
Metric-Driven Analysis and Feedback Systems for Enabling Empirically

Guided Software Development

Richard W. Selby, Adam A. Porter, Doug C. Schmidt, and Jim Berney

Department of Information and Computer Science; University of California

Irvine, California 92717, 714-856-6326, selbyQics.uci.edu

Abstract

Metric-driven analysis and feedback systems enable
developers to define empirically guided processes for
software development and maintenance. These sys-
tems enable developers to achieve S. E.I. process matu-

rit y levels 4 and 5, “managed” and “optimizing” pro-

cesses. We define a set of architectural principles and

abstract interfaces for designing metric-driven analysis

and feedback systems. A fundamental principle is to

make measurement active by integrating measurement

and process, which contrasts with the primarily pas-

sive use of measurement in the past. A second princi-

ple is that these systems should provide capabilities for

user-specifiable interpretation of process events, object

state changes, and calendar time abstractions in order

to allow a representative basis for project analysis. An-

other principle is that these systems should provide an

extensible integration framework that supports the ad-

dition of new techniques and integrates approaches for

synergistic application.

These and other architectural principles are em-

bodied in a prototype analysis and feedback system,

called Amadeus. This prototype system is intended to

demonstrate the feasibility and merit of these systems

and the principles for designing them. An initial ver-

sion of the system is running, and it has been used in

several evaluative studies. We define the abstract in-

terfaces in Amadeus and describe its operation. Metric-

driven analysis and feedback systems influence the de-

sign of process modeling and programming languages

and software environment architect ures. According] y,

*This work was supported in part by the National Science

Foundation under grant CCR–8704311 with cooperation from

the Defense Advanced Research Projects Agency under Arpa or-

der 6108, program code 7TIo; National Aeronautics and Space

Adrninistration under grant NSG–51 23; National Science Foun-

dation under grant DCR–8521398; University of California under

the MICRO program Computer Sciences Corporation; Hughes

Aircraft; and TRW.

288

CH2982-7/91/OOOO/0288$Ol .00 @ 1991 IEEE

Amadeus is integrated with and leverages the Arcadia

process-centered software environment architecture.

1 Introduction

Measurement and empirical analysis systems enable

the systematic evaluation and improvement of large-

scale software, The most advanced levels of the S.E.I.

process maturity framework, “managed” and “optimiz-

ing” processes (levels 4 and 5), require the use of mea-

surement techniques and highlight the need for these

systems [8]. We have specified a measurement and

empirical analysis system, called Amadeus, which en-

ables a software developer to integrate measurement

and empirical feedback mechanisms into development

and maintenance processes. These empirically guided
processes can be used, for example, to focus tool and

technique application on high-payoff areas. The un-

derlying principle is to make measurement active by

integrating measurement and process, which cent rasts

with the primarily passive use of measurement in the

past.

Developers and maintainers can use metric-driven

analysis systems to guide the application of synthe-

sis, analysis, and evaluation techniques and tools. The

“80:20 rule” states that approximately 20 percent of

a software system is responsible for 80 percent of its

errors, costs, and rework [5]. Boehm and Papaccio [4]

conclude:

“The major implication of this distribution is

that software verification and validation ac-

tivities should focus on identifying and elimi-

nating the specific high-risk problems to be

encountered by a software project, rather

than spreading their available early-problem-

elimination effort uniformly across trivial and

severe problems.”

Empirically guided processes leverage the feedback

Recommended by: Watts Humphrey

provided by metric-based analysis systems to focus de-

velopment efforts on the high-payoff areas, i.e., the

“troublesome 20 percent .“

Metric-driven analysis systems for enabling empiri-

cally guided processes influence many aspects of soft-

ware research and practice:

software environment architectures;

process modeling and programming formalisms;

and

techniques for definition, collection, and analysis

of empirical data.

This paper summarizes the goals of metric-driven anal-

ysis and feedback systems and describes a prototype

system, Amadeus, which defines abstract interfaces

and embodies architectural principles for these types

of systems.

2 Metric-Driven Analysis and

Feedback Systems

Several metric-based analysis systems have been pro-

posed or are under development: TAME [1], Gin-

ger [22], SiVfE [6], and AIW3 [10], among others.

