
Overview of Remote Procedure

Calls (RPC)

Douglas C. Schmidt

Washington University, St. Louis

http://www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

1

Introduction

� Remote Procedure Calls (RPC) are a popu-
lar model for building client/server applica-
tions

{ ONC RPC and OSF DCE are widely available RPC

toolkits

� RPC forms the basis for many client/server
applications

{ e.g., NFS

� Distributed object computing (DOC) frame-
works may be viewed as an extension of
RPC (RPC on steriods)

{ e.g., OMG CORBA

� RPC falls somewhere between the transport
layer and application layer in the OSI model

{ i.e., it contains elements of session and presenta-

tion layers

2

Motivation

� RPC tries to simplify distributed application

programming by making distribution trans-

parent

� RPC toolkits automatically handle

{ Reliability

. e.g., communication errors and transactions

{ Platform heterogeneity

. e.g., performs parameter \marshaling" of com-

plex data structures and handles byte-ordering

di�erences

{ Service location and selection

{ Service activation and handler dispatching

{ Security

3

IPC Overview

CLIENT HOSTCLIENT HOST SERVER HOSTSERVER HOST

CLIENTCLIENT

PROCESSPROCESS

SERVERSERVER

PROCESSPROCESS

NETWORKNETWORK

REQUESTREQUEST RESPONSE

� Many applications require communication among
multiple processes

{ Processes may be remote or local

4

Message Passing Model

� Message passing is a general technique for

exchanging information between two or more

processes

� Basically an extension to the send/recv I/O
API

{ e.g., UDP, VMTP

� Supports a number of di�erent communica-
tion styles

{ e.g., request/response, asynchronous oneway, mul-

ticast, broadcast, etc.

� May serve as the basis for higher-level com-

munication mechanisms such as RPC

5

Message Passing Model (cont'd)

� In general, message passing does not make
an e�ort to hide distribution

{ e.g., network byte order, pointer linearization, ad-

dressing, and security must be dealt with explicitly

� This makes the model e�cient and exible,

but also complicate and time consuming

6

Message Passing Design

Considerations

� Blocking vs. nonblocking

{ A�ects reliablility, responsiveness, and program struc-

ture

� Bu�ered vs. unbu�ered

{ A�ects performance and reliability

� Reliable vs. unreliable

{ A�ects performance and correctness

7

Monolithic Application Structure

SPREADSPREAD

SHEETSHEET

FILEFILE

SYSTEMSYSTEM

RECALCRECALC

DATABASEDATABASE

GUIGUI

FILESYSTEM

API

RECALC

API

DATABASE

API

GUI

API

8

RPC Application Structure

SPREADSPREAD

SHEETSHEET

FILEFILE

SYSTEMSYSTEM

DATABASEDATABASE

GUIGUI

FILESYSTEMFILESYSTEM

APIAPI

RECALC

API

DATABASE

API

GUI

API

RECALCRECALC

RPC

GENERATED

CLIENT

STUBS

RPC

GENERATED

SERVER

STUBS

� Note, RPC generators automate most of

the work involved in separating client and

server functionality

9

Basic Principles of RPC

1. Use traditional programming style for dis-

tributed application development

2. Enable selective replacement of local proce-
dure calls with remote procecure calls

� Local Procedure Call (LPC)

{ A well-known method for transferring control

from one part of a process to another

. Implies a subsequent return of control to the

caller

� Remote Procedure Call (RPC)

{ Similar LPC, except a local process invokes a

procedure on a remote system

. i.e., control is transferred across processes/hosts

10

A Temporal View of RPC

SERVERCLIENT SERVERCLIENT

U
S

E
R

K
E

R
N

E
L

CLIENT

BLOCKED

U
S

E
R

K
E

R
N

E
L

NETWORK
SERVICE

EXECUTES

REQUEST

RESPONSE

� An RPC protocol contains two sides, the
sender and the receiver (i.e., client and server)

{ However, a server might also be a client of another

server and so on: : :

11

A Layered View of RPC

CLIENT HOSTCLIENT HOST SERVER HOSTSERVER HOST

CLIENTCLIENT

PROCESSPROCESS

SERVERSERVER

PROCESSPROCESS

NETWORKNETWORK

REQUEST RESPONSE

APPLICATION

CODE

STUB CODE

RPC
RUNTIME

LIBRARY

REMOTEREMOTE

PROCEDUREPROCEDURE

CALLCALL

SERVERSERVER

PROCESSPROCESS

APPLICATION

CODE

STUB CODE

RPC
RUNTIME

LIBRARY

REMOTEREMOTE

PROCEDUREPROCEDURE

12

RPC Automation

� To help make distribution transparent, RPC
hides all the network code in the client stubs
and server skeletons

{ These are usually generated automatically: : :

� This shields application programs from net-
working details

{ e.g., sockets, parameter marshalling, network byte

order, timeouts, ow control, acknowledgements,

retransmissions, etc.

