
Evaluating Component Middleware Enhancements
for Distributed Real-Time Embedded Systems

Nanbor Wang Venkita Subramonian and Chris Gill Doug Schmidt
nanbor@txcorp.com fvenkita,cdgillg@cse.wustl.edu schmidt@dre.vanderbilt.edu

Tech-X Corp Dept. of Computer Science Dept. of Computer Science
Washington University Vanderbilt University

Abstract

Component middleware enhances earlier generations of ob-
ject middleware by dividing system development and config-
uration concerns into separate aspects such as application
functionality, timeliness constraints, and resource access poli-
cies. However, conventional component middleware technolo-
gies, such as J2EE and .NET, were not designed to manage the
stringent QoS aspects of distributed real-time and embedded
(DRE) systems.

This paper makes four contributions to research on enhanc-
ing component middleware for DRE systems. First, it de-
scribes how the integration of Real-time CORBA object mid-
dleware features with CORBA Component Model (CCM) com-
ponent middleware features in the context of the Component-
Integrated ACE ORB (CIAO) improves the configurability of
key real-time aspects. Second, it compares QoS performance
and configuration flexibility of Real-time CORBA features with
and without CCM features to measure the overhead of compo-
nent middleware vs. object middleware. Third, it evaluates
the performance of static vs. dynamic component configura-
tion to support different types of DRE applications. Fourth, it
presents an empirical comparison of component configuration
in CIAO and PRISM, which is a domain-specific component
model implementation developed for avionics systems by Boe-
ing. Our results show that standards-based component model
implementations can offer comparable performance to cus-
tomized domain-specific component model implementations,
while offering greater flexibility in configuring key DRE sys-
tem aspects.

1 Introduction

Component middleware enhances earlier generations of ob-
ject middleware by dividing system development and con-
figuration concerns into separate aspects such as application
functionality, timeliness constraints, and resource access poli-
cies. Furthermore, component middleware then allows those
aspects to be specified, composed, and enforced at various sys-
tem development lifecycle stages such as component packag-
ing, application assembly, and system deployment.

Conventional component middleware technologies, such as
J2EE and .NET, were designed to manage the quality of ser-
vice (QoS) aspects of enterprise systems, which focus largely
on scalability and transactional dependability. These conven-
tional component middleware technologies are not well suited,
however, to address the more stringent QoS aspects of dis-
tributed real-time and embedded (DRE) systems, which focus
largely on low latency/jitter, timeliness, and fine-grain arbi-
tration of access to shared resources. In particular, although
conventional component middleware standardizes some mech-
anisms to configure and control certain QoS aspects such as
connecting event sources to event sinks, or managing trans-
actional behavior, it lacks effective abstractions for separat-
ing QoS policy configurations from application functionality,
which forces application developers to configure QoS policies
in an ad hoc way that is unnecessarily hard to configure, vali-
date, modify, and evolve for complex DRE systems.

This paper makes four contributions to research on en-
hancing component middleware for DRE systems. First,
it describes how the integration of Real-time CORBA ob-
ject middleware features with CORBA Component Model
(CCM) component middleware features in the context of the
Component-Integrated ACE ORB (CIAO) improves the con-
figurability of key real-time aspects, such as the priorities
and periods of component method invocations. Second, it
compares QoS performance and configuration flexibility of
Real-time CORBA features with and without CCM features
to measure the overhead of component middleware vs. object
middleware. Third, it qualitatively and quantitatively evalu-
ates the role of static and dynamic component configuration
with respect to supporting different types of DRE applica-
tions. Fourth, it gives an empirical comparison of the con-
figuration features in CIAO to the configuration features in
PRISM, which is a domain-specific component model imple-
mentation developed for avionics systems by Boeing. Our
results show that standards-based component model imple-
mentations can offer comparable performance to customized
domain-specific component model implementations, while of-
fering greater flexibility in configuring key DRE system as-
pects.