These systems support empirically based techniques

for using measurements to describe, analyze, and con-

trol software systems and their development processes.

These modeling techniques leverage past experience

and have many desirable properties, including be-

ing scalable to large systems, integratable, and cal-

ibratable to new projects. The underlying capabil-

ities of these systems facilitate the definition, col-

lection, analysis, and feedback of empirical metric

data — software metrics are numeric and symbolic

abstractions of software artifacts, e.g., components,

processes, systems. There are also several general

paradigms for empirically based software development

and evaluation: Basili’s improvement paradigm [1] [3],

Humphrey/SEI’s process maturity levels 4 and 5 [8],

McCall/RADC’s factor-criteria-metric paradigm [10],

Basili/Weiss’ goal-question-metric (GQM) paradigm

[2], Selby/Porter’s classification paradigm [18], and

Weiderman/SEI’s environment evaluation methodol-

ogy [23], among others. In this paper, we describe the

Amadeus system which provides a flexible and exten-

sible framework for supporting the approaches in these

systems and paradigms.

The goals of the Amadeus system are to:

● Provide measurement and empirical feedback

mechanisms,

Define software environment architecture mecha-

nisms for enabling empirically guided development

and maintenance processes (level 5),

Formulate an extensible integration framework for

empirically based analysis techniques, and

Define abstract interfaces for measurement and

empirical analysis systems.

Amadeus focuses on evaluation and analysis capabili-

ties for Iarge-scaie software systems and processes (e.g.,

>100,000 lines). Measurement-based techniques can

be used effectively on very large systems, and they can

guide toward high-payoff areas fine-grain analysis tech-

niques that are more tractable on smaller portions of

systems. Early foundations of the Amadeus system

have been described in [16] [17].

3 Amadeus System Operation

This section provides an overview of the Amadeus

system operation, including an example empirically

guided process, a description of the system character-

istics, an explanation of the system conceptual opera-

tion, and a summary of the users’ view of the system.

3.1 Example Empirically Guided Pro-

cess

Figure 1 shows an example fragment of ;an empirically

guided software maintenance process. This simple,

hypothetical example indicates that a software main-

t airier will check-out a software object (e.g., compo-

nent) that needs to be modified, modify it, and then

check it back into the object store. This mainte-

nance process has been statically instrumented with

Amadeus data collection and analysis ~scripts. After

the maintainer has modified the object, an empiri-

cal analysis is conducted on the object to calculate

whether it is likely to have interface or control faults.

If it is likely (based on past data) to have either of

these types of faults, appropriate analysis and testing

tools are executed on the object.

In this example, the empirical process guidance

is derived from the use of metric-based classifica-

tion trees and underlying metric collection mecha-

nisms. An example classification tree appears in Fig-

ure 2, and Section 5 describes this analysis tech-

nique more completely. The classification tree gener-

ation and metric collection processes are embodied as

Amadeus “agents,” and they are triggered via “process

events” represented as procedure-calls in this example.

This example scenario illustrates one tylpe of Amadeus

289

begin
. . .

- – as part of a software maintenance activity, a maintainer decides that

-- object; in s~stemk needs to be modified

-- objecti is checked out from the object store

checkout (objecti, systemk);
-- maintainer modifies object~

-- tools generate metric-based classification trees for identifying components

-- likely to have interface faults or control faults

classification-tree inteVfaCe_jaUtt~, k :=

generate-classification-tree (“interface-faults”, systemk, metric.datak, calibration.paramete rs);

classification_tree ~~ntrol_faults, k :=

generate-classification-tree (“control-faults”, SyStemk, metric-datak, calibration-parameters);

– – tools collect the metric data on objecti required by the classification trees

met ric-dat ah ;=

collect_ metric.data (cJassi f ication_t ree ~nterfaCe-faU{t*, k , objecti, S@emk, ?? WhiC-datak);

met ric-dat ah :=

collect-metric-data (c~assification-tree cont,roi-jau~ts, k , object~, systemk, metric-datak);

-- metric-based classification trees guide tool and technique application

if apply _classification_tree (classification-tree ~nterfaCe_~aU/iS, k , 0 ~ect; ,b“ metric-datak)

> probj
then

-- apply to objecti the analysis and testing tools designed

-- to detect or isolate interface faults

fi

if apPIY-classification _tree (classi f icat ion-t ree =~~tt.~~-fo~~t$, ~ , objecti, metric.datak)

> prob~
then

-- apply to objecti the analysis and testing tools designed

-- to detect or isolate control faults
fi

-- objecti is checked back into the object store

check_in (objecti, s~stemk);

. . .

end

Figure 1: Example fragment of empirically guided process that uses classification analysis and a straightforward

branching form of feedback.