� It also takes advantage of recurring com-

muncation patterns in network servers to

generate most of the stub/skeleton code

automatically

13

Typical Server Startup Behavior

CLIENT HOSTCLIENT HOST SERVER HOSTSERVER HOST

SERVERSERVER

PROCESSPROCESS

NAME SERVICENAME SERVICE

HOSTHOST
CDSCDS

ENDPOINTENDPOINT

MAPMAP

(1)(1) REGISTER INTERFACE REGISTER INTERFACE

(2)(2) CREATE BINDING INFO CREATE BINDING INFO

(3)(3) ADVERTISE SERVER ADVERTISE SERVER

 LOCATION LOCATION

(4)(4) REGISTER ENDPOINTS REGISTER ENDPOINTS

(5)(5) LISTEN FOR CALLS LISTEN FOR CALLS

RPCRPC RUNTIME RUNTIME

LIBRARYLIBRARY

14

Typical Client Startup Behavior

CLIENT HOSTCLIENT HOST SERVER HOSTSERVER HOST

NAMENAME

SERVICESERVICE

HOSTHOST
CDSCDS

ENDPOINT

MAP

(6)(6) MAKEMAKE
 REMOTEREMOTE
 PROCEDUREPROCEDURE
 CALLCALL

RPC RUNTIME

LIBRARY

SERVER

PROCESS

CLIENTCLIENT
PROCESSPROCESS

APPLICATION
CODE

STUB

(7)(7) FINDFIND
 SS ERVERERVER
 SYSTEMSYSTEM

(8)(8) FINDFIND
 SS ERVERERVER
 PROCESSPROCESS

(9)(9) BINDBIND TOTO
 SS ERVERERVER

15

Typical Client/Server Interaction

CLIENT HOSTCLIENT HOST SERVER HOSTSERVER HOST

NAMENAME

SERVICESERVICE

HOSTHOST
CDSCDS

ENDPOINT

MAP

(10)(10) PREPARE PREPARE

 INPUT INPUT

RPC
RUNTIME

LIBRARY

CLIENTCLIENT
PROCESSPROCESS

APPLICATION
CODE

STUB

(11)(11) TRANSMITTRANSMIT

 INPUT INPUT

(13)(13) CONVERT CONVERT

 INPUT INPUT

(14)(14) EXECUTE EXECUTE

 REMOTE REMOTE

 PROCEDURE PROCEDURE

(15)(15) PREPARE PREPARE

 OUTPUT OUTPUT

(16)(16) TRANSMIT TRANSMIT

 OUTPUT OUTPUT

(17)(17) RECEIVE RECEIVE

 OUTPUT OUTPUT

(18)(18) CONVERT CONVERT

 OUTPUT OUTPUT

SERVERSERVER

PROCESSPROCESS

(12)(12) RECEIVE RECEIVE

 AND AND

DISPATCHDISPATCH

 TO STUB TO STUB

16

RPC Models

� There are several variations on the stan-

dard RPC \synchronous request/response"

model

� Each model provides greater exibility, at

the cost of less transparency

� Certain RPC toolkits support all the di�er-
ent models

{ e.g., ONC RPC

� Other DOC frameworks do not (due to porta-
bility concerns)

{ e.g., OMG CORBA and OSF DCE

17

RPC Models

SYNCHRONOUS RPCSYNCHRONOUS RPC

PROCESS

INTERNE

T

NETWORK

ACCESS

CLIENT

CLIENT

CLIENT

CLIENT

SERVER

SERVER

SERVER

SERVER

NOWAIT RPCNOWAIT RPC

CALLBACK RPCCALLBACK RPC

BATCH RPCBATCH RPC

((NOWAITNOWAIT))

VOID REPLYVOID REPLY

WINDOW

LOOP OR

WAITFOR_RPC

((NOWAITNOWAIT))

VOID REPLYVOID REPLY
SYNCHRONOUS CALLBACK RPCSYNCHRONOUS CALLBACK RPC

SUBSUB33 RETURN RETURN

SUBSUB11
SUBSUB22
SUBSUB33

SUBSUB11

SUBSUB22

VOID REPLYVOID REPLY

VOID REPLYVOID REPLY

SUBSUB33

18

RPC Models (cont'd)