This paper is structured as follows. Section 2 describes

1

how the integration of CIAO’s configuration capabilities with
TAO’s Real-Time CORBA 1.0 policies and mechanisms al-
lows fine-grain customization of real-time DRE system as-
pects at different stages of the application development lifecy-
cle. Section 3 describes both the dynamic and static variants of
CIAO’s configuration infrastructure, and compares those vari-
ants to the static configuration infrastructure in the PRISM
domain-specific component model. Section 4 describes and
presents the results of a number of empirical studies we have
conducted to quantify the performance benefits and costs of
using CIAO to develop DRE systems. Section 5 describes re-
lated work in the areas of DRE system configuration tools and
QoS-aware component models. Finally, Section 6 offers con-
cluding remarks and describes future work.

2 Configuring DRE System Aspects
with CIAO

To provision end-to-end QoS robustly throughout a compo-
nent middleware system and to improve component reusabil-
ity, QoS provisioning specifications should be decoupled from
component implementations and specified instead in compo-
nent composition meta-data. To achieve this decoupling, two
major design challenges must be addressed at once: (1) cus-
tomizing policies and mechanisms at fine granularity accord-
ing to the specific requirements of each application, while (2)
preserving sufficient flexibility to exploit different configura-
tion options at different points in the development lifecycle,
across a wide range of applications.

In this section we describe how CIAO can be used to
custom-configure both the functional and QoS aspects of each
application, within a reasonably wide range of applications
with different real-time configuration needs. We focus on two
key areas of interest for DRE systems built using standards-
based COTS middleware,i.e., CORBA: (1) which Real-Time
CORBA 1.0 Object Request Broker (ORB) policies and mech-
anisms represent useful points of configuration to meet real-
time application requirements, and (2) when in the overall sys-
tem development lifecycle can these configuration points be
exploited to improve customization of the system overall.

2.1 Real-Time CORBA Configuration Policies
and Mechanisms

Within a real-time middleware endsystem, resources for en-
forcing real-time behaviors are allocated using various policy
objects standardized by real-time middleware specifications
such as Real-time CORBA. These policies can be applied with
different granularities,i.e., affecting different scope of objects.
Depending on the purpose for which a policy is designed, it

can be applied (1) to the client-side,i.e., to affect how the ORB
invokes remote operations, or (2) to the server-side,i.e., to af-
fect how the ORB handles incoming operation invocations, or
(3) to both the client and server sides,i.e., to control common
mechanisms and strategies.

In Real-time CORBA, a policy can be applied at different
scopes and granularities, according to thePolicy manage-
ment framework introduced by the CORBA Messaging spec-
ification [1, 2]. On the client-side, a policy can be applied
with the following granularities to affect how the client ORB
invokes remote operations:

1. ORB. Policies applied to an ORB apply to all object ref-
erences resolved by the ORB thereafter. These policies
affect all operation invocations using these object refer-
ences.

2. Thread. ORB-level policies can be overridden, within
a thread of execution, by applying the policy to the
PolicyCurrent pseudo-object associated with the
thread. All subsequent operations invoked from that
thread of execution will be affected by the applied poli-
cies.

3. Object Reference.An object can apply different policies
from the ORB or the context of the thread of execution by
overriding the policies in the scope of an object reference.
Subsequent operations invoked on that object reference
will be affected by the overridden policies.

Likewise, a policy can be applied with various granularities
on the server-side ORB to affect how the ORB handle incom-
ing operations:

1. ORB. Policies applied to an ORB affects all servants
hosted by the ORB,i.e., all incoming requests handled
by the ORB will be affected by the applied policies.

2. POA. ORB-level policies on the server side can be over-
ridden by applying the policy to the POA. All incoming
requests to the servants managed by the POA which the
overriding policy applied will be affected by the policy.

3. Object reference. Certain POA-level policies, such as
priority level, can be overridden in an object reference by
specifying the overriding policies when activating or cre-
ating a new object reference or servant. This overriding
mechanism allows a servant to handle incoming requests
using different sets of policies.