290

o–3 4-5

0-12 > 12

/)/)—+

6–10 > 10

+2>Cyclomatic System

Complexity Type >

\

0–18 > 18 Real-time Nonreal-time

0-150 > 150

“+” = Classified as likely to have interface faults

II II =— Classified as unlikely to have interface faults

Figure 2: Example (hypothetical) metric-based classification tree. There is one metric at each diamond-shaped

decision node. Each decision outcome corresponds to a range of possible metric values. Leaf nodes indicate whether

or not an object is likely to have some property, such as high error-proneness or errors in a certain ClaSS.

291

event, a statically interpreted process event, and the

following sections explain a more comprehensive view

of the system.

3.2 System Characteristics

The Amadeus system provides an interactive script

language that encapsulates environment mechanisms

for static and dynamic interpretation of process events,

object state changes, and calendar time abstractions.

These three event types can be combined to form com-

pound events, e.g., object changes and time abstrac-

tions can be combined in an event defined as “every

time an object changes but no more frequently than

daily.” The system is composed of software environ-

ment architecture components, such as event moni-

tors, data integration frameworks, and a language in-

terpreter, as well as capabilities for specifying empiri-

cal anal yses, collecting the underlying data, and feed-

ing the results back into development processes. The

Amadeus system embodies:

●

b

●

●

●

●

scalable, calibratable, empirically based evalua-

tion and analysis,

triggering based on events from process model or

program executions, object state changes, or cal-

endar time abstractions,

static or dynamic event interpretation,

separation of event and agent specification,

transparent, concurrent data collection, and

low entry barrier through script reuse.

The Amadeus system can provide services to several

different types of users. Software developers may use

the system to localize components likely to be error-

prone or to identify components likely to be reusable.

Project managers may use the system to monitor hu-

man resource expenditure or system progress. Ana-

lysts and experimenters may use the system to com-

pare the effectiveness of different processes or tools or

to generate error frequency profiles.

3.3 System Conceptual Operation

The conceptual operation of the Amadeus system ap-

pears in Figure 3. This is a complicated figure but

it summarizes many system characteristics and inter-

actions. A software developer or analyst activates

Amadeus scripts that monitor events from process

model/program executions, object state changes, and

system clock abstractions [see upper right of Figure 3].

These events trigger user-specifiable “agents” (embod-

ied as processes) that analyze the state of the environ-

ment and its constituent processes and objects [see far

left of Figure 3]. These agents collect, analyze, inte-

grate, or display data, but may also be used for other

purposes such as process coordination. Process pro-

grams or human users may interactively query the col-

lected information for guidance about how the data af-

fect the continued execution of processes [see upper left

of Figure 3]. The collected information is used to guide

and adapt processes and, for example, to focus tool ap-

plication on high-payoff areas. The measurement and

empirical guidance capabilities enable “managed” and

“optimizing” (level 4 and 5) processes. The reusable

scripts enable the system to provide users with a low

entry barrier.

Amadeus separates event specification from agent

specification, which allows users the option of deferring

the specification of agents corresponding to events un-

til after process execution has commenced. In Figure

3, static interpretation is depicted on the left half and

dynamic interpretation is on the lower right. A user

specifies the conditions for an event to occur (based

on either process, object, or clock representations) and

then either specifies a corresponding agent or leaves

it unspecified (which becomes the null agent). If a

corresponding agent is specified, it can be interpreted

statically and incorporated directly into the process,

object, or clock representation (as was done in Figure

1). ~Vhether or not an agent has already been speci-

fied, additional agents may be specified either before,

during, or after the execution of a process. Amadeus

dynamically interprets agents specified during process

execution. So when an event occurs, multiple agents

may be triggered some of which may have been speci-

fied after the commencement of the process execution.

This capability is especially important for long-running

processes that may need to be changed while they are

executing, because the appropriate agents will often

not be able to be foreseen until the process is under-

way.

