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ABSTRACT

Modern operating systems provide multiple concurrency
mechanisms to develop high-performance Web servers. Syn-
chronous multi-threading is a popular mechanism for devel-
oping Web servers that must perform multiple operations si-
multaneously to meet their performance requirements. In ad-
dition, an increasing number of operating systems support
asynchronous mechanisms that provide the benefits of concur-
rency, while alleviating much of the performance overhead of
synchronous multi-threading.

This paper provides two contributions to the study of
high-performance Web servers. First, it examines how syn-
chronous and asynchronous event dispatching mechanisms
impact the design and performance of JAWS, which is our
high-performance Web server framework. The results reveal
significant performance improvements when aproactivecon-
currency model is used to combine lightweight concurrency
with asynchronous event dispatching.

In general, however, the complexity of the proactive con-
currency model makes it harder to program applications that
can utilize asynchronous concurrency mechanisms effectively.
Therefore, the second contribution of this paper describes how
to reduce the software complexity of asynchronous concurrent
applications by applying theProactor pattern. This pattern
describes the steps required to structure object-oriented ap-
plications that seamlessly combine concurrency with asyn-
chronous event dispatching. The Proactor pattern simpli-
fies concurrent programming and improves performance by
allowing concurrent application to have multiple operations
running simultaneously without requiring a large number of
threads.

�This work was supported in part by Microsoft, Siemens Med, and
Siemens Corporate Research.

1 INTRODUCTION

Computing power and network bandwidth on the Internet
has increased dramatically over the past decade. High-speed
networks (such as ATM and Gigabit Ethernet) and high-
performance I/O subsystems (such as RAID) are becoming
ubiquitous. In this context, developing scalable Web servers
that can exploit these innovations remains a key challenge
for developers. Thus, it is increasingly important to allevi-
ate common Web server bottlenecks, such as inappropriate
choice of concurrency and dispatching strategies, excessive
filesystem access, and unnecessary data copying.

Our research vehicle for exploring the performance impact
of applying various Web server optimization techniques is the
JAWS Adaptive Web Server(JAWS) [1]. JAWS is both an
adaptive Web server and a development framework for Web
servers that runs on multiple OS platforms including Win32,
most versions of UNIX, and MVS Open Edition.

Our experience [2] building Web servers on multiple OS
platforms demonstrates that the effort required to optimize
performance can be simplified significantly by leveraging OS-
specific features. For example, an optimized file I/O sys-
tem that automatically caches open files in main memory
via mmapgreatly reduces latency on Solaris. Likewise, sup-
port for asynchronous event dispatching on Windows NT can
substantially increase server throughput by reducing context
switching and synchronization overhead incurred by multi-
threading.

Unfortunately, the increase in performance obtained
through the use of asynchronous event dispatching on exist-
ing operating systems comes at the cost of increased software
complexity. Moreover, this complexity is further compounded
when asynchrony is coupled with multi-threading. This style
of programming,i.e., proactive programming, is relatively un-
familiar to many developers accustomed to the synchronous
event dispatching paradigm. This paper describes how the
Proactor patterncan be applied to improve both the perfor-
mance and the design of high-performance communication
applications, such as Web servers.

A pattern represents a recurring solution to a software de-
velopment problem within a particular context [3]. Patterns
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identify the static and dynamic collaborations and interactions
between software components. In general, applying patterns
to complex object-oriented concurrent applications can signif-
icantly improve software quality, increase software maintain-
ability, and support broad reuse of components and architec-
tural designs [4]. In particular, applying theProactorpattern
to JAWS simplifies asynchronous application development by
structuring the demultiplexing of completion events and the
dispatching of their corresponding completion routines.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of the JAWS server framework de-
sign; Section 3 discusses alternative event dispatching strate-
gies and their performance impacts; Section 4 explores how to
leverage the gains of asynchronous event dispatching through
application of the Proactor pattern; and Section 5 presents
concluding remarks.

2 JAWS FRAMEWORK OVERVIEW

Figure 1 illustrates the major structural components and de-
sign patterns that comprise the JAWS framework [1]. JAWS
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Figure 1: Architectural Overview of the JAWS Framework

is designed to allow the customization of various Web server
strategies in response to environmental factors. These factors
includestatic factors (e.g., number of available CPUs, sup-
port for kernel-level threads, and availability of asynchronous
I/O in the OS), as well asdynamicfactors (e.g., Web traffic
patterns and workload characteristics).

