
A Portable, Extensible and Efficient Implementation of Proactor Pattern

Alexander Babu Arulanthu, Irfan Pyarali and Douglas C. Schmidt
falex, irfan, schmidtg@cs.wustl.edu

http://www.cs.wustl.edu/f�alex, irfan, schmidtg
Department of Computer Science

Washington University, St. Louis 63130

Abstract

The Proactor pattern [1] describes how to structure applica-
tions and systems that effectively utilize asynchronous mech-
anisms supported by operating systems. When an application
invokes an asynchronous operation, the OS performs the oper-
ation on behalf of the application. This allows the application
to have multiple operations running simultaneously without
requiring the application to have a corresponding number of
threads. Therefore, the Proactor pattern simplifies concurrent
programming and improves performance by requiring fewer
threads and leveraging OS support for asynchronous opera-
tions.

The Adaptive Communications Environment (ACE) [2] has
implemented a Proactor framework that encapsulates I/O
Completion Ports of Windows NT operating system. This
ACE Proactor abstraction provides an OO interface to the
standard C APIs supported by Windows NT. We ported this
Proactor framework to Unix platforms that support POSIX4
asynchronous I/O calls and real-time signals. This pa-
per describes the design and implementation of this new
Portable Proactor framework and explains how the de-
sign and the implementation have been made so that the
framework can be extensible, scalable and efficient. We
explain how our design took care of keeping the old in-
terfaces of the framework intact, still making the design
highly extensible and efficient. The source code for this
implementation can be acquired from the ACE website at
www.cs.wustl.edu/ �schmidt/ACE.html .

1 The Proactor Pattern

1.1 Intent

The Proactor pattern presented in [1] supports the demultiplex-
ing and dispatching of multiple event handlers, which are trig-
gered by thecompletionof asynchronous events. This pattern
simplifies asynchronous application development by integrat-
ing the demultiplexing of completion events and the dispatch-

ing of their corresponding event handlers.

1.2 Motivation

The Proactor pattern should be applied when applications re-
quire the performance benefits of executing operations concur-
rently, without the constraints of synchronous multi-threaded
or reactive programming. To illustrate these benefits, consider
a networking application that needs to perform multiple oper-
ations concurrently. For example, a high-performance Web
server must concurrently process HTTP requests sent from
multiple clients. Figure 1 shows a typical interaction between
Web browsers and a Web server. When a user instructs a

1: HTTP
request Web

Server

Web
Browser

File
System

3: read file
4: send file

2: parse request

Figure 1: Typical Web Server Communication Software Ar-
chitecture

browser to open a URL, the browser sends an HTTPGETre-
quest to the Web server. Upon receipt, the server parses and
validates the request and sends the specified file(s) back to the
browser.

1

Developing high-performance Web servers requires the res-
olution of the following forces:

� Concurrency– The server must perform multiple client
requests simultaneously;

� Efficiency– The server must minimize latency, maximize
throughput, and avoid utilizing the CPU(s) unnecessarily.

� Programming simplicity– The design of the server
should simplify the use of efficient concurrency strate-
gies;

� Adaptability– Integrating new or improved transport pro-
tocols (such as HTTP 1.1 [3]) should incur minimal main-
tenance costs.

A Web server can be implemented using several concur-
rency strategies, such as multiple synchronous threads and re-
active synchronous event dispatching. But such conventional
approaches have drawbacks as discussed in [1]. The Proactor
pattern provides a powerful technique that supports an effi-
cient and flexible asynchronous event dispatching strategy for
high-performance concurrent applications.

1.3 Concurrency Through Proactive Opera-
tions

When the OS platform supports asynchronous operations, an
efficient and convenient way to implement a high-performance
Web server is to useproactive event dispatching. Web servers
designed using a proactive event dispatching model handle
thecompletionof asynchronous operations with one or more
threads of control. Thus, the Proactor patternsimplifies asyn-
chronous Web servers by integrating completion event demul-
tiplexing and event handler dispatching.

An asynchronous Web server would utilize the Proac-
tor pattern by first having the Web server issue an asyn-
chronous operation to the OS and registering a callback with a
Completion Dispatcher that will notify the Web server
when the operation completes. The OS performs the operation
on behalf of the Web server and subsequently queues the result
in a well-known location. TheCompletion Dispatcher
is responsible for de-queuing completion notifications and
executing the appropriate callback that contains application-
specific Web server code.

Figures 2 and 3 show how a Web server designed using
proactive event dispatching handles multiple clients concur-
rently within one or more threads. Figure 2 shows the se-
quence of steps taken when a client connects to the Web
Server.

1. The Web Server instructs theAcceptor to initiate an
asynchronous accept;

4: connect

Web Server

Web
Browser

Acceptor

Completion
Dispatcher

HTTP
Handler

Operating
System

3: handle
events

5: accept
complete

1: accept
connections

2: accept
(Acceptor,
Dispatcher)

6:
accept

complete

7: create

8: read (Handler,
Dispatcher)

Figure 2: Client connects to a Proactor-based Web Server

2. The Acceptor initiates an asynchronous accept with the
OS and passes itself as aCompletion Handler and
a reference to theCompletion Dispatcher that
will be used to notify theAcceptor upon completion
of the asynchronous accept;

3. The Web Server invokes the event loop of the
Completion Dispatcher ;

4. The client connects to the Web Server;

5. When the asynchronous accept operation completes,
the Operating System notifies theCompletion
Dispatcher ;

6. TheCompletion Dispatcher notifies the Accep-
tor;

7. TheAcceptor creates anHTTP Handler ;

8. TheHTTP Handler initiates an asynchronous opera-
tion to read the request data from the client and passes it-
self as aCompletion Handler and a reference to the
Completion Dispatcher that will be used to no-
tify the HTTP Handler upon completion of the asyn-
chronous read.

Figure 3 shows the sequence of steps that the proactive Web
Server takes to service an HTTPGETrequest. These steps are
explained below:

1. The client sends an HTTPGETrequest;

2. The read operation completes and theOperating
System notifies theCompletion Dispatcher ;

3. The Completion Dispatcher notifies theHTTP
Handler (steps 2 and 3 will repeat until the entire re-
quest has been received);

4. TheHTTP Handler parses the request;

2

Web Server

Web
Browser

File
System

Completion
Dispatcher

HTTP
Handler

Operating
System

1: GET
/etc/passwd

2: read complete

3: read
complete

4: parse request

6: write (File, Conn.,
Handler, Dispatcher)

7: write
complete

8: write
complete5: read (File)

Figure 3: Client Sends requests to a Proactor-based Web
Server

5. TheHTTP Handler synchronously reads the requested
file;

6. TheHTTP Handler initiates an asynchronous opera-
tion to write the file data to the client connection and
passes itself as aCompletion Handler and a ref-
erence to theCompletion Dispatcher that will be
used to notify theHTTP Handler upon completion of
the asynchronous write;

7. When the write operation completes, the Operating Sys-
tem notifies theCompletion Dispatcher ;

8. The Completion Dispatcher then notifies the
Completion Handler (steps 6-8 continue until the
file has been delivered completely).

The primary advantage of using the Proactor pattern is that
multiple concurrent operations can be started and can run in
parallel without necessarily requiring the application to have
multiple threads. The operations are started asynchronously
by the application and they run to completion within the I/O
subsystem of the OS. The thread that initiated the operation is
now available to service additional requests.