3.4 Users’ View of the System

An Amadeus user interacts with the user-customizable

goal palette that provides a concise summary of the

analysis processes and services available. A user may

select a particular analysis process, such as one for clas-

sification, interconnectivity, sensitivity, or descriptive

analysis. The system displays and executes the pro-

cess, and it guides a user through the technique. See

Section 5 for a description of classification and inter-

connectivity analysis. The processes selected from the

292

ArtlSt OSf)lCtlOfM vkuallzatkms
~..
8
s Activated

“m
0

ACtlve PfOCeSSt?S
Events

m

Scrtpts

Event Spe ;, Guarr3s, Agents

L’-3
—~+
—~ +

–@J +

r~ +

&Eu_l
Persistent
Metric Data

Events

Obpxts

o
~o
o

0

0-

Develooer/
Analyst

Scripts

Q++
A

+JAct Ivated
Scrlots

-I

~ Sync &
: ASynC

Events:

Event
SPeCS Guards Aqents

-

1Repos-
1tory

ActWate(
Agents

1
Figure 3: Conceptual operation of the Amadeus metric-driven analysis and feedback system.

goal palette coordinate the activation of scripts and

tools that collect the necessary data, integrate it, and

feed the resulting empirical guidance back into devel-

opment processes. Measurement tools are examples of

agents that may be triggered by various scripts that

monitor events from process, objects, and clocks (see

Figure 3). Advanced users can directly access some

constituent tools to experiment with specialized needs,

define defaults, etc. The functions for managing scripts

include browsing existing scripts, creating new ones,

and showing those that have been activated. Users

may also add new capabilities to the system and in-

voke assistance features.

4 Amadeus System Architecture

The conceptual architecture of the Amadeus system

appears in Figure 4. The centerpiece of the system is

a pro-active server, which interprets scripts and coor-

dinates event monitoring and agent activation. Mul-

tiple servers can be running at one time, according

to functional specialization or workload. The collected

data is persistent across projects, and various transfor-

mation tools access and modify the data. Extensible

data-integration frameworks, which are represented as

trees and networks, are defined that enable the inte-

gration of symbolic and numeric data from any source

(e.g., products, processes, personnel). The desirable

properties of attribute integration frameworks are be-

ing scalable, automatable, and extensible — both tree-

and net work-b ased frameworks possess these proper-

I

293

Script requests

directly generated Pro-Act ive Server Active

from processes and tools agents

\ I 1 ~____ ----
1

Dialog box
\ ~~1 < /+ :

interactions

~’

Scripts
from humans

“ Q

Persistent Dynamic / / I ‘c 1;
store of agent

historical inter- J I

Statically
metric data

annotated

process programs System

Languages I

I I

I L________J
I

+

Statistical & visualization tools

Client’s Tool Kit Server’s Tool Kit

Scripts = Condition-action pairs. Conditions: event-based, object-based, or

time-based. Actions: processes or tools.

Server = Pro-active server interprets scripts, delegates dynamic collection

to individual EC’s, and coordinates analysis across multiple EC’S,

Server is PPL, UIMS, and OM independent.

EC = Evaluation component and monitor in active agent. EC is

PPL, UIMS, and OM dependent.

Figure 4: Conceptual architecture of the Amadeus metric-driven analysis and feedback system. PPL is “process

programming language,” UIMS is “user interface management system,” and OM is “object manager.”

294

ties. Scripts may be defined and activated by human

users or they may originate directly from processes or

tools. Since a common script language is used to repre-

sent these requests, the server’s script interpreter does

not care if a request is from a human, a process, or

another server. This symmetry of interaction results

in increased flexibility y and interoperabilit y. The classi-

fication process mentioned in Section 3.4 is an example

process that would generate script requests.

The “client toolkit” and “server toolkit” in Figure 4

are both extensible collections of system capabilities.

Users can add particular data specification, collection,

analysis, and feedback tools to these toolkits. The

client toolkit cent sins capabilities that human users

may access directly, and these tools are primarily for

assistance in the script definition and management pro-

cesses. The server toolkit contains capabilities that are

used by the server as part of script interpretation.