JAWS is structured as aframework of frameworks. The
overall JAWS framework contains the following components
and frameworks: anEvent Dispatcher, Concurrency Strat-
egy, I/O Strategy, Protocol Pipeline, Protocol Handlers, and
Cached Virtual Filesystem. Each framework is structured as a
set of collaborating objects implemented using components
in ACE [5]. The collaborations among JAWS components

and frameworks are guided by a family of patterns, which are
listed along the borders in Figure 1. An outline of the key
frameworks, components, and patterns in JAWS is presented
below; Section 4 then focuses on the Proactor pattern in de-
tail.1

Event Dispatcher: This component is responsible for coordi-
nating JAWS’Concurrency Strategywith its I/O Strategy. The
passive establishment of connection events with Web clients
follows the Acceptorpattern [6]. New incoming HTTP re-
quest events are serviced by a concurrency strategy. As events
are processed, they are dispatched to theProtocol Handler,
which is parameterized by an I/O strategy. JAWS ability to
dynamically bind to a particular concurrency strategy and I/O
strategy from a range of alternatives follows theStrategypat-
tern [3].

Concurrency Strategy: This framework implements con-
currency mechanisms (such as single-threaded, thread-per-
request, or thread pool) that can be selected adaptively at
run-time using theState pattern [3] or pre-determined at
initialization-time. TheService Configuratorpattern [7] is
used to configure a particular concurrency strategy into a
Web server at run-time. When concurrency involves multi-
ple threads, the strategy creates protocol handlers that follow
theActive Objectpattern [8].

I/O Strategy: This framework implements various I/O mech-
anisms, such as asynchronous, synchronous and reactive I/O.
Multiple I/O mechanisms can be used simultaneously. In
JAWS, asynchronous I/O is implemented using theProactor
pattern [9], while reactive I/O is accomplished through the
Reactorpattern [10]. These I/O strategies may utilize theMe-
mento[3] andAsynchronous Completion Token[11] patterns
to capture and externalize the state of a request so that it can
be restored at a later time.

Protocol Handler: This framework allows system develop-
ers to apply the JAWS framework to a variety of Web system
applications. AProtocol Handleris parameterized by a con-
currency strategy and an I/O strategy. These strategies are
decoupled from the protocol handler using theAdapterpat-
tern [3]. In JAWS, this component implements the parsing
and handling of HTTP/1.0 request methods. The abstraction
allows for other protocols (such as HTTP/1.1, DICOM, and
SFP [12]) to be incorporated easily into JAWS. To add a new
protocol, developers simply write a newProtocol Handlerim-
plementation, which is then configured into the JAWS frame-
work.

Protocol Pipeline: This framework allows filter operations to
be incorporated easily with the data being processed by the
Protocol Handler. This integration is achieved by employing
the Adapterpattern. Pipelines follow thePipes and Filters
pattern [13] for input processing. Pipeline components can be

1Due to space limitations it is not possible to describe all the patterns
mentioned below in detail. The references provide complete coverage of each
pattern, however.
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linked dynamically at run-time using theService Configurator
pattern.

Cached Virtual Filesystem: This component improves Web
server performance by reducing the overhead of filesystem ac-
cess. Various caching strategies, such as LRU, LFU, Hinted,
and Structured, can be selected following theStrategypat-
tern [3]. This allows different caching strategies to be profiled
and selected based on their performance. Moreover, optimal
strategies to be configured statically or dynamically using the
Service Configuratorpattern. The cache for each Web server
is instantiated using theSingletonpattern [3].

Tilde Expander: This component is another cache compo-
nent that uses a perfect hash table [14] that maps abbreviated
user login names (e.g.,�schmidt ) to user home directories
(e.g., /home/cs/faculty/schmidt ). When personal
Web pages are stored in user home directories, and user di-
rectories do not reside in one common root, this component
substantially reduces the disk I/O overhead required to access
a system user information file, such as/etc/passwd . By
virtue of theService Configuratorpattern, the Tilde Expander
can be unlinked and relinked dynamically into the server when
a new user is added to the system.

Our previous work on high-performance Web servers has
focused on (1) the design of the JAWS framework [1] and
(2) detailed measurements on the performance implications
of alternative Web server optimization techniques [2]. In our
earlier work, we discovered that a concurrent proactive Web
server can achieve substantial performance gains [15].

This paper focuses on a previously unexamined point in the
high-performance Web server design space:the application
of the Proactor pattern to simplify Web server software devel-
opment, while maintaining high-performance.Section 3 mo-
tivates the need for concurrent proactive architectures by ana-
lyzing empirical benchmarking results of JAWS and outlining
the software design challenges involved in developing proac-
tive Web servers. Section 4 then demonstrates how these chal-
lenges can be overcome by designing the JAWS Web server
using the Proactor pattern.