In the example above, for instance, theCompletion
Dispatcher could be single-threaded. When HTTP re-
quests arrive, the singleCompletion Dispatcher thread
parses the request, reads the file, and sends the response to
the client. Since the response is sent asynchronously, multi-
ple responses could potentially be sent simultaneously. More-
over, the synchronous file read could be replaced with an asyn-
chronous file read to further increase the potential for concur-
rency. If the file read is performed asynchronously, the only
synchronous operation performed by anHTTP Handler is
the HTTP protocol request parsing.

The primary drawback with the Proactive model is that the
programming logic is at least as complicated as the Reac-
tive model. Moreover, the Proactor pattern can be difficult

to debug since asynchronous operations often have a non-
predictable and non-repeatable execution sequence, which
complicates analysis and debugging. But Patterns such as the
Asynchronous Completion Token [4] can be applied to sim-
plify the asynchronous application programming model [1].

1.4 Applicability

The Proactor pattern is used when one or more of the following
conditions hold:

� An application needs to perform one or more asyn-
chronous operations without blocking the calling thread;

� The application must be notified when asynchronous op-
erationscomplete;

� The application needs to vary its concurrency strategy in-
dependent of its I/O model;

� The application will benefit by decoupling the
application-dependent logic from the application-
independent infrastructure;

� An application will perform poorly or fail to meet its per-
formance requirements when utilizing either the multi-
threaded approach or the reactive dispatching approach.

1.5 Structure and Participants

The structure of the Proactor pattern is illustrated in Figure 4
using UML notation.

ProactiveProactive
InitiatorInitiator

CompletionCompletion
HandlerHandler

AsynchronousAsynchronous
ResultResult

AsynchronousAsynchronous
OperationOperation

CompletionCompletion
DispatcherDispatcher

AsynchronousAsynchronous
OperationOperation
ProcessorProcessor

<< instantiate >><< instantiate >>

<< parameter>><< parameter>><< call>><< call>>

<< call>><< call>> << call>><< call>>

<< parameter>><< parameter>>

<< call>><< call>><< parameter >><< parameter >>

Figure 4: Participants in the Proactor Pattern

The key participants in the Proactor pattern include the fol-
lowing:

Proactive Initiator (Web server application’s
main thread):

� A Proactive Initiator is any entity in
the application that initiates anAsynchronous
Operation . The Proactive Initiator regis-
ters aCompletion Handler and aCompletion
Dispatcher with an Asynchronous Operation
Processor , which notifies it when the operation
completes.

3

Completion Handler (the Acceptor and HTTP
Handler):

� The Proactor pattern usesCompletion Handler in-
terfaces that are implemented by the application for
Asynchronous Operation completion notification.

Asynchronous Operation (the methodsAsynchronous
Read, Asynchronous Write , Asynchronous
Accept andAsynchronous Transmit File):

� Asynchronous Operations are used to exe-
cute requests (such as I/O and timer operations) on
behalf of applications. When applications invoke
Asynchronous Operations , the operations are
performedwithout borrowing the application’s thread
of control.1 Therefore, from the application’s per-
spective, the operations are performedasynchronously.
When Asynchronous Operations complete, the
Asynchronous Operation Processor del-
egates application notifications to aCompletion
Dispatcher .

Asynchronous Operation Processor (the Operating
System):

� Asynchronous Operations are run to completion
by the Asynchronous Operation Processor .
This component is typically implemented by the OS.

Asynchronous Result (the object passed to the
Completion Handler on completion of an
Asynchronous Operation)

� For each Asynchronous Operation class,
there is oneAsynchronous Result class. The
Asynchronous Operation classes use the
Asynchronous Result classes to specify all
the parameters needed to carry out the Asynchronous
Operations. TheAsynchronous Result objects are
created by theAsynchronous Operation classes
and are passed to theAsynchronous Operation
Processor on issuing the asynchronous calls. The
Asynchronous Result objects also contain the
results of the asynchronous operations and are used to
pass the results to theCompletion Handler s. In
addition, theAsynchronous Result objects have
information such asAsynchronous Completion
Token s ACTs [4] which can be used by the applica-
tions to uniquely associate the asynchronous method
completions with their invocations.

1In contrast, the reactive event dispatching model [5] steals the applica-
tion’s thread of control to perform the operation synchronously.

Completion Dispatcher (theNotification Queue)

� The Completion Dispatcher is responsible
for calling back to the application’sCompletion
Handlers when Asynchronous Operations
complete. When theAsynchronous Operation
Processor completes an asynchronously initiated op-
eration, theCompletion Dispatcher performs an
application callback on behalf of theAsynchronous
Operation Processor . The Completion
Dispatcher fills the result of the asynchronous
operation in theAsynchronous Result object and
passes that to theCompletion Handler .

2 WIN32 Implementation of the Proac-
tor Pattern

In this section, we will discuss the design of the Proactor
framework that was built only for the WIN32 I/O Comple-
tion Ports. We will discuss how each of the participant of the
pattern discussed in the previous section was implemented.

2.1 Asynchronous Operation Processor

The WIN32 I/O subsystem is theAsynchronous Operation
Processor.

It definesOVERLAPPEDstructure which contains informa-
tion used in asynchronous input and output (I/O). This struc-
ture is passed to the asynchronous APIs to specify the address
of the data, such asOffset etc, in a file.

The WIN32 I/O subsystem provides the following APIs to
execute asynchronous I/O calls.

� ReadFile: To issue asynchronous read on a stream or a
file handle.

� WriteFile: To issue asynchronous accept on a stream or a
file handle.

� AcceptEx:To issue asynchronous accept from a socket
handle.

� TransmitFile: To initiate transmitting a file asyn-
chronously.

� CancelIO:To cancel all pending input and output (I/O)
operations that were issued by the calling thread for the
specified file handle.

� GetCompletionStatus:To query the OS for completions
of asynchronous I/O.

� PostQueuedCompletionStatus:To post a completion to a
Completion Port

4

2.2 Asynchronous Operation

Asynchronous Read Stream , Asynchronous
Write Stream , Asynchronous Read File ,
Asynchronous Write File , Asynchronous
Accept and Asynchronous Transmit File are the
different asynchronous operations that are currently supported
in the framework. The UML diagram 5 shows the family
of classes which implement the variousAsynchronous
Operation s.

AsynchronousAsynchronous
Operation ClassesOperation Classes

AsynchronousAsynchronous
Operation BaseOperation Base

AsynchronousAsynchronous
Read StreamRead Stream

AsynchronousAsynchronous
AcceptAccept

AsynchronousAsynchronous
Transmit FileTransmit File

AsynchronousAsynchronous
Write StreamWrite Stream

AsynchronousAsynchronous
Read FileRead File

AsynchronousAsynchronous
Write FileWrite File

Figure 5: Asynchronous Operation Classes

2.2.1 Asynchronous Operation Base

The classAsynchronous Operation Base abstracts
out all the common code found in the individual asynchronous
operation classes. This class provides the following APIs.

� open : Applications use theopen method to register the
I/O handle and theCompletion Handler with
the Completion Dispatcher . This API calls the
CreateIoCompletionPort API of the WIN32 op-
erating system to register theI/O handle with the
Completion Port of the I/O subsystem.

� cancel : This function cancels all the asynchronous
calls issued on a completion port on a particular I/O han-
dle. This is implemented using theCancelIO .

2.2.2 Asynchronous Read Stream

After the open method of the Asynchronous
Operation Base is called, applications call theread
API of this class to issue an asynchronous read on a stream.
The handle to be read from is given via theopen call.
read API takes the following parameters

� Handler: The completion handler to be called when
the operation is completed. ThisHandler defines the
call back methodhandle read stream .

