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Introduction

� Remote Procedure Calls (RPC) are a popu-
lar model for building client/server applica-
tions

{ ONC RPC and OSF DCE are widely available RPC

toolkits

� RPC forms the basis for many client/server
applications

{ e.g., NFS

� Distributed object computing (DOC) frame-
works may be viewed as an extension of
RPC (RPC on steriods)

{ e.g., OMG CORBA

� RPC falls somewhere between the transport
layer and application layer in the OSI model

{ i.e., it contains elements of session and presenta-

tion layers
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Motivation

� RPC tries to simplify distributed application

programming by making distribution trans-

parent

� RPC toolkits automatically handle

{ Reliability

. e.g., communication errors and transactions

{ Platform heterogeneity

. e.g., performs parameter \marshaling" of com-

plex data structures and handles byte-ordering

di�erences

{ Service location and selection

{ Service activation and handler dispatching

{ Security
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IPC Overview
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� Many applications require communication among
multiple processes

{ Processes may be remote or local
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Message Passing Model

� Message passing is a general technique for

exchanging information between two or more

processes

� Basically an extension to the send/recv I/O
API

{ e.g., UDP, VMTP

� Supports a number of di�erent communica-
tion styles

{ e.g., request/response, asynchronous oneway, mul-

ticast, broadcast, etc.

� May serve as the basis for higher-level com-

munication mechanisms such as RPC
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Message Passing Model (cont'd)

� In general, message passing does not make
an e�ort to hide distribution

{ e.g., network byte order, pointer linearization, ad-

dressing, and security must be dealt with explicitly

� This makes the model e�cient and exible,

but also complicate and time consuming
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Message Passing Design

Considerations

� Blocking vs. nonblocking

{ A�ects reliablility, responsiveness, and program struc-

ture

� Bu�ered vs. unbu�ered

{ A�ects performance and reliability

� Reliable vs. unreliable

{ A�ects performance and correctness
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Monolithic Application Structure
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RPC Application Structure
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� Note, RPC generators automate most of

the work involved in separating client and

server functionality
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Basic Principles of RPC

1. Use traditional programming style for dis-

tributed application development

2. Enable selective replacement of local proce-
dure calls with remote procecure calls

� Local Procedure Call (LPC)

{ A well-known method for transferring control

from one part of a process to another

. Implies a subsequent return of control to the

caller

� Remote Procedure Call (RPC)

{ Similar LPC, except a local process invokes a

procedure on a remote system

. i.e., control is transferred across processes/hosts
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A Temporal View of RPC
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� An RPC protocol contains two sides, the
sender and the receiver (i.e., client and server)

{ However, a server might also be a client of another

server and so on: : :
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A Layered View of RPC
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RPC Automation

� To help make distribution transparent, RPC
hides all the network code in the client stubs
and server skeletons

{ These are usually generated automatically: : :

� This shields application programs from net-
working details

{ e.g., sockets, parameter marshalling, network byte

order, timeouts, ow control, acknowledgements,

retransmissions, etc.

� It also takes advantage of recurring com-

muncation patterns in network servers to

generate most of the stub/skeleton code

automatically
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Typical Server Startup Behavior
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Typical Client Startup Behavior
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Typical Client/Server Interaction
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RPC Models

� There are several variations on the stan-

dard RPC \synchronous request/response"

model

� Each model provides greater exibility, at

the cost of less transparency

� Certain RPC toolkits support all the di�er-
ent models

{ e.g., ONC RPC

� Other DOC frameworks do not (due to porta-
bility concerns)

{ e.g., OMG CORBA and OSF DCE
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RPC Models
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RPC Models (cont'd)
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Transparency Issues

� RPC has a number of limitations that must
be understood to use the model e�ectively

{ Most of the limitations center around transparency

� Transforming a simple local procedure call
into system calls, data conversions, and net-
work communications increases the chance
of something going wrong

{ i.e., it reduces the transparency of distribution
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Tranparency Issues (cont'd)