3 CONCURRENCY ARCHITECTURES

Developing a high-performance Web server like JAWS re-
quires the resolution of the following forces:

� Concurrency: The server must perform multiple client re-
quests simultaneously;

� Efficiency: The server must minimize latency, maximize
throughput, and avoid utilizing the CPU(s) unnecessarily.

� Adaptability: Integrating new or improved transport proto-
cols (such as HTTP 1.1 [16]) should incur minimal enhance-
ment and maintenance costs.

� Programming simplicity: The design of the server should
simplify the use of various concurrency strategies, which may
differ in performance on different OS platforms;

The JAWS Web server can be implemented using several
concurrency strategies, such as multiple synchronous threads,
reactive synchronous event dispatching, and proactive asyn-
chronous event dispatching. Below, we compare and contrast
the performance and design impacts of using conventional
multi-threaded synchronous event dispatching versus proac-
tive asynchronous event dispatching, using our experience de-
veloping and optimizing JAWS as a case-study.

3.1 CONCURRENT SYNCHRONOUS EVENTS

Overview: An intuitive and widely used concurrency archi-
tecture for implementing concurrent Web servers is to use
synchronous multi-threading. In this model, multiple server
threads can process HTTPGETrequests from multiple clients
simultaneously. Each thread performs connection establish-
ment, HTTP request reading, request parsing, and file transfer
operations synchronously. As a result, each operation blocks
until it completes.

The primary advantage of synchronous threading is the
simplification of server code. In particular, operations per-
formed by a Web server to service client A’s request are
mostly independent of the operations required to service client
B’s request. Thus, it is easy to service different requests in
separate threads because the amount of state shared between
the threads is low, which minimizes the need for synchro-
nization. Moreover, executing application logic in separate
threads allows developers to utilize intuitive sequential com-
mands and blocking operations.

Figure 2 shows how JAWS can be configured to use syn-
chronous threads to process multiple clients concurrently.
This figure shows aSync Acceptor object that encapsu-
lates the server-side mechanism for synchronously accepting
network connections.

The sequence of steps that each thread uses to service an
HTTP GETrequest using a Thread Pool concurrency model
can be summarized as follows:

1. Each thread synchronously blocks in theSync
Acceptor waiting for a client connection request;

2. A client connects to the server, and theSync
Acceptor selects one of the waiting threads to accept
the connection;

3. The new client’s HTTP request is synchronously read
from the network connection by the selected thread;

4. The request is parsed;

5. The requested file is synchronously read;

6. The file is synchronously sent to the client.
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Figure 2: Multi-threaded Web Server Architecture

As described above, each concurrently connected client
is serviced by a dedicated server thread. The thread com-
pletes a requested operation synchronously before servicing
other HTTP requests. Therefore, to perform synchronous I/O
while servicing multiple clients, JAWS must spawn multiple
threads.

Evaluation: Although the synchronous multi-threaded model
is intuitive and maps relatively efficiently onto multi-CPU
platforms, it has the following drawbacks:

� The threading policy is tightly coupled to the concur-
rency policy: The synchronous model requires a dedicated
thread for each connected client. A concurrent application
may be better optimized by aligning its threading strategy to
available resources (such as the number of CPUs) rather than
to the number of clients being serviced concurrently;

� Increased synchronization complexity:Threading can in-
crease the complexity of synchronization mechanisms neces-
sary to serialize access to a server’s shared resources (such as
cached files and logging of Web page hits);

� Increased performance overhead:Threading can perform
poorly due to context switching, synchronization, and data
movement among CPUs [5];

� Non-portability: Threading may not be available on all OS
platforms. Moreover, OS platforms differ widely in terms
of their support for preemptive and non-preemptive threads.
Consequently, it is hard to build multi-threaded servers that
behave uniformly across OS platforms.

As a result of these drawbacks, multi-threading may not al-
ways be the most efficient nor the least complex solution to
develop concurrent Web servers. The solution may not be ob-
vious, since the disadvantages may not result in any actual

performance penalty except under certain conditions, such as
a particularly high number of long running requests inter-
mixed with rapid requests for smaller files. Therefore, it is
important to explore alternative Web server architecture de-
signs, such as the concurrent asynchronous architecture de-
scribed next.

3.2 CONCURRENT ASYNCHRONOUS EVENTS

Overview: When the OS platform supports asynchronous
operations, an efficient and convenient way to implement a
high-performance Web server is to useproactive event dis-
patching. Web servers designed using this dispatching model
handle thecompletionof asynchronous operations with one or
more threads of control.