� message block: Buffer where the data has to be
read.

� bytes to read: Maximum number of bytes that
could be read from the socket.

� ACT (Asynchronous Completion Token):
Magic cookie to identify the asynchronous read invoca-
tion when it completes.

The following steps take place whenread API is called.

� read creates anAsynchronous Read Stream
Result object with all the information that are needed
to carry out the asynchronous operation such asI/O
handle andbytes to read and also the informa-
tion needed to call back the application such asHandler
andACT.

� read passes this result object to a worker method called
shared read . This worker method is shared by the
Asynchronous Read File operation class.

� shared read calls theReadFile WIN32 API to is-
sue the asynchronous read.ReadFile takes pointer
to theOVERLAPPEDstructure. Since we want to pre-
serve more information such asACTandHandler along
with OVERLAPPEDstructure, we pass the pointer to
Asynchronous Read Stream Result object to
the ReadFile call. To achieve this, all the Asyn-
chronous Result classes derive from theOVERLAPPED
structure (refer to Figure 6).

2.2.3 Asynchronous Write Stream

After the open method of the Asynchronous
Operation Base is called, applications should call
thewrite API of this class to issue an asynchronous write on
a stream. Thehandle to write to is already given via the
open call. Thewrite API takes the following parameters

� Handler: The completion handler to be called when
the operation is completed. ThisHandler defines the
call back methodhandle write stream .

� message block: Buffer that contains the data to be
sent.

� bytes to write: Number of bytes to be written to
the socket.

� ACT: Magic cookie for this asynchronous write invoca-
tion.

The following steps take place whenwrite is called.

� write creates anAsynchronous Write Stream
Result object with all the information that are needed

5

to carry out the asynchronous operation such asI/O
handle andbytes to write and also the informa-
tion needed to call back the application such asHandler
andACT.

� write passes this result object to a worker method
calledshared write . This worker method is shared
by theAsynchronous Write File Operation
class.

� shared write calls theWriteFile WIN32 API to is-
sue the asynchronous write.WriteFile takes pointer
to the OVERLAPPED structure. As discussed in
Asynchronous Read Stream operation, we pass
the pointer toAsynchronous Write Stream Resultobject
to theWriteFile so that additional information such
asACT, Handler can be passed around along with the
OVERLAPPEDstructure.

2.2.4 Asynchronous Read File

This class extends the functionality of theAsynchronous
Read Stream class to do asynchronous read on a file.
This operation is very similar toAsynchronous Read
Stream except that it reads from a file handle instead of
steam handle. Thehandle to be read from is given via the
open call. TheHandler ’s handle read file is called
on completion. Whenread is called, aAsynchronous
Read File Result class object is created and passed to
the shared read method of theAsynchronous Read
Stream .

2.2.5 Asynchronous Write File

This class extends the functionality of theAsynchronous
Write Stream class to do asynchronous write to a file.
This operation class is very similar to theAsynchronous
Write Stream except that it writes from a file handle in-
stead of steam handle. The streamhandle is given via
the open call. The Handler ’s handlewrite file is called
on completion. Whenwrite is called, aAsynchronous
Write File Result class object is created and passed to
theshared read method of theAsynchronous Write
Stream .

2.2.6 Asynchronous Accept

After the open method of the Asynchronous
Operation Base is called, applications call theac-
cept API of this class to issue an asynchronous write on a
stream. Thelisten handle where the connection is to be
accepted is given via theopen call.Theaccept API takes
the following parameters:

� Handler: This class defines call back hook method
handle asynch accept which gets called when the
accept completes.

� message block: Buffer to accept initial data that is
read on the socket.

� bytes to read: Number of initial bytes to be read
from the socket.

� ACT: Magic cookie for this asynchronous accept invoca-
tion.

The following steps take place whenaccept is called.

� accept creates an Asynchronous Accept
Result object with all the information that are needed
to carry out the asynchronous operation which areI/O
handle and number of bytes to read and
also the information needed to call back the application
which areHandler andACT.

� accept calls theAcceptExWIN32 API to issue the
asynchronous accept. AcceptEx takes pointer to
the OVERLAPPEDstructure. Since we want to pre-
serve the more information such asACTandHandler
along withOVERLAPPEDstructure, we pass the pointer
to Asynchronous Accept Result object to the
AcceptEx call.

2.2.7 Asynchronous Transmit File

After the open method of the Asynchronous
Operation Base is called, applications should call
the transmitfile API of this class to issue an asynchronous
transmit file operation. Thestream handle is given via
the open call.transmit file API takes the following
parameters

� Handler: This class defines call back hook method
handle asynch transmit file which gets called
when the transmission completes.

� header and trailer: Header and the trailer data
for the transmission.

� The offset of the file from where the data has to be
read.

� bytes per send: Size of the block that is sent on
the socket.

� ACT: Magic cookie for this asynchronous transmission.

The following steps take place whentransmit is called.

� The transmit file creates anAsynchronous
Transmit File Result object with all the infor-
mation that are needed to carry out the asynchronous op-
eration such asI/O handle and bytes to read

6

and also the information needed to call back the appli-
cation which areHandler andACT.

� transmit file calls the TransmitFile WIN32
API to initiate the asynchronous transmission.
TransmitFile takes pointer to theOVERLAPPED
structure. Since we want to preserve additional in-
formation such asACT and Handler along with
OVERLAPPEDstructure, we pass the pointer to
Asynchronous Transmit File Result object
to theTransmitFile call.

2.3 Asynchronous Result

The Asynchronous Result classes derive from the
OVERLAPPEDstructure and make more useful classes.
For each Asynchronous Operation class, there is
an Asynchronous Result class which carries around
the additional information besides the information in the
OVERLAPPEDstructure. This additional information is
needed to execute that operation. The result classes also con-
tain fields to hold the results of the asynchronous operation.
The Asynchronous Result objects are finally passed
to the Completion Handler s when the completion is
dispatched.

Refer to the UML diagram 6 for the family of
Asynchronous Result classes.

AsynchronousAsynchronous
Result InterfacesResult Interfaces

AsynchronousAsynchronous
ResultResult

AsynchronousAsynchronous
Read Stream ResultRead Stream Result

AsynchronousAsynchronous
Accept ResultAccept Result

AsynchronousAsynchronous
Transmit File ResultTransmit File Result

AsynchronousAsynchronous
Write Stream ResultWrite Stream Result

AsynchronousAsynchronous
Read File ResultRead File Result

AsynchronousAsynchronous
Write File ResultWrite File Result

OVERLAPPED

Figure 6: Asynchronous Result Classes

The Asynchronous Result base class derives from
the OVERLAPPEDand also abstracts out all the commonali-
ties found in the individual result classes. The individual re-
sult classes derive from theAsynchronous Result class
and add more information pertaining to those corresponding
asynchronous operations. The Asynchronous Result classes
contain the following items.

� Handler: This is application handler that handles com-
pletions.

� ACT: The magic cookie given by the application when
the asynchronous operation is issued.

� complete method: This method is defined in the
base classAsynchronous Result as a pure vir-
tual method. The individual Result classes override this
method and call the correct call back methods for that
operation.

For example, theAsynch Read Stream Result
class callshandle read stream call back method
from thecomplete method. This is very useful because
the Completion Dispatcher when it gets back a
Asynchronous Result object from the OS, can call
thecomplete method on it without knowing the exact
type of the asynchronous operation that has completed.

2.4 Completion Handler

The Handler class defines the call back methods which are
called by the Proactor framework on completions of asyn-
chronous events.