� Key Aspects of RPC Transparency

1. Parameter passing

2. Data representation

3. Binding

4. Transport protocol

5. Exception handling

6. Call semantics

7. Security

8. Performance
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Parameter Passing

� Functions in an application that runs in a

single process may collaborate via parame-

ters and/or global variables

� Functions in an application that runs in mul-

tiple processes on the same host may col-

laborate via message passing and/or non-

distributed shared memory

� However, passing parameters is typically the
only way that RPC-based clients and servers
share information

{ Hence, we have already given up one type of transparency: : :
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Parameter Passing (cont'd)

� Passing parameters across process/host bound-

aries is surprisingly tricky: : :

� Parameters that are passed by value are fairly
simple to handle

{ The client stub copies the value from the client

and packages into a network message

{ Presentation issues are still important, however

� Parameters passed by reference are much
harder

{ e.g., in C when the address of a variable is passed

. e.g., passing arrays

{ Or more generally, handling pointer-based data

structures

. e.g., pointers, lists, trees, stacks, graphs, etc.
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Parameter Passing (cont'd)

� Typical solutions include:

{ Have the RPC protocol only allow the client to

pass arguments by value

. However, this reduces transparency even further!

{ Use a presentation data format where the user

speci�cally de�nes what the input arguments are

and what the return values are

. e.g., Sun's XDR routines

{ RPC facilities typically provide an \interface de�-

nition language" to handle this

. e.g., CORBA or DCE IDL
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Data Representation

� RPC systems intended for heterogeneous
environments must be sensitive to byte-ordering
di�erences

{ They typically provide tools for automatically per-

forming data conversion (e.g., rpcgen or idl)

� Examples:

{ Sun RPC (XDR)

. Imposes \canonical" big-endian byte-ordering

. Minimum size of any �eld is 32 bits

{ Xerox Courier

. Uses big-endian

. Minimum size of any �eld is 16 bits
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Data Representation (cont'd)

� Examples (cont'd)

{ DCE RPC (NDR)

. Supports multiple presentation layer formats

. Supports \receiver makes it right" semantics: : :

� Allows the sender to use its own internal for-

mat, if it is supported

. The receiver then converts this to the appropri-

ate format, if di�erent from the sender's format

� This is more e�cient than \canonical" big-

endian format for little-endian machines
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Binding

� Binding is the process of mapping a request
for a service onto a physical server some-
where in the network

{ Typically, the client contacts an appropriate name

server or \location broker" that informs it which

remote server contains the service

. Similar to calling 411: : :

� If service migration is supported, it may be
necessary to perform this operation multiple
times

{ Also may be necessary to leave a \forwarding" ad-

dress
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Binding (cont'd)

� There are two components to binding:

1. Finding a remote host for a desired service

2. Finding the correct service on the host

{ i.e., locating the \process" on a given host that

is listening to a well-known port

� There are several techniques that clients use
to locate a host that provides a given type
of service

{ These techniques di�er in terms of their perfor-

mance, transparency, accuracy, and robustness
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Binding (cont'd)

� \Hard-code" magic numbers into programs

(ugh: : : ;-))

� Another technique is to hard-code this in-
formation into a text �le on the local host

{ e.g., /etc/services

{ Obviously, this is not particularly scalable: : :

� Another technique requires the client to name
the host they want to contact

{ This host then provides a \superserver" that knows

the port number of any services that are available

on that host

{ Some example super servers are:

. inetd and listen -- ID by port number

. tcpmux -- ID by name (e.g., "ftp")
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Binding (cont'd)

� Superserver: inetd and listen

{ Motivation

. Originally, system daemon processes ran as sep-

arate processes that started when the system

was booted

. However, this increases the number of processes

on the machine, most of which are idle much of

the time

{ Solution ! superserver

. Instead of having multiple daemon processes asleep

waiting for communication, inetd or listen lis-
tens on behalf of all of them and dynamically

starts the appropriate one \on demand"

� i.e., upon receipt of a service request
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Binding (cont'd)

� Superservers (cont'd)