JAWS implements proactive event dispatching by first is-
suing an asynchronous operation to the OS and registering a
callback (which is theCompletion Handler ) with the
Event Dispatcher.2 This Event Dispatchernotifies JAWS
when the operation completes. The OS then performs the op-
eration and subsequently queues the result in a well-known
location. TheEvent Dispatcheris responsible for dequeu-
ing completion notifications and executing the appropriate
Completion Handler .

Figures 3 and 4 show how the JAWS Web server con-
figured using proactive event dispatching handles multiple
clients concurrently within one or more threads. Figure 3
shows the sequence of steps taken when a client connects to
JAWS.

4: connect Web Server

Web
Browser

Async
Acceptor

Event
Dispatcher

Protocol
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1: accept
connections

Operating
System

2: accept
(Acceptor,
Dispatcher)

3: handle
events

5: accept
complete

6:
accept

complete

7: create

8: read (connection,
Handler, Dispatcher)

Figure 3: Client connects to the Proactor-based JAWS Web
Server

1. JAWS instructs theAsync Acceptor to initiate an
asynchronous accept;

2. TheAsync Acceptor initiates an asynchronous ac-
cept with the OS and passes itself as aCompletion

2In our discussion, JAWS framework components presented in Section 2
appear initalics and pattern participants presented in Section 4 appear in
typewriter font.
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Handler and a reference to theEvent Dispatcherthat
will be used to notify theAsync Acceptor upon
completion of the asynchronous accept;

3. JAWS invokes the event loop of theEvent Dispatcher;

4. The client connects to JAWS;

5. When the asynchronous accept operation completes, the
OS notifies theEvent Dispatcher;

6. TheEvent Dispatchernotifies theAsync Acceptor ;

7. TheAsync Acceptor creates an appropriateProto-
col Handler;

8. TheProtocol Handlerinitiates an asynchronous opera-
tion to read the request data from the client and passes
itself as aCompletion Handler and a reference
to theEvent Dispatcherthat will be used to notify the
Protocol Handlerupon completion of the asynchronous
read.

Figure 4 shows the sequence of steps that the JAWS uses to
service an HTTPGET request when it is configured using
proactive event dispatching. These steps are outlined below:

Web Server

Web
Browser

File
System

Event
Dispatcher

Protocol
Handler

Operating
System

1: GET
/etc/passwd

2: read complete

3: read
complete

4: parse request

5: TransmitFile (File,
Conn., Handler,

Dispatcher)

6: TransmitFile
complete

7: write
complete

Figure 4: Client Sends requests to a Proactor-based Web
Server

1. The client sends an HTTPGETrequest;

2. The read operation completes and the OS notifies the
Event Dispatcher;

3. The Event Dispatchernotifies the Protocol Handler
(steps 2 and 3 will repeat until the entire request has been
received);

4. TheProtocol Handlerparses the request;

5. The Protocol Handler initiates an asynchronous
TransmitFile operation to read the file data and
write it out to the client connection. When doing so,
it passes itself as aCompletion Handler and a
reference to theEvent Dispatcherthat will be used to
notify the Protocol Handler upon completion of the
asynchronous operation;

6. When the write operation completes, the OS notifies the
Event Dispatcher;

7. TheEvent Dispatcherthen notifies theCompletion
Handler

Evaluation: The primary advantage of using proactive event
dispatching is that multiple operations can be initiated and
run concurrentlywithout requiring the application to have as
many threads as there are simultaneous I/O operations. The
operations are initiated asynchronously by the application and
they run to completion within the I/O subsystem of the OS.
Once the asynchronous operation is initiated, the thread that
started the operation become available to service additional
requests.

In the proactive example above, for instance, theEvent Dis-
patchercould be single-threaded, which may be desirable on
a uniprocessor platform. When HTTP requests arrive, the sin-
gle Event Dispatcherthread parses the request, reads the file,
and sends the response to the client. Since the response is sent
asynchronously, multiple responses could potentially be sent
simultaneously. Moreover, the synchronous file read could be
replaced with an asynchronous file read to further increase the
potential for concurrency. If the file read is performed asyn-
chronously, the only synchronous operation performed by a
Protocol Handleris the HTTP protocol request parsing.

The primary drawback with the proactive event dispatch-
ing model is that the application structure and behavior can
be considerably more complicated than with the conventional
synchronous multi-threaded programming paradigm. In gen-
eral, asynchronous applications are hard to develop since
programmer’s must explicitly retrieve OS notifications when
asynchronous events complete. However, completion noti-
fications need not appear in the same order that the asyn-
chronous events were requested. Moreover, combining con-
currency with asynchronous events is even harder since the
thread that issues an asynchronous request may ultimately
handle the completion of an event started by a different thread.
The JAWS framework alleviates many of the complexities of
concurrent asynchronous event dispatching by applying the
Proactor pattern described in Section 4.