For each Asynchronous Operation , a call back
method is defined and default implementations are provided.
Therefore, currently, theHandler class provides the follow-
ing call back methods.

� handle read stream

� handle write stream

� handle read file

� handle write file

� handle accept

� handle transmit file

Applications define their own handlers deriving from the
Handler class and fill in the application logic appropriately
in the call back methods.

2.5 Completion Dispatcher

The Proactor class implements the Completion
Dispatcher role of the Proactor pattern. Henceforth,
we will be using the terms Proactor and Completion Dis-
patcher interchangeably.

TheProactor executes the following steps.

� The event loop on the Proactor executes
GetQueuedCompletionStatus to get the comple-
tions of asynchronous I/O. When there is a completion
of an asynchronous event, it gets back anOVERLAPPED
pointer from the OS. This pointer is down cast to the
Asynchronous Result type object.

7

This Asynchronous Result object might come
from a completion event or it might have been posted
throughPostQueuedCompletionStatus .

� The completion status of the asynchronous oper-
ation, which includes the number of bytes
transferred, error code are obtained from the
OS and filled in theAsynchronous Result object.

� The complete method is invoked on the
Asynchronous Result object, which calls back the
application handler.

� When the call back completes, theAsynchronous
Result object is deleted by theProactor .

3 Design of the Portable, Extensible
and Efficient Proactor Framework

In this section, we will explain how we designed the WIN32
specific Proactor framework to be a poratable, extensible and
efficient one. We will first explain the features that the
POSIX4 operating systems provide to do asynchronous I/O.
We will then explain how we ported each of the participant
of the Proactor pattern to the POSIX platforms. We present a
straight forward solution to show how the POSIX implementa-
tion can be integrated to the existing WIN32 implementation.
Then, we show how we architected the design to make it more
extensible, scalable and efficient.

3.1 Goals

The following are the goals that we have kept in our mind to
guide our design and implementation decisions.

� Backward Compatibility: We should keep the
existing APIs of the framework intact and extend all the
functionalities to work on POSIX platforms.

� Separation of Interface and
Implementation: Irrespective how many dif-
ferent implementations are provided for the framework,
the APIs of the framework should be simple and common
across all the platforms or implementations. As far as
possible, applications should be freed from worrying
about which implementation of the framework they are
using etc. But applications should have control over
configuring which implementation should be used by the
frame work.

� Scalability: The design of the frame work is in
such a way that it is easier to extend the framework, for
example to have more asynchronous operations or to port

the framework to moreAsynchronous Processor
implementations or platforms.

� Flexibility: The framework APIs should be flex-
ible enough so that applications can easily exploit fea-
tures which may be special to some particular platforms.
For example, assigningpriority to an asynchronous call
is possible on POSIX systems, which is not present on
WIN32. The framework should be flexible enough so that
applications can make use of such features portably.

3.2 POSIX Asynchronous Operation Processor

The POSIX I/O subsystem provides the following APIs to ex-
ecute asynchronous operations.

� aiocb: This is a structure defined by the POSIX operating
system. This is used to pass the parameters to the vari-
ousaio calls, to issue the asynchronous calls and also to
query for the completions of the asynchronous calls. The
structure has the following parameters.

– int file: File descriptor or stream descriptor
on which an asynchronous operation is done.

– void buf: Location of the buffer that contains
the data for the I/O.

– size t nbytes: Length of the data transfer.
– offset: Offset for the file from where the file

operation is done.
– int priority: Priority of the asynchronous

operation.
– struct signal event: Signaling option,

signal number and signal information for the asyn-
chronous call.

– struct results: Error code and return value
of the asynchronous operation.

� aio read: This call issues an asynchronous read on a
stream or a file handle. Theaiocb structure is used to
specify the various parameters to do the read operation.

� aio write: This system call issues asynchronous write on
a stream or a file handle.

� aio cancel: This system call is used to cancel all or a
particular asynchronous operation issued on a handle.

� aio suspend:This system call is used to wait on an ar-
ray of aiocb s that were used to issueaio read s or
aio write s, for their corresponding asynchronous op-
erations to complete.

� aio sigtimedwaitor sigwaitinfo: This call is used to wait
for a set of real-time signals. It also delivers the signal
information used when the signal was raised.

8

� aio error: This system call retrieves the error status for
an synchronous operation.

� aio return: This retrieves the return status for an asyn-
chronous operation.

3.3 Signal and Asynchronous I/O Blocks Based
Completion Queue Strategies

On POSIX systems, the asynchronous I/O completions can
be obtained from the Operating system in two different ways
either by using the real-time signals or through the Asyn-
chronous I/O Control Blocks (aiocb s) that are used to issue
the asynchronous calls.

We have made use of both of these mechanisms and
provided two different strategies for theCompletion
Dispatcher i.e. the Proactor class and the
Asynchronous Operation classes.

We call the aiocb based completion notifica-
tion/dispatching mechanism asAIOCB strategy and
the real-time signals based mechanism asSIG strategy .
They are implemented as follows.

� AIOCB Strategy: The asynchronous I/O control
blocks (aiocb s), that are used to issue asynchronous
I/O calls (aio read or aio write) are stored with the
Proactor class.

When theaio read / aio write are issued, the
signaling option is disabled in theaiocb so that the op-
erating system will not raise and queue up the real-time
signal when that operation completes.

The array of aiocb s that were stored with the
Proactor class are then queried for one or more com-
pletions using theaio suspend system call.

This approach needs theCompletion Dispatcher ,
i.e., theProactor class, to keep track of all theaiocb s
which are used to issue theaio calls. This implementa-
tion adds more complexity on part of theCompletion
Dispatcher , since they need to maintain the list of
aiocb s and query for completions on them. Also, this
approach may not scale well, since the number of pend-
ing asynchronous operations are limited by the size of the
aiocb arraywhich should be decided at compile time.

� SIG Strategy: This completion notifica-
tion/dispatching strategy is based on the real-time
signaling feature of the POSIX4 operating systems.

A real-time signal numberand signal information is
specified in theaiocb structure, when the asynchronous
I/O call (aio read or aio write) is invoked. On
completion of the operation, the operating system raises
the real-time signal along with thesignal information

that was specified when theaio call was issued. If
that real-time signal is masked, that signal is queued up
which can then be received throughsigtimedwait or
sigwaitinfo system calls.

In our framework implementation, we want the com-
pletions to be dispatched only when theevent loopof
the Proactor is invoked. We do not want the con-
trol to move around arbitrarily between thesignal
handler and the rest of the code. Therefore, we mask
the real-time signals used for issuing theaio calls and
usesigtimedwait andsigwaitinfo in theevent
loop of the Proactor class, to receive the real-time sig-
nals that are queued by the Operating System. In this
approach, there is no overhead of maintaining the list of
aiocb s with theProactor .

In the following sections, we will explain how we have
made use of the POSIX4 features to port the framework to
POSIX platforms. We will explain how the various compo-
nents in the Asynchronous Operation and Asynchronous Re-
sult classes were ported to POSIX platforms.

3.4 Asynchronous Operation Classes

The functionalities of the various Asynchronous Operation
classes shown in Figure 5, are implemented for the POSIX
platforms as follows.

3.4.1 Asynchronous Operation Base

The APIs of this class have been ported as follows.

� open: POSIX subsystem does not have the concept of
the completion port as in WIN32. Therefore, theopen
method initializes the data members forI/O handle ,
Handler andProactor so that they can be used while
issuing asynchronous calls.

� cancel: aio cancel system call is used to imple-
ment this API.