{ This reduces total number of system processes

{ It also simpli�es writing of servers, since many

start-up details are handled by inetd

. e.g., socket, bind, listen, accept

{ See /etc/inetd.conf for details: : :

{ Note that these super servers combine several ac-

tivities

. e.g., binding and execution
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Binding (cont'd)

� Location brokers and traders

{ These more general techniques maintain a dis-

tributed database of \service ! server" mappings

{ Servers on any host in the network register their

willingness to accept RPCs by sending a special

registration message to a mapping authority, e.g.,

portmapper -- ID by PROGRAM/VERSION number

orbixd -- ID by \interface"

{ Clients contact the mapping authority to locate a

particular service

. Note, one extra level of indirection: : :
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Binding (cont'd)

� Location brokers and traders

{ A location broker manages a hierarchy consisting

of pairs of names and object references

. The desired object reference can be found if its

name is known

{ A trader service can locate a suitable object given

a set of attributes for the object

. e.g., supported interface(s), average load and

response times, or permissions and privileges

{ The location of a broker or trader may be set via

a system administrator or determined via a name

server discovery protocol

. e.g., may use broadcast or multicast to locate

name server: : :
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Transport Protocol

� Some RPC implementations use only a sin-
gle transport layer protocol

{ Others allow protocol section either implicitly or

explicitly

� Some examples:

{ Sun RPC

. Earlier versions support only UDP, TCP

. Recent versions are \transport independent"

{ DCE RPC

. Runs over many, many protocol stacks

. And other mechanisms that aren't stacks

� e.g., shared memory

{ Xerox Courier

. SPP
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Transport Protocol (cont'd)

� When a connectionless protocol is used, the
client and server stubs must explicitly han-
dle the following:

1. Lost packet detection (e.g., via timeouts)

2. Retransmissions

3. Duplicate detection

� This makes it di�cult to ensure certain RPC

reliability semantic guarantees

� A connection-oriented protocol handles some
of these issues for the RPC library, but the
overhead may be higher when a connection-
oriented protocol is used

{ e.g., due to the connection establishment and ter-

mination overhead
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Exception Handling

� With a local procedure call there are a lim-
ited number of things that can go wrong,
both with the call/return sequence and with
the operations

{ e.g., invalid memory reference, divide by zero, etc.

� With RPC, the possibility of something go-
ing wrong increases, e.g.,

1. The actual remote server procedure itself generate

an error

2. The client stub or server stub can encounter net-

work problems or machine crashes

� Two types of error codes are necessary to
handle two types of problems

1. Communication infrastructure failures

2. Service failures
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Exception Handling (cont'd)

� Both clients and servers may fail indepen-
dently

{ If the client process terminates after invoking a

remote procedure but before obtaining its result,

the server reply is termed an orphan

� Important question: \how does the server

indicate the problems back to the client?"

� Another exception condition is a request by

the client to stop the server during a com-

putation
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Exception Handling (cont'd)

� DCE and CORBA de�ne a set of standard

\communication infrastructure errors"

� For C++ mappings, these errors are often

translated into C++ exceptions

� In addition, DCE provides a set of C macros

for use with programs that don't support

exception handling
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Call Semantics

� When a local procedure is called, there is

never any question as to how many times

the procedure executed

� With a remote procedure, however, if you
do not get a response after a certain inter-
val, clients may not know how many times
the remote procedure was executed

{ i.e., this depends on the \call semantics"

{ Of course, whether this is a problem or not is

\application-de�ned"
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Call Semantics (cont'd)

� When an RPC can be executed any number
of times, with no harm done, it is said to
be idempotent.