3.3 Benchmarking Results

To gain an understanding of how different concurrency and
event dispatching mechanisms impact the performance of
Web servers subject to heavy load conditions, JAWS was de-
signed to use both synchronous and proactive I/O and event
dispatching. Each one was benchmarked and the performance
of each was compared.

3.3.1 Hardware Testbed

Our hardware testbed is shown in Figure 5.
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Figure 5: Benchmarking Testbed Overview

The testbed consists of two Micron Millennia PRO2 plus
workstations. Each PRO2 has 128 MB of RAM and is
equipped with 2 Pentium Pro processors. The client machine
has a clock speed of 200 MHz, while the server machine runs
180 MHz. In addition, each PRO2 has an ENI-155P-MF-S
ATM card made by Efficient Networks, Inc. and is driven by
Orca 3.01 driver software. The two workstations were con-
nected via an ATM network running through a FORE Sys-
tems ASX-200BX, with a maximum bandwidth of 622 Mbps.
However, due to limitations of LAN emulation mode, the peak
bandwidth of our testbed is approximately 120 Mbps.

3.3.2 Software Request Generator

We used the WebSTONE [17] v2.0 benchmarking software to
collect client- and server-side metrics. These metrics included
average server throughput, andaverage client latency. Web-
STONE is a standard benchmarking utility, capable of gener-
ating load requests that simulate typical Web server file access
patterns. Our experiments used WebSTONE to generate loads
and gather statistics for particular file sizes to determine the
impacts of different concurrency and event dispatching strate-
gies.

The file access pattern used in the tests is shown in Ta-
ble 1. This table represents actual load conditions on popular

Document Size Frequency
500 bytes 35%
5 Kbytes 50%
50 Kbytes 14%
5 Mbytes 1%

Table 1: File Access Patterns

servers, based on a study of file access patterns conducted by
SPEC [18].

3.3.3 Experimental Results
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Figure 6: Experiment Results from 500 Byte File
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Figure 10: Experiment Results from 5M File

The results presented below compare the performance of
several different adaptations of the JAWS Web server. We
discuss the effect of different event dispatching and I/O mod-
els on throughput and latency. Throughput is defined as the
average number of bits received per second by the client. A
high-resolution timer for throughput measurement was started
before the client benchmarking software sent the HTTP re-
quest. The high-resolution timer stops just after the connec-
tion is closed at the client end. The number of bits received
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includes the HTML headers sent by the server.
Latency is defined as the average amount of delay in mil-

liseconds seen by the client from the time it sends the request
to the time it completely receives the file. It measures how
long an end user must wait after sending an HTTPGETre-
quest to a Web server, and before the content begins to arrive
at the client. The timer for latency measurement is started just
before the client benchmarking software sends the HTTP re-
quest and stops just after the client receives the first response
from the server.

The five graphs shown for each of throughput and la-
tency represent different file sizes used in each experiment,
500 bytes through 5 Mbytes by factors of 10. These files
sizes represent the spectrum of files sizes benchmarked in our
experiments, to discover what impact file size has on perfor-
mance.

Throughput Comparisons: Figures 6-10 demonstrate the
variance of throughput as the size of the requested file and the
server hit rate are systematically increased. As expected, the
throughput for each connection generally degrades as the con-
nections per second increases. This stems from the growing
number of simultaneous connections being maintained, which
decreases the throughput per connection.

As shown in Figure 8, the throughput of Thread-per-
Request can degrade rapidly for smaller files as the connection
load increases. In contrast, the throughput of the synchronous
Thread Pool implementation degrade more gracefully. The
reason for this difference is that Thread-per-Request incurs
higher thread creation overhead since a new thread is spawned
for eachGETrequest. In contrast, thread creation overhead in
the Thread Pool strategy is amortized by pre-spawning threads
when the server begins execution.

The results in figures 6-10 illustrate thatTransmitFile
performs extremely poorly for small files (i.e., < 50
Kbytes). Our experiments indicate that the performance of
TransmitFile depends directly upon the number of simul-
taneous requests. We believe that during heavy server loads
(i.e., high hit rates),TransmitFile is forced to wait while
the kernel services incoming requests. This creates a high
number of simultaneous connections, degrading server per-
formance.