BROADCAST RPCBROADCAST RPC

HOST-TO-
HOST

PROCESS
APPLICATION

INTERNET
NETWORK

CLIENT

SERVER

SERVER

SERVER

BROADCAST

COLLECTION

ROUTINE

BROADCAST

REQUEST

BROADCAST

REQUEST

BROADCAST

REQUEST

BROADCAST

REPLY

BROADCAST

REPLY

DOES

NOT

REPLY

THREADED RPCTHREADED RPC

HOST-TO-
HOST

PROCESS
APPLICATION

INTERNET
NETWORK

CLIENT

SERVER

SERVER

SERVER

(SYNCHRONOUS RPC)

19

Transparency Issues

� RPC has a number of limitations that must
be understood to use the model e�ectively

{ Most of the limitations center around transparency

� Transforming a simple local procedure call
into system calls, data conversions, and net-
work communications increases the chance
of something going wrong

{ i.e., it reduces the transparency of distribution

20

Tranparency Issues (cont'd)

� Key Aspects of RPC Transparency

1. Parameter passing

2. Data representation

3. Binding

4. Transport protocol

5. Exception handling

6. Call semantics

7. Security

8. Performance

21

Parameter Passing

� Functions in an application that runs in a

single process may collaborate via parame-

ters and/or global variables

� Functions in an application that runs in mul-

tiple processes on the same host may col-

laborate via message passing and/or non-

distributed shared memory

� However, passing parameters is typically the
only way that RPC-based clients and servers
share information

{ Hence, we have already given up one type of transparency: : :

22

Parameter Passing (cont'd)

� Passing parameters across process/host bound-

aries is surprisingly tricky: : :

� Parameters that are passed by value are fairly
simple to handle

{ The client stub copies the value from the client

and packages into a network message

{ Presentation issues are still important, however

� Parameters passed by reference are much
harder

{ e.g., in C when the address of a variable is passed

. e.g., passing arrays

{ Or more generally, handling pointer-based data

structures

. e.g., pointers, lists, trees, stacks, graphs, etc.

23

Parameter Passing (cont'd)

� Typical solutions include:

{ Have the RPC protocol only allow the client to

pass arguments by value

. However, this reduces transparency even further!

{ Use a presentation data format where the user

speci�cally de�nes what the input arguments are

and what the return values are

. e.g., Sun's XDR routines

{ RPC facilities typically provide an \interface de�-

nition language" to handle this

. e.g., CORBA or DCE IDL

24

Data Representation

� RPC systems intended for heterogeneous
environments must be sensitive to byte-ordering
di�erences

{ They typically provide tools for automatically per-

forming data conversion (e.g., rpcgen or idl)

� Examples:

{ Sun RPC (XDR)

. Imposes \canonical" big-endian byte-ordering

. Minimum size of any �eld is 32 bits

{ Xerox Courier

. Uses big-endian

. Minimum size of any �eld is 16 bits

25

Data Representation (cont'd)

� Examples (cont'd)

{ DCE RPC (NDR)

. Supports multiple presentation layer formats

. Supports \receiver makes it right" semantics: : :

� Allows the sender to use its own internal for-

mat, if it is supported

. The receiver then converts this to the appropri-

ate format, if di�erent from the sender's format

� This is more e�cient than \canonical" big-

endian format for little-endian machines

26

Binding

� Binding is the process of mapping a request
for a service onto a physical server some-
where in the network

{ Typically, the client contacts an appropriate name

server or \location broker" that informs it which

remote server contains the service

. Similar to calling 411: : :

� If service migration is supported, it may be
necessary to perform this operation multiple
times

{ Also may be necessary to leave a \forwarding" ad-

dress

27

Binding (cont'd)

� There are two components to binding:

1. Finding a remote host for a desired service

2. Finding the correct service on the host

{ i.e., locating the \process" on a given host that

is listening to a well-known port

� There are several techniques that clients use
to locate a host that provides a given type
of service

{ These techniques di�er in terms of their perfor-

mance, transparency, accuracy, and robustness

28

Binding (cont'd)

� \Hard-code" magic numbers into programs

(ugh: : : ;-))

� Another technique is to hard-code this in-
formation into a text �le on the local host

{ e.g., /etc/services

{ Obviously, this is not particularly scalable: : :