3.4.2 Asynchronous Read Stream

The read API implementation looks similar to the WIN32
implementation, except theshared read method, calls the
aio read to initiate an asynchronous read.aio read op-
eration takes a pointer to the structureaiocb . Since we want
to preserve information such asACT and Handler along
with aiocb structure for each asynchronous call, we pass the
pointer to theAsynchronous Read Stream Result
object to theaio read call. This is possible since the result
classes derive from theaiocb structure (refer to Figure 10).

Theshared read has been implemented for the two dif-
ferent completion strategies as follows.

9

� AIOCB strategy: Theaiocb objects used to issue the
aio readare stored with theProactorso that the Proactor
can doaio suspendon them, to query for the completion.

� SIG strategy: In this strategy, the parametersignal
number provided through theread API, is used to issue
the aio read operation. Thus, applications can spec-
ify signal numbers on a per operation basis. But the sig-
nal numbers used to issue the asynchronous operations
should have been already specified to the Proactor class,
so that it can wait for completions with that signal num-
ber. TheAsynchronous Read Stream Result
pointer is passed as the signal information, which is re-
ceived again on completion.

3.4.3 Asynchronous Write Stream

The write API implementation works similar to the
WIN32 implementation. Theshared write makes the
call to aio write passing theAsynchronous Write
Stream Result object pointer and initiates the asyn-
chronous call. In the case of signal based completion strategy,
theAsynchronous Write Stream Result pointer is
passed as the signal information. In the AIOCB strategy, the
aiocb object, that is used to issue the asynchronous opera-
tion, is stored with the Proactor so that it can be used to query
for completions.

3.4.4 Asynchronous Read File

This class extends the functionality of theAsynchronous
Read Stream class to do asynchronous read on a file.
Asynchronous Read File Result class is passed on
to theshared read method of theAsynchronous Read
Stream class, which invokes theaio read call.

3.4.5 Asynchronous Write File

This class extends the functionality of theAsynchronous
Write Stream class to do asynchronous write on a file.
Asynchronous Write File Result class is passed
on to theshared write method of theAsynchronous
Write Stream class, which invokes theaio write call.

3.4.6 Asynchronous Accept

Unlike the WIN32 subsystem, which hasAcceptExsystem
call to queue anacceptoperation with the Operating System,
POSIX platforms do not provide a system call to doaccept
asynchronously on asocket.

When theaccept API of this class is called it should be
carried out asynchronously. We looked at the following ap-
proaches for implementing this class.

Thread per Accept: For each asynchronousaccept the
application makes, anAsynchronous Accept Result
object is created with all the information needed for that
invocation. Then, a separate thread is spawned and the
Asynchronous Accept Result object is passed to that
thread.

The thread will block on theaccept system call. Itnotifies
the Proactor , when it comes out of the system call. The
postcompletionAPI of the Proactor is used to notify the
completions to theProactor .

Refer to the Figure 7 for how this is implemented. But this

CLIENTCLIENT

CLIENTCLIENT CLIENTCLIENT

 Accept Accept
HandlerHandler

AsynchAsynch
AcceptAccept

 Accept Accept
HandlerHandler

 Accept Accept
HandlerHandler

2:2: SPAWN A THREAD SPAWN A THREAD

PER ACCEPTPER ACCEPT

ProactorProactor

4:4: POST POST

COMPLETIONCOMPLETION

AcceptAccept
CompletionCompletion

HandlerHandler

3:3: CCONNECTONNECT

5:5: DISPATCH DISPATCH

COMPLETIONCOMPLETION

SERVERSERVER

1:1: ASYCH ASYCH__ACCEPT ACCEPT ((ARGSARGS))

Figure 7: Asynchronous Accept by Thread Per Accept

approach does not scale well since it requires one thread for
each pending accept call.

Reactor with an auxillary thread: Having multiple threads
is overkill for doing asynchronous accept. But we have to ex-
ecute theaccept s without borrowing the thread that issued
the asynchronousaccept call.

In this implementation, We have an auxillary thread running
the Reactor[6] event loop. We also maintain the Queue of
Asynchronous Accept Result objects to keep track
of theasynchronous accept s issued by the application.
Refer to the Figure 8 which explains this implementation.

This model consists of the following components.

� Auxillary Thread: When theopen method on the
Asynchronous Accept operation class is called, it
spawns the thread which always runs the Reactor’s event
loop. But initially when there is noaccept call issued
by the application, thehandle on which accept is
done is disabled in the Reactor, so that it does not accept

10

CLIENT

CLIENT CLIENT

 Accept
Handler

Asynch
Accept

2: SPAWN A THREAD

PER ACCEPT

Proactor
7: POST

COMPLETION

Accept
Completion

Handler

5: CONNECT

8: DISPATCH

COMPLETION

SERVER

3: ASYCH ACCEPT (ARGS)1: OPEN (ARGS)

CLIENT

Asynch Accept ResultAsynch Accept Result
QueueQueue

4:4: ENQUEUE ENQUEUE

RESULT OBJECTRESULT OBJECT

6:6: DEQUEUE DEQUEUE

RESULT OBJECTRESULT OBJECT

Figure 8: Asynchronous Accept using Reactor with an Auxil-
lary Thread

any connections when there are noasynchronous
accept calls issued by the application.

� Event Handler for the Reactor: The
Asynchronous Accept Handler is the helper
class for implementing theAsynchronous Accept
operation. It also acts as the Event Handler for the
Reactor running in the auxillary thread. This class
manages the Queue ofAsynchronous Accept
Result objects.

When an asynchronous accept is issued by the ap-
plication, anAsynchronous Accept Result ob-
ject is created for that invocation and enqueued in the
Asynchronous Accept Result Queue . Then
the handle on the Reactor is enabled so that connec-
tions can be accepted.

When there is a connection at the handle, the
Reactor which runs in the auxillary thread calls
thehandle input of theAsynchronous Accept
Handler class. Thehandle input method does a
non-blockingaccept system call on the handle and
completes the accept call.

� Notifying completions to the
Proactor: Once theaccept system gets com-
pleted in the auxillary thread in thehandle input
method, the completion should be notified to the

Proactor .

An Asynchronous Accept Result object de-
queued from the Queue and the result of theaccept
is filled in the object. The order in which the
Asynchronous Accept Result objects are de-
queued, can be decided based on thepriority of the
asynchronous operation.

TheAsynchronous Accept Result object is then
postedto theProactor using thepost completion
API in theProactor class. The implementation of this
API is discussed in section 3.8.

3.4.7 Asynchronous Transmit File

WIN32 Operating System provides an API for trans-
mitting a file asynchronously on a socket. It is not
so on POSIX platforms.Asynchronous Transmit
File operation class has been implemented us-
ing an Asynchronous Read File object which
reads from the file and anAsynchronous Write
Stream object which writes on data read from the file
to the socket. The Figure 9 depicts this model.

Asynch Transmit FileAsynch Transmit File

AsynchAsynch
Read FileRead File

 POSIX I POSIX I//OO
SUBSYSTEMSUBSYSTEM

Read FileRead File
CompletionCompletion

HandlerHandler

Write StreamWrite Stream
CompletionCompletion

HandlerHandler

AsynchAsynch
Write StreamWrite Stream

ProactorProactor

1:1: TRANSMIT FILE TRANSMIT FILE

2:2: READ READ

3:3: AIO READ AIO READ

4:4:READREAD

COMPLETECOMPLETE

6:6: WRITE WRITE

7:7: AIO WRITE AIO WRITE

8:8:WRITEWRITE

COMPLETECOMPLETE

10:10: READ READ
5:5: DISPATCH DISPATCH

READREAD

9:9: DISPATCH DISPATCH

WRITEWRITE

DISPATCHDISPATCH

TRANSMITTRANSMIT

Transmit FileTransmit File
CompletionCompletion

HandlerHandler

Figure 9: Asynchronous Transmit File

The Asynchronous Transmit File class has a
helper class calledAsynchronous Transmit File Han-
dler which the does the transmission on behalf of the
Asynchronous Transmit File operation class.
It contains anAsynchronous Read File object

11

and anAsynchronous Write Stream object. The
helper class acts as theCompletion Handler for
both the operations.