As the size of the file grows, however,TransmitFile
rapidly outperforms the synchronous dispatching models. For
instance, at heavy loads with the 5 Mbyte file (shown in
Figure 10), it outperforms the next closest model by nearly
40%. TransmitFile is optimized to take advantage of
Windows NT kernel features, thereby reducing the number
of data copies and context switches.

Latency Comparisons: Figures 6-10 demonstrate the vari-
ance of latency performance as the size of the requested file
and the server hit rate increase. As expected, as the connec-
tions per second increases, the latency generally increases, as

well. This reflects the additional load placed on the server,
which reduces its ability to service new client requests.

As before,TransmitFile performs extremely poorly
for small files. However, as the file size grows, its latency
rapidly improves relative to synchronous dispatching during
light loads.

3.4 SUMMARY OF PERFORMANCE RESULTS

As illustrated in the benchmarking results presented above,
there is significant variance in throughput and latency depend-
ing on the concurrency and event dispatching mechanisms.
For small files, the synchronous Thread Pool strategy pro-
vides better overall performance. Under moderate loads, the
synchronous event dispatching model provides slightly better
latency than the asynchronous model. Under heavy loads and
with large file transfers, however, the asynchronous model us-
ingTransmitFile provides better quality of service. Thus,
under Windows NT, an optimal Web server should adapt itself
to either event dispatching and file I/O model, depending on
the server’s workload and distribution of file requests.

Despite the potential for substantial performance improve-
ments, it is considerably harder to develop a Web server that
manages concurrency using asynchronous event dispatching,
compared with traditional synchronous approaches. This is
due to the additional details associated with asynchronous
programming (e.g. explicitly retrieving OS notifications that
may appear in non-FIFO order), and the added complex-
ity of combining the approach with multi-threaded concur-
rency. Moreover, proactive event dispatching can be diffi-
cult to debug since asynchronous operations are often non-
deterministic. Our experience with designing and developing
a proactive Web server indicates that theProactorpattern pro-
vides an elegant solution to managing these complexities.

4 THE PROACTOR PATTERN

In general, patterns help manage complexity by providing in-
sight into known solutions to problems in a particular soft-
ware domain. In the case of concurrent proactive architec-
tures, the complexity of the additional details of asynchronous
programming are compounded by the complexities associated
with multi-threaded programming. Fortunately, patterns iden-
tified in software solutions to other proactive architectures
have yielded theProactorpattern, which is described below.3

4.1 INTENT

The Proactor pattern supports the demultiplexing and dis-
patching of multiple event handlers, which are triggered by
the completionof asynchronous events. This pattern simpli-
fies asynchronous application development by integrating the

3For brevity, portions of the complete description have been elided. De-
tailed coverage of implementation and sample code are available in [9].

7



demultiplexing of completion events and the dispatching of
their corresponding event handlers.

4.2 APPLICABILITY

Use the Proactor pattern when one or more of the following
conditions hold:

� An application needs to perform one or more asyn-
chronous operations without blocking the calling thread;

� The application must be notified when asynchronous op-
erationscomplete;

� The application needs to vary its concurrency strategy
independent of its I/O model;

� The application will benefit by decoupling the
application-dependent logic from the application-
independent infrastructure;

� An application will perform poorly or fail to meet its per-
formance requirements when utilizing either the multi-
threaded approach or the reactive dispatching approach.

4.3 STRUCTURE AND PARTICIPANTS

The structure of the Proactor pattern is illustrated in Figure 11
using OMT notation.

Completion
Dispatcher

Proactive
Initiator

Asynchronous
Operation
Processor

Asynchronous
Operation

Completion
Handler

Figure 11: Participants in the Proactor Pattern

The key participants in the Proactor pattern include the fol-
lowing:

Proactive Initiator (Web server application’s
main thread ):

� A Proactive Initiator is any entity in
the application that initiates anAsynchronous
Operation . TheProactive Initiator registers
a Completion Handler and a Completion
Dispatcher with a Asynchronous Operation
Processor , which notifies it when the operation
completes.

Completion Handler (the Acceptor and HTTP
Handler ):

� The Proactor pattern usesCompletion Handler in-
terfaces that are implemented by the application for
Asynchronous Operation completion notification.

Asynchronous Operation (the methodsAsync Read,
Async Write , andAsync Accept ):

� Asynchronous Operations are used to exe-
cute requests (such as I/O and timer operations) on
behalf of applications. When applications invoke
Asynchronous Operations , the operations are
performedwithout borrowing the application’s thread
of control.4 Therefore, from the application’s per-
spective, the operations are performedasynchronously.
When Asynchronous Operations complete, the
Asynchronous Operation Processor dele-
gates application notifications to aCompletion
Dispatcher .