The Amadeus system is integrated with the Arca-

dia software environment architecture [21]. Amadeus

leverages the process interpretation [20], object trig-

gering [7], and graphical depiction [24] components in

Arcadia.

5 Support for Empirically

Based Analysis Techniques

Amadeus scripts encapsulate data collection, analysis,

and display techniques and define when they should

be executed (see Figures 3 and 4). One of the goals

of the system is to allow users the flexibility of speci-

fying agents appropriate for their particular goals and

circumstances. It is important for evaluation and feed-

back systems to be extensible in terms of allowing users

to add new techniques to the system. Amadeus pro-

vides an extensible framework for adding new empir-

ically based analysis techniques, which is represented

as the server’s toolkit in Figure 4. In order to validate

the framework, we are populating it with techniques

that we are developing as part of the project and ones

developed externally. The following sections describe

two techniques that we are developing: classification

analysis and interconnectivity analysis.

5.1 Classification Analysis

According to the “80:20 rule,” 20 percent of a software

system is responsible for 80 percent of its errors, costs,

and rework. We are developing classification analy-

sis techniques for identifying the high-risk components

(i.e., the “troublesome 20 percent”) throughout the

lifecycle [18]. These techniques classify software com-

ponents according to their likelihood, lbased on past

sYstems, of having user-specified properties such as

high error-proneness, certain types of errors, or high

development effort. Developers can define their own

“target classes” of components to identify, based on

their particular goals and constraints. ‘The classifica-

tion models are scalable, extensible, automatable, and

calibratable, and they serve as a framework for inte-

grating symbolic and numeric information from soft-

ware products, processes, and personnel.

We conducted extensive validation studies using

tree- and network-based classification mc)dels on NASA

[18] and Hughes system data [19]. An example tree-

based classification model appears in Figure 2. We de-

fined a classification methodology [1 1] and developed

distribution-sensitive data partition methods [12].

5.2 Interconnectivity Analysis

The interconnections among software components con-

stitute a central feature of system structure. We are de-

veloping interconnectivity analysis techniques for char-

acterizing, evaluating, and visualizing system structure

and its evolution [14]. Interconnectivity analysis meth-

ods facilitate the understanding of complex component

interrelationships in large-scale systems and enable de-

velopers to evaluate potential modifications. The anal-

ysis technique incorporates multiple interconnection

criteria, calculates the interconnections automatically,

and derives multiple views of system structure and its

evolution. The technique is scalable to large systems

and can be used, for example, to localize error-prone

structure and to evaluate system flexibility. An exam-

ple hierarchical system view derived from component

interconnections appears in Figure 5.

We applied the interconnectivity analysis technique

in validation studies where it detected the most error-

prone (7:1) parts of a 148,000-line system [15]. We

analyzed the component interconnections through non-

local data objects to characterize flexible and inflexible

sub-structures in existing systems, using concepts such

as “producer” and “consumer” components (which de-

fine and reference non-local data values, respectively).

Our assertion is that appropriate system structure, in

terms of interconnectivity measures, is ?Lnecessary but

not sufficient condition for system flexibility. This ap-

plication of interconnectivity analysis can be viewed

as “proving a small theorem about a large program”

(i.e., showing the presense or absence of system sub-

structures known to be flexible or inflexible), as op-

posed to the research theme of “proving a large theo-

rem about a small program” (e.g., proving correctness

of a G CD algorithm).

295

Figure 5: Example hierarchical system view derived

from component interconnectivity analysis. Routines

(e.g., procedures, functions) are denoted by pi, and

clusters are denoted by circles. The smaller clusters

are relatively tighter in terms of degree of interconnec-

tion (and form earlier), while the larger clusters are

relatively looser (and form later). The clusters define

a system hierarchy in the form of a tree: the smaller

clusters at the leaf nodes and the largest cluster at the

root node.

5.3 External Tools

Empirically based analysis techniques from other re-

search organizations, including USC, University of

Maryland, Virginia Tech, and TRW, may also be in-

tegrated into Amadeus. Incorporating these tools into

the Amadeus system validates its extensibility and en-

ables synergistic interaction among techniques.

6 Development Status

Validation studies showed that Amadeus’ empirical

guidance features correctly categorized 89.6% of the

components on the average, according to whether or

not they were within a particular target class (such as

having high errors or high development effort) [18] [9].

