-adaptive software.
IEEE Intelligent Systems, 14(3):54–62, 1999.

[16] N. Ravi, S. Smaldone, L. Iftode, and M. Gerla. Lane
reservation for highways (position paper). In ITSC
’07: Proceedings of the 10th International IEEE
Conference on Intelligent Transportation Systems,
2007.

[17] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 2002.

[18] D. von Winterfeld and W. Edwards. Decision Analysis
and Behavioral Research. Cambridge University Press,
1986.

[19] J. White, A. Nechypurenko, E. Wuchner, and D. C.
Schmidt. Optimizing and Automating Product-Line
Variant Selection for Mobile Devices. In 11th
International Software Product Line Conference,
Kyoto, Japan, September 2007.