Asynchronous Operation Processor (the Operating
System ):

� Asynchronous Operations are run to completion
by the Asynchronous Operation Processor .
This component is typically implemented by the OS.

Completion Dispatcher (theNotification Queue ):

� The Completion Dispatcher is responsible
for calling back to the application’sCompletion
Handlers when Asynchronous Operations
complete. When theAsynchronous Operation
Processor completes an asynchronously initiated
operation, theCompletion Dispatcher performs
an application callback on its behalf.

4.4 COLLABORATIONS

There are several well-defined steps that occur for all
Asynchronous Operations . At a high level of abstrac-
tion, applications initiate operations asynchronously and are
notified when the operations complete. Figure 12 shows the
following interactions that must occur between the pattern
participants:

1. Proactive Initiators initiates operation: To perform
asynchronous operations, the application initiates the oper-
ation on theAsynchronous Operation Processor .
For instance, a Web server might ask the OS to transmit a file
over the network using a particular socket connection. To re-
quest such an operation, the Web server must specify which

4In contrast, the reactive event dispatching model [10] steals the applica-
tion’s thread of control to perform the operation synchronously.
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Figure 12: Interaction Diagram for the Proactor Pattern

file and network connection to use. Moreover, the Web server
must specify (1) whichCompletion Handler to notify
when the operation completes and (2) whichCompletion
Dispatcher should perform the callback once the file is
transmitted.

2. Asynchronous Operation Processor performs oper-
ation: When the application invokes operations on the
Asynchronous Operation Processor it runs them
asynchronously with respect to other application operations.
Modern operating systems (such as Solaris and Windows NT)
provide asynchronous I/O subsystems with the kernel.

3. The Asynchronous Operation Processor noti-
fies the Completion Dispatcher: When operations com-
plete, theAsynchronous Operation Processor re-
trieves the Completion Handler and Completion
Dispatcher that were specified when the operation was
initiated. TheAsynchronous Operation Processor
then passes theCompletion Dispatcher the result of
the Asynchronous Operation and theCompletion
Handler to call back. For instance, if a file was trans-
mitted asynchronously, theAsynchronous Operation
Processor may report the completion status (such as suc-
cess or failure), as well as the number of bytes written to the
network connection.

4. Completion Dispatcher notifies the application: The
Completion Dispatcher calls the completion hook on
theCompletion Handler , passing it any completion data
specified by the application. For instance, if an asynchronous
read completes, theCompletion Handler will typically
be passed a pointer to the newly arrived data.

4.5 CONSEQUENCES

This section details the consequences of using the Proactor
Pattern.

4.5.1 BENEFITS

The Proactor pattern offers the following benefits:

Increased separation of concerns: The Proactor pattern
decouples application-independent asynchrony mechanisms
from application-specific functionality. The application-
independent mechanisms become reusable components that
know how to demultiplex the completion events associated
with Asynchronous Operations and dispatch the ap-
propriate callback methods defined by theCompletion
Handlers . Likewise, the application-specific functionality
knows how to perform a particular type of service (such as
HTTP processing).

Improved application logic portability: It improves appli-
cation portability by allowing its interface to be reused inde-
pendently of the underlying OS calls that perform event de-
multiplexing. These system calls detect and report the events
that may occur simultaneously on multiple event sources.
Event sources may include I/O ports, timers, synchronization
objects, signals, etc. On real-time POSIX platforms, the asyn-
chronous I/O functions are provided by theaio family of
APIs [19]. In Windows NT, I/O completion ports and over-
lapped I/O are used to implement asynchronous I/O [20].

The Completion Dispatcher encapsulates the con-
currency mechanism: A benefit of decoupling the
Completion Dispatcher from the Asynchronous
Operation Processor is that applications can configure
Completion Dispatchers with various concur-
rency strategies without affecting other participants. The
Completion Dispatcher can be configured to use
several concurrency strategies including single-threaded and
Thread Pool solutions.

Threading policy is decoupled from the concurrency
policy: Since the Asynchronous Operation
Processor completes potentially long-running opera-
tions on behalf ofProactive Initiators , applications
are not forced to spawn threads to increase concurrency.
This allows an application to vary its concurrency policy
independently of its threading policy. For instance, a Web
server may only want to have one thread per CPU, but may
want to service a higher number of clients simultaneously.

Increased performance: Multi-threaded operating systems
perform context switches to cycle through multiple threads of
control. While the time to perform a context switch remains
fairly constant, the total time to cycle through a large number
of threads can degrade application performance significantly
if the OS context switches to an idle thread. For instance,
threads may poll the OS for completion status, which is in-
efficient. The Proactor pattern can avoid the cost of context
switching by activating only those logical threads of control
that have events to process. For instance, a Web server does
not need to activate an HTTP Handler if there is no pending
GETrequest.