{ i.e., there are no harmful side-e�ects: : :

{ Some examples of idempotent RPCs are:

. Returning time of day

. Calculating square root

. Reading the �rst 512 bytes of a disk �le

. Returning the current balance of a bank account

{ Some non-idempotent RPCs include:

. A procedure to append 512 bytes to the end of

a �le

. A procedure to subtract an amount from a bank

account

40



Call Semantics (cont'd)

� Handling non-idempotent services typically

requires the server to maintain state

� However, this leads to several additional com-
plexities:

1. When is it acceptable to relinquish the state?

2. What happens if crashes occur?
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Call Semantics (cont'd)

� There are three di�erent forms of RPC call
semantics:

1. Exactly once (same as local IPC)

{ Hard/impossible to achieve, because of server

crashes or network failures : : :

2. At most once

{ If normal return to caller occurs, the remote pro-

cedure was executed one time

{ If an error return is made, it is uncertain if re-

mote procedure was executed one time or not

at all

3. At least once

{ Typical for idempotent procedures, client stub

keeps retransmitting its request until a valid re-

sponse arrives

{ If client must send its request more than once,

there is a possibility that the remote procedure

was executed more than once

. Unless response is cached: : :
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Call Semantics (cont'd)

� Note that if a connectionless transport pro-
tocol is used then achieving \at most once"
semantics becomes more complicated

{ The RPC framework must use sequence numbers

and cache responses to ensure that duplicate re-

quests aren't executed multiple times

� Note that accurate distributed timestamps

are useful for reducing the amount of state

that a server must cache in order to detect

duplicates
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Security

� Typically, applications making local proce-
dure calls do not have to worry about main-
taining the integrity or security of the caller/callee

{ i.e., calls are typically made in the same address

space

. Note that shared libraries may complicate this: : :

� Local security is usually handled via access

control or special process privileges

� Remote security is handled via distributed
authentication protocols

{ e.g., Kerberos: : :
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Performance

� Usually the performance loss from using RPC
is an order of magnitude or more, compared
with making a local procedure call due to

1. Protocol processing

2. Context switching

3. Data copying

4. Network latency

5. Congestion

� Note, these sources of overhead are ubiqui-

tous to networking: : :
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Performance (cont'd)

� RPC also tends to be much slower than us-
ing lower-level remote IPC facilities such as
sockets directly due to overhead from

1. Presentation conversion

2. Data copying

3. Flow control

{ e.g., stop-and-wait, synchronous client call be-

havior

4. Timer management

{ Non-adaptive (consequence of LAN upbringing)

� Note, these sources of overhead are typical

of RPC: : :
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Performance (cont'd)

� Another important aspect of performance is
how the server handles multiple simultane-
ous requests from clients

{ An iterative RPC server performs the following

functionality:

loop f
wait for RPC request;

receive RPC request;

decode arguments;

execute desired function;

reply result to client;

g

{ Thus the RPC server cannot accept new RPC re-

quests while executing the function for the previ-

ous request

. This is undesirable if the execution of the func-

tion takes a long time

� e.g., clients will time out and retransmit, in-

creasing network and host load
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Performance (cont'd)

� In many situation, a concurrent RPC server
should be used:

loop f
wait for RPC request;

receive RPC request;

decode arguments;

spawn a process or thread f
execute desired function;

reply result to client;

g

g

� Threading is often preferred since it requires

less resources to execute e�ciently
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Performance (cont'd)

� However, the primary justi�cation for RPC
is not just replacing local procedure calls

{ i.e., it is a method for simplifying the development

of distributed applications

� In addition, using distribution may provide
higher-level improvements in:

1. Performance

2. Functionality

3. Reliability
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Performance (cont'd)

� Servers are often the bottleneck in distributed

communication

� Therefore, another performance consider-
ation is the technique used to invoke the
server every time a client request arrives,
e.g.,

{ Iterative -- server handles in the same process

. May reduce throughput and increase latency

{ Concurrent -- server forks a new process or thread

to handle each request

. May require subtle synchronization, programming,

and debugging techniques to work successfully

� Thread solutions may be non-portable

. Note also that multi-threading removes the need

for synchronous client behavior: : :
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Summary

� RPC is one of several models for implement-
ing distributed communication

{ It is particular useful for transparently supporting

request/response-style applications

{ However, it is not appropriate for all applications

due to its performance overhead and lack of exi-

bility

� Before deciding on a particular communica-
tion model it is crucial to carefully analyze
the distributed requirements of the applica-
tions involved

{ Particularly the tradeo� of security for performance: : :
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