When transmit file API is called, an
asynchronous read operation is issued on the
file and the control returns to the caller. After the
asynchronous read completes and when the caller
executes the event loop of the Proactor, the call back
methodhandle read file of the helper class gets
called. In this call back method, anasynchronous
write is initiated to write all the data read from the file
on to the socket. When theasynchronous write
completes, handle write stream method gets
called on the helper class. It is possible to have partial
writes on the socket. The state of the writes are taken
care of by the helper class. Finally when the write fully
completes, the helper class initiates an asynchronous
read to get the next block of data from the file. The
helper class keeps the state of the transmission such as
current offset of the file, ACT etc.

Special ACT strings are used to send theheader and
trailer before and after the file transmission respec-
tively. The ACTs are very useful for the call back meth-
ods to differentiate between the completions of header or
trailer transmission and the file data transmission. The
call back methodhandle write stream , when the
header transmission completes, initiates the file read to
start transmitting the file. It initiates transmitting the
trailer, when the file transmission completes. And when
the trailer transmission also completes, it calls the dis-
patches completion of thetransmit file operation.

3.5 Asynchronous Result Classes

We will explain here how the Asynchronous Result
classes in the original WIN32 solution were ported to
POSIX platforms.

Since theaio system calls takes a pointer to theaiocb
structure, we derive theAsynchronous Result
classes from theaiocbstructure. The rest of the inheri-
tance hierarchy is the same as in WIN32 implementation.
Refer to the UML diagram 10 for the Asynchronous Re-
sult classes.

3.6 Completion Handler

This component of the framework does not have any plat-
form specific implementations. Hence this is kept com-
mon for all the implementations of the framework.

AsynchronousAsynchronous
Result InterfacesResult Interfaces

AsynchronousAsynchronous
ResultResult

AsynchronousAsynchronous
Read Stream ResultRead Stream Result

AsynchronousAsynchronous
Accept ResultAccept Result

AsynchronousAsynchronous
Transmit File ResultTransmit File Result

AsynchronousAsynchronous
Write Stream ResultWrite Stream Result

AsynchronousAsynchronous
Read File ResultRead File Result

AsynchronousAsynchronous
Write File ResultWrite File Result

aiocbaiocb

Figure 10: Porting Asynchronous Result Classes to POSIX

3.7 Completion Dispatcher

The Proactor class implements both the completion
strategies discussed in 3.3.

To wait for the completions and the to dispatch them, the
event loop executes the following steps.

– AIOCB Strategy: In this implementation, the
aio suspend call is used to wait on the array
of aiocb objects that are used to issue the asyn-
chronous operations.aio suspend call returns
when there is atleast one completion.
aio error is used to find out the correctaiocb
object in the array for which the completion had
occured. This call also gets the error status of the
asynchronous operation.
we cast theaiocb pointer to the the derived class
Asynchronous Result object, since the dis-
patching functionalities are available only in the
Asynchronous Result class.

– SIG Strategy: In this strategy,
sigwaitinfo is called with the signal set
that has been already masked for all the threads.
The sigtimedwait call is used, instead of
sigwaitinfo when the timed event loop is
called. These wait calls complete on arrival of a
signal that is present in the signal set.
The Asynchronous Result object associated
with the signal delivery is retrieved from the signal
information obtained in the call.
aio error is called on this object to get the error
status of the asynchronous operation.

aio return is called on thataiocb object to retrive
the return status of the asynchronous operation.

12

To dispatch the completion, Thecomplete method
is invoked on theAsynchronous Result object,
which calls the correct call back method in the comple-
tion handler.

When the call back completes, theAsynchronous
Result object is deleted by the Proactor.

3.8 Posting Completions to Completion
Queue

WIN32 provides the API
PostQueuedCompletionStatus to post a com-
pletion (a pointer to the OVERLAPPED structure) to a
Completion Port .

The API postcompletionof the Proactor class takes
a pointer to theAsynchronous Result object. On
POSIX, we have implementedpost completion for
the two different completion strategies as follows.

SIG Strategy: The system callsigqueue is used to
queue up a reserved real-time signal to the current pro-
cess. TheAsynchronous Result object is assigned
as the signal information in thesigqueue call.

The Proactor’s event loop which waits for the reserved
real-time signal receives the Result block and calls
complete method on it, do dispatch the completion.

AIOCB Strategy: We make use of a notify pipe to send
the Asynchronous Result objects to the Proac-
tor’s completion queue. The Proactor reads the pipe
at the other end for theAsynchronous Result
objects. Reading for theAsynchronous Result
base class pointer helps because a pointer to any
type that derives from theAsynchronous Result
can be posted through the notify pipe. For ex-
ample, Asynchronous Accept Result object is
posted in theAsynchronous Accept operation im-
plementation. Also, applications can derive their own
Asynchronous Result classes and use them for
posting to the Proactor to fake completions.

Reading from the pipe has to be synchronized with the
event loop of the Proactor, so that the completions are dis-
patched only when the even loop is running. To achieve
this, the Proactor issues anasynchronous read
on the notify pipe using theAsynchronous Read
Stream operation class object. A helper class called
Notify Pipe Manager manages the pipe and acts
as theCompletion Handler for the asynchronous
read operation issued on the pipe.

TheAsynchronous Result pointers are read asyn-
chronously from the notify pipe and dispatched during
Proactor’s event loop.

When a read from the pipe completes,Notify Pipe
Manager ’s handle read stream gets called. This
method receives theAsynchronous Result pointer
and callscomplete on it, which dispatches the comple-
tion.

After the dispatch, a newasynchronous read is is-
sued on the pipe to handle the completions in the future.

The Figure 11 explains this implementation. The ab-
stract classHandler provides the default implementa-
tions for the completion call back hook methods such as
handle read stream etc.

ProactorProactor

Notify PipeNotify Pipe
ManagerManager

HandlerHandler

PipePipeAsynch ReadAsynch Read
StreamStream

Figure 11: Posting Completions to the Proactor

3.9 A Simple Integrated Proactor Framework

We now integrate the POSIX implementations discussed
above with the existing WIN32 implementation. A straight
forward integration makes use of the following tricks.

Conditional compilation: We use#if defined state-
ments all over the code to switch between the WIN32 imple-
mentation and the POSIX implementations. Class definitions,
where we change the inheritance hierarchy depending on the
platform, are guarded by pre-compiler conditional directives.
For example, the Asynchronous Result classes derive from
OVERLAPPEDstructure on WIN32, but nthey derive from the
aiocb structure on POSIX platforms.

The definition of each function which has platform specific
implementations also has a similar kind of condition compiler
directives to switch between the implementations based on the
platforms.

Switch statements: With in the POSIX implementation, we
need to switch between, the two different completion strate-
gies that we are using. We need to use the run time switches

13

based on a variable to switch between the two different imple-
mentation code. If not run time switches, we need to use the
conditional compiler directives for this too.