Simplification of application synchronization: As long as
Completion Handlers do not spawn additional threads

9



of control, application logic can be written with little or no re-
gard to synchronization issues.Completion Handlers
can be written as if they existed in a conventional single-
threaded environment. For instance, a Web server’s HTTP
GETHandler can access the disk through anAsync Read
operation (such as the Windows NTTransmitFile func-
tion [15]).

4.5.2 DRAWBACKS

The Proactor pattern has the following drawbacks:

Hard to debug: Applications written with the Proactor pat-
tern can be hard to debug since the inverted flow of control os-
cillates between the framework infrastructure and the method
callbacks on application-specific handlers. This increases the
difficulty of “single-stepping” through the run-time behavior
of a framework within a debugger since application devel-
opers may not understand or have access to the framework
code. This is similar to the problems encountered trying to de-
bug a compiler lexical analyzer and parser written withLEX
andYACC. In these applications, debugging is straightforward
when the thread of control is within the user-defined action
routines. Once the thread of control returns to the generated
Deterministic Finite Automata (DFA) skeleton, however, it is
hard to follow the program logic.

Scheduling and controlling outstanding operations:
Proactive Initiators may have no control over
the order in whichAsynchronous Operations are
executed. Therefore, theAsynchronous Operation
Processor must be designed carefully to support prioriti-
zation and cancellation ofAsynchronous Operations .

4.6 KNOWN USES

The following are some widely documented uses of the Proc-
tor pattern:

I/O Completion Ports in Windows NT: The Windows NT
operating system implements the Proactor pattern. Various
Asynchronous Operations such as accepting new net-
work connections, reading and writing to files and sock-
ets, and transmission of files across a network connection
are supported by Windows NT. The operating system is the
Asynchronous Operation Processor . Results of
the operations are queued up at the I/O completion port (which
plays the role of theCompletion Dispatcher ).

ACE Proactor: The Adaptive Communications Environ-
ment (ACE) [5] implements a Proactor component that en-
capsulates I/O Completion Ports on Windows NT. The ACE
Proactor abstraction provides an OO interface to the stan-
dard C APIs supported by Windows NT. The source code for
this implementation can be acquired from the ACE website at
www.cs.wustl.edu/ �schmidt/ACE.html .

The UNIX AIO Family of Asynchronous I/O Operations:
On some real-time POSIX platforms, the Proactor pattern is
implemented by theaio family of APIs [19]. These OS fea-
tures are very similar to the ones described above for Windows
NT. One difference is that UNIX signals can be used to im-
plement an truly asynchronousCompletion Dispatcher
(the Windows NT API is not truly asynchronous).

Asynchronous Procedure Calls in Windows NT: Some
systems (such as Windows NT) support Asynchronous Pro-
cedure Calls (APC)s. An APC is a function that executes
asynchronously in the context of a particular thread. When
an APC is queued to a thread, the system issues a software
interrupt. The next time the thread is scheduled, it will run the
APC. APCs made by operating system are calledkernel-mode
APCs. APCs made by an application are calleduser-mode
APCs.

5 CONCLUDING REMARKS

Over the past several years, computer and network perfor-
mance has improved substantially. However, the development
of high-performance Web servers has remained expensive and
error-prone. The JAWS framework described in this paper
aims to support Web server developers by simplifying the ap-
plication of various server designs and optimization strategies.

This paper illustrates that a Web server based on traditional
synchronous event dispatching performs adequately under
light server loads. However, when the Web server is subject to
heavy loads, a design based on a concurrent proactive archi-
tecture provides significantly better performance. However,
programming this model adds complexity to the software de-
sign and increases the effort of developing high-performance
Web servers.

Much of the development effort stems from the repeated
rediscovery and reinvention of fundamental design patterns.
Design patterns describe recurring solutions found in exist-
ing software systems. Applying design patterns to concurrent
software systems can reduce software development time, im-
prove code maintainability, and increase code reuse over tra-
ditional software engineering techniques.

The Proactor pattern described in this paper embodies a
powerful technique that supports both efficient and flexible
event dispatching strategies for high-performance concurrent
applications. In general, applying this pattern enables devel-
opers to leverage the performance benefits of executing opera-
tions concurrently, without constraining them to synchronous
multi-threaded or reactive programming. In our experience,
applying the Proactor pattern to the JAWS Web server frame-
work has made it considerably easier to design, develop, test,
and maintain.
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