
CS242

Operator Precedence Parsing

Douglas C. Schmidt

Washingon University, St. Louis

1

The Role of the Parser

� Technically, parsing is the process of deter-
mining if a string of tokens can be derived
from the start state of a grammar

{ However, languages we wish to recognize in prac-

tice are typically not fully describable by conven-

tional grammars

{ Grammars are capable of describing most, but not
all, of the syntax of programming languages

� Four Basic Parsing Approaches

{ Universal parsing methods � ine�cient, but gen-

eral

{ Top-down � generally e�cient, useful for hand-

coding parsers

{ Bottom-up � e�cient, automatically generated

{ Ad-hoc � eclectic, combined approach

2

General Types of Parsers:

� Universal parsing methods

{ Cocke-Younger-Kasami and Earley's algorithm

� Top-down

{ Recursive-descent with backtracking

{ LL � left-to-right scanning, leftmost derivation

{ predictive parsing � non-backtracking LL(1) pars-

ing

� Bottom-up

{ LR � left-to-right scanning, reverse rightmost deriva-

tion

{ LALR � look ahead LR

� Ad-hoc

{ e.g., combine recursive descent with operator-precedence

parsing

3

Context-Free Grammars (CFGs)

� Context-free languages can be described by

a \context free grammar" (CFG)

� Four components in a CFG

1. Terminals are tokens

{ e.g., if, then, while, 10.83, foo bar

2. Nonterminals are syntactic abstractions denoting

sets of strings

{ e.g., STATEMENT, EXPRESSION, STATEMENT LIST

3. The start symbol is a distinguished nonterminal

that denotes the set of strings de�ned by the lan-

guage

{ e.g., in Pascal the start symbol is program

4. Productions are rewriting rules that specify how

terminals and nonterminals can be combined to

form strings, e.g.,:

stmt ! if '(' expr ')' stmt j if '(' expr ')' stmt else stmt

4

CFG Example

� Boolean expressions

e.g., true and false or (true or false)

� Grammar one

BEXPR ! BEXPR and BEXPR

BEXPR ! BEXPR or BEXPR

BEXPR ! true j false
BEXPR ! '(' BEXPR ')'

� Grammar two

BEXPR ! OR EXPR

OR EXPR ! OR EXPR or AND EXPR j AND EXPR

AND EXPR ! AND EXPR and TOKEN j TOKEN
TOKEN ! true j false j '(' OR EXPR ')'

� Note that both grammars accept the same

language

5

Grammar-Related Terms

� Precedence

{ Rules for binding operators to operands

{ Higher precedence operators bind to their operands

before lower precedence ones

{ e.g., / and * have equal precedence, but are higher

than either + or �, which have equal precedence

� Associativity

{ Grouping of operands for binary operators of equal

precedence

{ Either left-, right-, or non- associative

{ e.g.,

+, -, *, / are left-associative

= (assignment in C) and ** (exponentiation in Ada)

are right-associative

operators new and delete (free store allocation in C++)

are non-associative

6

� Derivations

{ Applies rewriting rules to generate strings in a lan-

guage described by a CFG

{ => means "derives" in one step

. e.g., B => B or B means B derives B or B

{
�

=> means derives in zero or more steps

. e.g.,

B
�

=> B

B
�

=> B or B

B
�

=> true or false

{
+
=> means derives in one or more steps

. e.g.,

B
+
=> true or B

B
+
=> true or false

. note that
+
=> de�nes L(G), the language gener-

ated by G

7

� Parse trees

{ Provides a graphical representation of derivations

{ A root (represents the start symbol)

{ Leaves � labeled by terminals

{ Internal nodes � labeled by non-terminals

� Expression trees

{ A more compact representation of a parse tree

{ Typically used to depict arithmetic expressions

{ Leaves ! operands

{ Internal nodes ! operators

8

� Sentential form

{ A string (containing terminals and/or nontermi-

nals) that is derived from the start symbol, e.g.,

B, B or B, B or false, true or false

� Sentence

{ Is a string of terminals derivable from the start

symbol

e.g.,

true and false is a string in the boolean expr language

true and or false is a not

{ The parser determines whether an input string is

a sentence in the language being compiled

� Push-down automata (PDA)

{ A parser that recognizes a language speci�ed by

a CFG simulates a push-down automata, i.e., a

�nite automata with an unbounded stack.

9

Why Use Context-Free

Grammars?

� CFGs provide a precise and relatively com-

prehensible speci�cation of programming lan-

guage syntax

� Techniques exist for automatically generat-

ing e�cient parsers for many grammars

� CFGs enable syntax-directed translation

� They facilitate programming language mod-

i�cations and extensions

10

Operator-Precedence Parsing

(OPP)

� Uses a restricted form of shift-reduce pars-
ing to recognize operator grammars:

{ Contain no � productions

{ Have no two adjacent non-terminals

� Table driven approach uses a matrix con-
taining three disjoint precedence relations:

1. < �

2.
:
=

3. � >

11

Operator-Precedence Parsing

(OPP) (cont'd)

� Strengths of OPP

{ Easy to implement by hand or by a simple table-

driven generator

� Weaknesses of OPP

{ Need clever lexical analyzer to handle certain over-

loaded operators e.g., unary + and � versus binary

+ and �

{ Only handles a small class of languages (operator

grammars)

12

OPP Algorithm

� General pseudo-code

while (next token is not EOF) f
if (token is TRUE or FALSE)

push (handle stack, mk node (token));

else if (f[top (op stack)] < g[token])

push (op stack, mk node (token));

else f
while (f[top (op stack)] > g[token])

push (handle stack,

mk node (pop (op stack),

pop (handle stack),

pop (handle stack)));

if (top (op stack) == DELIMIT TOK

&& token == DELIMIT TOK)

return pop (handle stack);

else if (top (op stack) == LPAREN TOK

&& token == RPAREN TOK) f
pop (op stack);

continue;

/* Jump over push operation below. */

g
push (op stack, mk node (token));

g
g

13