3.9.1 Drawbacks with the Simple Integrated Proactor
Framework

We have achieved the portability goal. We did not make any
change to the existing APIs in the framework. We have also
kept the APIs simple. But the integrated framework we have
discussed so far, is not flexible, extensible and scalable, be-
cause of the following reasons.

� Unstructured code: Since we have merged the POSIX
specific implementation code on the WIN32 specific im-
plementation, the source code is full of #ifdef precom-
piler directives which are there to make sure the correct
code is compiled on a platform. This really makes the
implementation unreadable unstructured.

� Scalability still remains an issue. For example porting the
implementation to a new platform will involve defining
new #ifdef pre-compiler directive. The implementation
code becomes more and more ugly and complex. Even
within the POSIX implementation, we have two different
implementations and some platforms may need a differ-
ent implementation.

3.10 Extensible Proactor Framework Design

In this section, we will explain how we enhanced our portable
design to be highly extensible and easy to maintain. This de-
sign has totally eliminated the precompiler directives from the
source code. The code for each implementation is totally de-
coupled from the other implementations, but all the implemen-
tations are bridged by a common simple Interface. The in-
terface has not changed much from the original WIN32-only
solution. Therefore the existing applications do not have to
change drastically. We have applied the following concepts in
order to achieve our goals.

� Applying Bridge Pattern: We have applied the
Bridge pattern to decouple the concrete implementations
from the API. This eliminates all the conditional pre-
compiler directives which switched the code between the
WIN32 and the POSIX platform implementations. We
have applied bridging to Asynchronous Operation, Asyn-
chronous Result and the Proactor classes. Since the APIs
have not changed, the new design is still compatible with
the old applications.

� Inheritance instead of switching: We
have provided separate inheritance hierarchies for the
two different POSIX implementations. So all the switch

statements for switching between the implementations
have been removed. The common code among the two
POSIX implementations have been abstracted out to
base class. Refer to figures 12, 16 and 20 how the
Asynchronous Operation, Asynchronous Result and
Proactor classes have been redesigned.

� Factory Methods: TheProactor class defines the
factory methods [7] to create the correct implementa-
tion objects for theAsynchronous Operation and
Asynchronous Result classes.

Once the rightProactor implementation is decided
for the application, the switching between the different
concrete implementations is decided automatically by the
Proactor class through the factory methods.

In the next section, we explain how we re-designed each of the
participant in the Proactor pattern to achieve our goals.

3.11 Design of the Asynchronous Operation
Classes

The UML diagram in Figure 12 shows how the
Asynchronous Operation classes have been re-
designed in order to fulfill our goals.

Asynchronous OperationAsynchronous Operation
InterfacesInterfaces

AbsractAbsract
Asynchronous OperationAsynchronous Operation

ImplementationImplementation

WIN32WIN32
Asynchronous OperationAsynchronous Operation

ImplementationImplementation

POSIXPOSIX
Asynchronous OperationAsynchronous Operation

ImplementationImplementation

Figure 12: Bridged Asynchronous Operation Classes

The Asynchronous Operation Interfaces
package, contains the interface classes. The im-
plementation classes are bridged with the interface
classes through the Abstract Asynchronous
Operation Implementation package. The
packages WIN32 Asynchronous Operation
Implementation and POSIX Asynchronous
Operation Implementation provide the imple-

14

mentation classes for the WIN32 and POSIX platforms
respectively.

The UML diagram of theAsynchronous Operation
Interfaces package looks exactly similar to the Figure
5. But, the interface classes are free from precompiler
directives now. They forward their methods to the imple-
mentation classes which are bridged together byAbstract
Asynchronous Operation Implementation
classes.

The UML diagram of the WIN32 Asynchronous
Operation Implementation package is shown in the
Figure 13.

WIN32WIN32
Asynchronous OperationAsynchronous Operation

ImplementationImplementation

WIN32WIN32
Asynchronous OperationAsynchronous Operation

WIN32WIN32
AsynchronousAsynchronous
Read StreamRead Stream

WIN32WIN32
AsynchronousAsynchronous

AcceptAccept

WIN32WIN32
AsynchronousAsynchronous
Transmit FileTransmit File

WIN32WIN32
AsynchronousAsynchronous
Write StreamWrite Stream

WIN32WIN32
AsynchronousAsynchronous

Read FileRead File

WIN32WIN32
AsynchronousAsynchronous

Write FileWrite File

Figure 13: WIN32 Asynchronous Operation Implementation

The UML diagram of the POSIX Asynchronous
Operation Implementation package is shown in the
Figure 14. The implementations of theAsynchronous

POSIXPOSIX
Asynchronous OperationAsynchronous Operation

ImplementaionImplementaion

POSIXPOSIX
Asynchronous OperationAsynchronous Operation

POSIX AIOCBPOSIX AIOCB
Asynchronous OperationAsynchronous Operation

ImplementationImplementation

POSIX SIGPOSIX SIG
Asynchronous OperationAsynchronous Operation

ImplementationImplementation

Figure 14: POSIX Asynchronous Operation Implementation

Operation classes for the two different completion strate-
gies 3.3 are separated in to two packages as shown in the
Figure 14.

The package POSIX AIOCB Asynchronous
Operation Implementation defines the Asyn-
chronous Operation classes for the AIOCB completion
strategy. This package is shown in Figure 15.

POSIX AIOCBPOSIX AIOCB
Asynchronous OperationAsynchronous Operation

POSIX AIOCBPOSIX AIOCB
AsynchronousAsynchronous
 Read Stream Read Stream

POSIX AIOCBPOSIX AIOCB
Asynchronous OperationAsynchronous Operation

ImplementationImplementation

POSIX AIOCBPOSIX AIOCB
AsynchronousAsynchronous

 Accept Accept

POSIX AIOCBPOSIX AIOCB
AsynchronousAsynchronous
 Transmit File Transmit File

POSIX AIOCBPOSIX AIOCB
AsynchronousAsynchronous
 Write Stream Write Stream

POSIX AIOCBPOSIX AIOCB
AsynchronousAsynchronous

 Read File Read File

POSIX AIOCBPOSIX AIOCB
AsynchronousAsynchronous

 Write File Write File

Figure 15: POSIX AIOCB Asynchronous Operation Imple-
mentation

The package POSIX SIG Asynchronous
Operation Implementation defines the Asyn-
chronous Operation classes for the SIG completion strategy.
The UML inheritance hierarchy for this strategy looks similar
to the�POSIX AIOCB Asynchronous Implementation package
shown in 15.

3.12 Design of the Asynchronous Result
Classes

The architecture of the new Asynchronous Result
classes has been shown in the Figure 16. The

AsynchronousAsynchronous
Result InterfacesResult Interfaces

AbstractAbstract
AsynchronousAsynchronous

ResultResult
ImplementationImplementation

WIN32 AsynchronousWIN32 Asynchronous
Result ImplementationResult Implementation

POSIX AsynchronousPOSIX Asynchronous
Result ImplementationResult Implementation

Figure 16: Bridged Asynchronous Result Classes

Asynchronous Result Interfaces package,
defines the interfaces to the various Asynchronous
Result class implementations. The implementations
are bridged with the interfaces through the abstract
classes in the Abstract Asynchronous Result
Implementation package. The packagesWIN32

15

Asynchronous Result Implementation and
POSIX Asynchronous Result Implementation
implement theAsynchronous Result Interfaces
for the WIN32 and the POSIX4 platforms respectively.

The UML architecture of theAsynchronous Result
Interfaces has been shown in Figure 17. Note that the
Asynchronous Result base class does not have to de-
rive from platform specificOVERLAPPEDor aiocb struc-
ture. Therefore, there is no need for precompiler directives to
switch between the implementation. All the interfaces have
the reference to the implementation objects, where they for-
ward all their methods.