The guidance had 79.5’% consistency and 69.1’% com-

pleteness on the average, which are measures of the

intersection between the set of components predicted

to be within the target class and those actually within

it.

Amadeus has a broad spectrum of applications, in-

cluding system evaluation and improvement, process

guidance, software understanding, and experimenta-

tion. An initial version of Amadeus is up and run-

ning. Several organizations have already committed to

or expressed serious interest in using all or part of it.

7 Conclusions

An important goal in our work is to develop a

framework that supports multiple empirical evalua-

tion and feedback paradigms, such as Basili’s improve-

ment paradigm, Humphrey/SEI’s process maturity

levels 4 and 5, McCall/RADC’s factor-criteria-metric

paradigm, Basili/Weiss’ goal-question-metric (GQM)

paradigm, Selby/Porter’s classification paradigm, and

Weiderman/SEI’s environment evaluation methodol-

ogy, among others. Our examination and analysis of

these paradigms led to the identification of many un-

derlying principles for metric-driven analysis and feed-

back systems.

These architectural principles are embodied in the

Amadeus system. One principle, for example, is that

the three types of events that Amadeus supports —

process events, object state changes, and calendar time

abstractions — are sufficient to provide a represen-

t ative basis for monitoring and analysis of software

projects and systems. Another principle is that de-

velopers need the flexibility of separating the specifi-

cation of events from the specification of actions that

should be taken when those events occur. These ac-

tions should be user-specifiable so that they reflect the

particular user’s goals and circumstances. Also, these

systems should provide extensible frameworks for in-

tegrating numeric and symbolic data, which enables

the analy>is ,-,f a wide spectrum of data from prod-

ucts, processes, and personnel. Amadeus serves as an

extensible integration framework for empirically based

analysis techniques, and therefore, it should be viewed

as a complementary project to these other systems and

paradigms.

We have outlined architectural principles and ab-

stract interfaces for metric-driven analysis and feed-

back systems. In order to refine these principles and

demonstrate their feasibility and merit, a prototype

system, called Amadeus, has been built based on them.

The Amadeus system can be viewed as providing a set

of services that enable empirically guided software de-

velopment and maintenance. The results from the ini-

tial version of Amadeus have convinced us that it pro-

vides a good foundation for further research. For exam-

ple, we propose the expansion of the script repository

to support a wide spectrum of data analysis and feed-

back templates. We also need to limit the operating

system dependence and to plan for a reimplementation

on top of Mach [13]. We plan to investigate the use of

Amadeus as a general process modeling/programming

and coordination system, as opposed to serving as pri-

marily a measurement and analysis system.

2%

8 Acknowledgements

The authors are grateful to many persons who as-

sisted in the design and development of Amadeus: Ken

Anderson, Tom Asouksamlane, Jose Duarte, Dennis

Heimbigner, Greg James, Kent Madsen, Lee Oster-

weil, Allyn Randall, Debra Richardson, Craig Snider,

Richard Taylor, and Harry Yessayan. The authors are

also grateful to the many collaborators in the Arcadia

project.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

V. R. Basili and H. D. Rombach. The TAME

project: Towards improvement-oriented software

environments. IEEE Trans. Soflware Engr., SE-

14(6):758-773, June 1988.

V. R. Basili and D. M. MTeiss. A methodol-

ogy for collecting valid software engineering data.

IEEE Transactions on Sofiware Engineering, SE-

10(6):728-738, November 1984.

Victor R. Basili. Quantitative evaluation of soft-

ware methodology. In Proceedings of the First

Pan Pacific Computer Conference, Melbourne,

Australia, September 1985.

B. W. Boehm and P. N. Papaccio. Understand-

ing and controlling soft ware costs. IEEE Trans-

actions on Software Engineering, SE-14 (10):1462–

1477, October 1988.

Barry Boehm. Industrial software metrics top 10

list. IEEE Software, 4(5):84-85, September 1987.

W. Decker and J. Valett. Software management

environment (SME) concepts and architecture.

Technical Report SEL-89-003, NASA Goddard,

Greenbelt, Maryland, August 1989.

D. Heimbigner. Triton reference manual. Arcadia

technical report, University of Colorado, 1990.