� Another technique requires the client to name
the host they want to contact

{ This host then provides a \superserver" that knows

the port number of any services that are available

on that host

{ Some example super servers are:

. inetd and listen -- ID by port number

. tcpmux -- ID by name (e.g., "ftp")

29

Binding (cont'd)

� Superserver: inetd and listen

{ Motivation

. Originally, system daemon processes ran as sep-

arate processes that started when the system

was booted

. However, this increases the number of processes

on the machine, most of which are idle much of

the time

{ Solution ! superserver

. Instead of having multiple daemon processes asleep

waiting for communication, inetd or listen lis-
tens on behalf of all of them and dynamically

starts the appropriate one \on demand"

� i.e., upon receipt of a service request

30

Binding (cont'd)

� Superservers (cont'd)

{ This reduces total number of system processes

{ It also simpli�es writing of servers, since many

start-up details are handled by inetd

. e.g., socket, bind, listen, accept

{ See /etc/inetd.conf for details: : :

{ Note that these super servers combine several ac-

tivities

. e.g., binding and execution

31

Binding (cont'd)

� Location brokers and traders

{ These more general techniques maintain a dis-

tributed database of \service ! server" mappings

{ Servers on any host in the network register their

willingness to accept RPCs by sending a special

registration message to a mapping authority, e.g.,

portmapper -- ID by PROGRAM/VERSION number

orbixd -- ID by \interface"

{ Clients contact the mapping authority to locate a

particular service

. Note, one extra level of indirection: : :

32

Binding (cont'd)

� Location brokers and traders

{ A location broker manages a hierarchy consisting

of pairs of names and object references

. The desired object reference can be found if its

name is known

{ A trader service can locate a suitable object given

a set of attributes for the object

. e.g., supported interface(s), average load and

response times, or permissions and privileges

{ The location of a broker or trader may be set via

a system administrator or determined via a name

server discovery protocol

. e.g., may use broadcast or multicast to locate

name server: : :

33

Transport Protocol

� Some RPC implementations use only a sin-
gle transport layer protocol

{ Others allow protocol section either implicitly or

explicitly

� Some examples:

{ Sun RPC

. Earlier versions support only UDP, TCP

. Recent versions are \transport independent"

{ DCE RPC

. Runs over many, many protocol stacks

. And other mechanisms that aren't stacks

� e.g., shared memory

{ Xerox Courier

. SPP

34

Transport Protocol (cont'd)

� When a connectionless protocol is used, the
client and server stubs must explicitly han-
dle the following:

1. Lost packet detection (e.g., via timeouts)

2. Retransmissions

3. Duplicate detection

� This makes it di�cult to ensure certain RPC

reliability semantic guarantees

� A connection-oriented protocol handles some
of these issues for the RPC library, but the
overhead may be higher when a connection-
oriented protocol is used

{ e.g., due to the connection establishment and ter-

mination overhead

35

Exception Handling

� With a local procedure call there are a lim-
ited number of things that can go wrong,
both with the call/return sequence and with
the operations

{ e.g., invalid memory reference, divide by zero, etc.

� With RPC, the possibility of something go-
ing wrong increases, e.g.,

1. The actual remote server procedure itself generate

an error

2. The client stub or server stub can encounter net-

work problems or machine crashes

� Two types of error codes are necessary to
handle two types of problems

1. Communication infrastructure failures

2. Service failures

36

Exception Handling (cont'd)

� Both clients and servers may fail indepen-
dently

{ If the client process terminates after invoking a

remote procedure but before obtaining its result,

the server reply is termed an orphan

� Important question: \how does the server

indicate the problems back to the client?"

� Another exception condition is a request by

the client to stop the server during a com-

putation

37

Exception Handling (cont'd)

� DCE and CORBA de�ne a set of standard

\communication infrastructure errors"

� For C++ mappings, these errors are often

translated into C++ exceptions

� In addition, DCE provides a set of C macros

for use with programs that don't support

exception handling

38

Call Semantics

� When a local procedure is called, there is

never any question as to how many times

the procedure executed

� With a remote procedure, however, if you
do not get a response after a certain inter-
val, clients may not know how many times
the remote procedure was executed

{ i.e., this depends on the \call semantics"

{ Of course, whether this is a problem or not is

\application-de�ned"

39

Call Semantics (cont'd)

� When an RPC can be executed any number
of times, with no harm done, it is said to
be idempotent.