AsynchronousAsynchronous
Result InterfacesResult Interfaces

AsynchronousAsynchronous
Result BaseResult Base

AsynchronousAsynchronous
Read Stream ResultRead Stream Result

AsynchronousAsynchronous
Accept ResultAccept Result

AsynchronousAsynchronous
Transmit File ResultTransmit File Result

AsynchronousAsynchronous
Write Stream ResultWrite Stream Result

AsynchronousAsynchronous
Read File ResultRead File Result

AsynchronousAsynchronous
Write File ResultWrite File Result

Figure 17: Asynchronous Result Interfaces

The UML diagram of the WIN32 Asynchronous Result
classes are shown in Figure 18.

WIN32 AsynchWIN32 Asynch
ResultResult

WIN32 AsynchWIN32 Asynch
Read Stream ResultRead Stream Result

WIN32 AsynchWIN32 Asynch
Accept ResultAccept Result

WIN32 synchWIN32 synch
Transmit File ResultTransmit File Result

WIN32 AsynchWIN32 Asynch
Write Stream ResultWrite Stream Result

WIN32 AsynchWIN32 Asynch
Read File ResultRead File Result

WIN32 AsynchWIN32 Asynch
Write File ResultWrite File Result

OVERLAPPEDOVERLAPPED

WIN32 AsnchronousWIN32 Asnchronous
Result ImplementationResult Implementation

Figure 18: WIN32 Asynchronous Result Classes

The UML diagram of the POSIX Asynchronous Result
classes are shown in Figure 19.

Note that the WIN32 and the POSIX implementation
classes do not have to have any precompiler directives now.

3.13 Design of the Proactor class

The UML diagram in Figure 20 shows how the Proactor class
has been redesigned.

The Proactor Interface class acts as the inter-
face to the different Proactor class implementations. The

POSIXPOSIX
Asynch ResultAsynch Result

POSIX AsynchPOSIX Asynch
Read Stream ResultRead Stream Result

POSIX AsynchPOSIX Asynch
Accept ResultAccept Result

POSIX AsynchPOSIX Asynch
Transmit File ResultTransmit File Result

POSIX AsynchPOSIX Asynch
Write Stream ResultWrite Stream Result

POSIX AsynchPOSIX Asynch
Read File ResultRead File Result

POSIX AsynchPOSIX Asynch
Write File ResultWrite File Result

aiocbaiocb

POSIX AsnchronousPOSIX Asnchronous
Result ImplementationResult Implementation

Figure 19: POSIX Asynchronous Result Classes

ProactorProactor
InterfaceInterface

Proactor AbstractProactor Abstract
ImplementationImplementation

POSIXPOSIX
ProactorProactor

POSIX AIOCBPOSIX AIOCB
ProactorProactor

POSIX SIGPOSIX SIG
ProactorProactor

WIN32WIN32
ProactorProactor

Figure 20: Bridged Proactor Classes

16

Proactor Abstract Implementation bridges the
implementations with the Proactor interface. TheProactor
Interface class simply forwards all the methods to the im-
plementation classes.

The two different completion notification/dispatching
mechanisms discussed in 3.3, are implemented by thePOSIX
AIOCB Proactor class and thePOSIX SIG Proactor
class. ThePOSIX AIOCB Proactor implements the
AIOCB strategy and the ThePOSIX SIG Proactor class
implements the SIG Strategy. The common code between
these two implementations have been abstracted out in the
POSIX Proactor class.

3.14 Design Analysis

Let us now analyze this design from the view of the goals we
had initially.

� Backward Compatibility: The main interfaces
of the framework have not been changed, except that the
following minor changes have been done to the APIs of
the framework to fit with the new design.

– Proactor Constructor: The constructor of
the Proctor class in the interface level, takes Ab-
stract Implementation objects, instead of platform
specific constructor parmeters. When no implemen-
tation is given, it creates implementations based on
the predefined constants, with default options. To
override this, applications can create the implemen-
tation and then create the interface Proactor object
with that implementation.

– post completion: This API has been taken
off from the main Proactor interface and have
been moved to theProactor Abstract
Implementation class. This is necessary
since theAbstract Asynchronous Result
classes which are posted as completions have
different base classes, in POSIX and WIN32
platforms.

– complete: This method is defined in the
Asynchronous Result Implementation
classes. This method is used by theProactor
Implementation classes to dispatch the
completions to the correct call back methods.

Applications sometime exploit this feature to
fake completions to their handlers. Now, since
the Asynchronous Result Interface
classes are different from theAsynchronous
Result Implementation classes, application
should make use of thefactory methods

defined in the Proactor class, in order to
obtain the correct Asynchronous Result
Implementation s and callcomplete method
on them.

� Separation of Interface and
Implementation: We have separated the inter-
faces from the implementations. We have also provided
separation between the various implementations.

� Scalability: The framework now has a very clean
architecture to scale.

For example, to port the framework to a new
Asynchronous Operation Processor im-
plementation or to a new Operating System involves
reusing the existing bridging hierarchy and define a new
implementation hierarchy for the new implementation.
Factory methods and call back methods have to be
defined appropriately for the new implementation/

In the simple design discussed in 3.9, this would have
involved switch statements and #ifdef precompiler direc-
tives all over the code to incorporate the new implemen-
tation.

� Flexibility: We have made use of platform spe-
cific features in the framework so that applications can
use them to their advantage on those platforms with out
loosing portability. Default values have been provided to
such features.

For example, specifyingpriority value for the asyn-
chronous operation is provided to the APIs of the
Asynchronous Operation so that applications on
POSIX systems can use them successfully. But it is pro-
vided with a default value so that applications on WIN32
platforms need not be concerned with it.

4 Conclusions

The WIN32 platform specific Proactor framework was ex-
tended to work on the POSIX implementations of the Asyn-
chronous Operation Processor. We have made our design in
such way that the framework is not only portable but also ex-
tensible to include more features, scalable to more implemen-
tations of Asynchronous Operations Processor and highly ef-
ficient.

References
[1] I. Pyarali, T. Harrison, D. C. Schmidt, and T. D. Jordan, “Proac-

tor – An Architectural Pattern for Demultiplexing and Dispatch-
ing Handlers for Asynchronous Events,” inThe 4

th Pattern

17

Languages of Programming Conference (Washington University
technical report #WUCS-97-34), September 1997.

[2] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[3] J. C. Mogul, “The Case for Persistent-connection HTTP,” inPro-
ceedings of ACM SIGCOMM ’95 Conference in Computer Com-
munication Review, (Boston, MA), pp. 299–314, ACM Press,
August 1995.

[4] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Asynchronous
Completion Token: an Object Behavioral Pattern for Efficient
Asynchronous Event Handling,” inPattern Languages of Pro-
gram Design(R. Martin, F. Buschmann, and D. Riehle, eds.),
Reading, MA: Addison-Wesley, 1997.

[5] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Con-
current Event Demultiplexing and Event Handler Dispatching,”
in Pattern Languages of Program Design(J. O. Coplien and D. C.
Schmidt, eds.), pp. 529–545, Reading, MA: Addison-Wesley,
1995.

[6] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Con-
current Event Demultiplexing and Dispatching,” inProceedings
of the1st Annual Conference on the Pattern Languages of Pro-
grams, (Monticello, Illinois), pp. 1–10, August 1994.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Reading,
MA: Addison-Wesley, 1995.

18