W. S. Humphrey. Characterizing the software

process: A maturity framework. IEEE Sofiware,

5(2):73-79, March 1988.

R. Kent Madsen and Richard W. Selby. Metric-

driven classification networks for identifying high-

risk software components. In Proceedings of the

International Conference on Applications of Soft-
ware Measurement, San Diego, CA, November

1990.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. A. McCall, P. Richarcls, and G. Walters. Fac-

tors in software quality. Technical Report RADC-

TR-77-369, Rome Air Development Center, Griff-

iss Air Force Base, NY, November 1977.

Adam A. Porter and Richard W. Selby. Empiri-

cally guided software development using metric-

based classification trees. IEEE Software,

7(2):46-54, March 1990.

Adam A. Porter and Richard W. Selby. Evaluat-

ing techniques for generating metric-based classi-

fication trees. Journal of Systems and Soflware,

12(3):209-218, July 1990.

Richard F. Rashid. From RIG to Accent to Mach:

The evolution of a network operating system. In

Proceedings of the Fall Joint Computer Confer-

ence, pages 1128–1137, November 1986.

Richard W. Selby. Generating hierarchical sys-

tem descriptions for software error localization. In

Proceedings of the Second Workshop on Sofiware

Testing, Analysis, and Verification, pages 89-96,

13anff, Alberta, Canada, July 1988.

Richard W. Selby and Victor R. Basili. Error

localization during software maintenance: Gen-

erating hierarchical system descriptions from the

source code alone. In Proceedings of the Confer-

ence on Soflware Maintenance, Phoenix, AZ, Oc-

tober 1988.

Richard lV. Selby, Greg James, Kent h~adsen,

Joan Mahoney, Adam Porter, and Doug Schmidt.

Classification tree analysis using the Amadeus

measurement and empirical analysis system. In

Proceedings of the Fourteenth Annual Sofiware

Engineering Workshop, NASA/GSl?C, Greenbelt,

MD, November 1989.

Richard W. Selby, Greg James, Kent h’iadsen,

Joan Mahoney, Adam Porter, and IDoug Schmidt.

Amadeus, An automated measurement and em-

pirical analysis system: Conceptual architecture

overview. Arcadia Technical Report UCI–89–21,

University of California, June 1989.

Richard IV. Selby and Adam A. Porter. I.earn-

ing from examples: Generation amd evaluation

of decision trees for software resc)urce analysis.

IEEE Transactions on Sofiware Engineering, SE-

14(12):1743-1757, December 1988.

Richard W. Selby and Adam A. Porter. Software

metric classification trees help guide the mainte-

nance of large-scale systems. In Proceedings of the

291

Conference on Software Maintenance, pages 116-

123, Miami, FL, October 1989.

[20] Stanley M. Sutton, Jr., Dennis Heimbigner, and

Leon J. Osterweil. Language constructs for man-

aging change in process-centered environments. In

Proc. of the Fourth Symposium on Practical Soft-

ware Development Environments, 1990. Irvine,

California.

[21] Richard N. Taylor, Frank C. Belz, Lori A. Clarke,

Leon Osterweil, Richard W. Selby, Jack C. Wile-

den, Alexander L. Wolf, and Michal Young. Foun-

dations for the Arcadia environment architecture.

In Proceedings of ACM SIGSOFT ’88: Third

Symposium on Sofiware Development Environ-

ments, pages 1–13, Boston, November 1988. Ap-

peared as Sigplan Notices Z4(2) and Sofiware En-

gineering Noies 13(5).

[22] Koji Torii, Tohru Kikuno, Ken ichi Matsumoto,

and Shinji Kusumoto. A data collection and anal-

ysis system Ginger to improve programmer pro-

ductivity on software development. Technical re-

port, Osaka University, Osaka, Japan, 1989.

[23] N. H. Weiderman, A. N. Habermann, M. W.

Borger, and M. H. Klein. A methodology for eval-

uating environments. In Proceedings of the First

A Cikl SIGSOFT/SIGPLAN Symposium on Prac-

tical Software Development Environments, pages

199 – 207, Palo Alto, California, December 1986.

[24] Michal Young, Richard N. Taylor, and Dennis B.

Troup. Software environment architectures and

user interface facilities. IEEE Transactions on

Software Engineering, 14(6):697-708, June 1988.

298