{ i.e., there are no harmful side-e�ects: : :

{ Some examples of idempotent RPCs are:

. Returning time of day

. Calculating square root

. Reading the �rst 512 bytes of a disk �le

. Returning the current balance of a bank account

{ Some non-idempotent RPCs include:

. A procedure to append 512 bytes to the end of

a �le

. A procedure to subtract an amount from a bank

account

40

Call Semantics (cont'd)

� Handling non-idempotent services typically

requires the server to maintain state

� However, this leads to several additional com-
plexities:

1. When is it acceptable to relinquish the state?

2. What happens if crashes occur?

41

Call Semantics (cont'd)

� There are three di�erent forms of RPC call
semantics:

1. Exactly once (same as local IPC)

{ Hard/impossible to achieve, because of server

crashes or network failures : : :

2. At most once

{ If normal return to caller occurs, the remote pro-

cedure was executed one time

{ If an error return is made, it is uncertain if re-

mote procedure was executed one time or not

at all

3. At least once

{ Typical for idempotent procedures, client stub

keeps retransmitting its request until a valid re-

sponse arrives

{ If client must send its request more than once,

there is a possibility that the remote procedure

was executed more than once

. Unless response is cached: : :

42

Call Semantics (cont'd)

� Note that if a connectionless transport pro-
tocol is used then achieving \at most once"
semantics becomes more complicated

{ The RPC framework must use sequence numbers

and cache responses to ensure that duplicate re-

quests aren't executed multiple times

� Note that accurate distributed timestamps

are useful for reducing the amount of state

that a server must cache in order to detect

duplicates

43

Security

� Typically, applications making local proce-
dure calls do not have to worry about main-
taining the integrity or security of the caller/callee

{ i.e., calls are typically made in the same address

space

. Note that shared libraries may complicate this: : :

� Local security is usually handled via access

control or special process privileges

� Remote security is handled via distributed
authentication protocols

{ e.g., Kerberos: : :

44

Performance

� Usually the performance loss from using RPC
is an order of magnitude or more, compared
with making a local procedure call due to

1. Protocol processing

2. Context switching

3. Data copying

4. Network latency

5. Congestion

� Note, these sources of overhead are ubiqui-

tous to networking: : :

45

Performance (cont'd)

� RPC also tends to be much slower than us-
ing lower-level remote IPC facilities such as
sockets directly due to overhead from

1. Presentation conversion

2. Data copying

3. Flow control

{ e.g., stop-and-wait, synchronous client call be-

havior

4. Timer management

{ Non-adaptive (consequence of LAN upbringing)

� Note, these sources of overhead are typical

of RPC: : :

46

Performance (cont'd)

� Another important aspect of performance is
how the server handles multiple simultane-
ous requests from clients

{ An iterative RPC server performs the following

functionality:

loop f
wait for RPC request;

receive RPC request;

decode arguments;

execute desired function;

reply result to client;

g

{ Thus the RPC server cannot accept new RPC re-

quests while executing the function for the previ-

ous request

. This is undesirable if the execution of the func-

tion takes a long time

� e.g., clients will time out and retransmit, in-

creasing network and host load

47

Performance (cont'd)

� In many situation, a concurrent RPC server
should be used:

loop f
wait for RPC request;

receive RPC request;

decode arguments;

spawn a process or thread f
execute desired function;

reply result to client;

g

g

� Threading is often preferred since it requires

less resources to execute e�ciently

48

Performance (cont'd)

� However, the primary justi�cation for RPC
is not just replacing local procedure calls

{ i.e., it is a method for simplifying the development

of distributed applications

� In addition, using distribution may provide
higher-level improvements in:

1. Performance

2. Functionality

3. Reliability

49

Performance (cont'd)

� Servers are often the bottleneck in distributed

communication

� Therefore, another performance consider-
ation is the technique used to invoke the
server every time a client request arrives,
e.g.,

{ Iterative -- server handles in the same process

. May reduce throughput and increase latency

{ Concurrent -- server forks a new process or thread

to handle each request

. May require subtle synchronization, programming,

and debugging techniques to work successfully

� Thread solutions may be non-portable

. Note also that multi-threading removes the need

for synchronous client behavior: : :

50

Summary

� RPC is one of several models for implement-
ing distributed communication

{ It is particular useful for transparently supporting

request/response-style applications

{ However, it is not appropriate for all applications

due to its performance overhead and lack of exi-

bility

� Before deciding on a particular communica-
tion model it is crucial to carefully analyze
the distributed requirements of the applica-
tions involved

{ Particularly the tradeo� of security for performance: : :

51