It is important to note that in the CORBA policy management
framework, policies applied to a method invocation override
policies applied to the target object, which in turn override
policies applied to the current thread of execution, which then
override ORB-wide policies, which finally override default
policies for that ORB implementation. In general, policies ap-
plied at finer levels of granularity override those applied with
coarser granularity. This allows developers to configure an

2

application with a set of default policies while being able to
specialized parts of the application by overriding those default
policies. It is therefore important that component middleware
provide similar granularity in its configuration interfaces and
mechanisms.

2.2 System Composition Phases

The CCM programming paradigm provides the foundation for
composing systemic behaviors via specification of policies and
mechanisms for a composed application. CIAO takes advan-
tage of the multiple policy specification stages in the CCM
development lifecycle to add hooks where systemic policies
and mechanisms can also be specified, thus offering a signif-
icant advantage over the conventional Real-time CORBA de-
velopment process. To achieve this, several supporting con-
structs in CCM have been extended in to support composition
of systemic policies and mechanisms. To support real-time
applications in CIAO, it is first important to identify when
and how real-time policies and supporting mechanisms can be
composed into an application.

Information about the structure and requirements of the ap-
plication and about the resources on which is is to be deployed
becomes available at different stages of the application’s life-
cycle. The following list describes how different kinds of
QoS provisioning policies can be configured at various stages
of the CCM development lifecycle and the consequences of
using these composition strategies. Historically, policies for
managing systemic behaviors have been integrated implicitly
by developers during the development of the application pro-
grams themselves. Identifying the kind of systemic policies
that should be composed into each stage of the development
lifecycle provides better organization to configure and manage
these policies.

1. Component implementation stage. In the component
implementation stage, component developers can specify
the policies and mechanisms on which a component im-
plementation depends to execute correctly,i.e., to meet
the QoS requirements of the component implementation.
For example, a developer may decide to manage the pri-
ority level a component uses to invoke operations on a
particular receptacle in the component implementation
explicitly. In this scenario, there needs to be a way for
the component implementation to specify its dependency
on component server and container that support real-time
behavior.

2. Component packaging stage.A component implemen-
tation package may also document its key systemic be-
haviors as constraints in this stage. For example, a com-
ponent may document its implementation constraints on
allowable rates it can achieve to process or to propagate

an incoming operation invocation from a facet to opera-
tions to receptacles.

Binding systemic behaviors, such as Real-time CORBA’s
priority model policy, into component implementations
makes these behaviors part of component implementa-
tions. This approach allows application assemblers to use
different component implementations for selecting differ-
ent systemic behaviors. However, as we described earlier,
this approach may hamper the reusability of component
implementations as they assume certain kinds of support
from the runtime environment and other components that
coexist with them. Moreover, extra care must be taken
when composing components with embedded systemic
behaviors to ensure all the components used to assemble
an application have compatible systemic behaviors [3, 4].

It is therefore important to extend component descrip-
tors to allow developers to embed these implementation-
specific dependencies and systemic behaviors. This ex-
tension will also provide hints to other tools to ensure
that necessary supporting mechanisms are available in the
composed application and that all the components have
compatible behaviors.

3. Application assembly stage.During this stage, develop-
ers utilize various CASE design tools to create assembly
specifications calledassembly descriptorsthat describe
how to build distributed applications using available com-
ponent implementations. Information contained in as-
sembly specifications includes the number of servers,
what component implementations to use, how and where
to instantiate components, and how to connect compo-
nent instances together in an application. Policies and
mechanisms for allocating resources and controlling sys-
temic behaviors can be applied at this stage to control
and to allocate resources used by assembled applications.
These policies and mechanisms can be applied and asso-
ciated with different entities via assembly descriptors, to
provide fine-grained control over systemic behaviors.

In addition, when component behaviors constraints are
documented in component implementation packages, the
application assembly stage allows application assembly
tools to assimilate and reason with these constraints,
make sure there are no conflicting constraints among
component implementations, and deduce and synthesize
a new set of constraints of the overall that are application.
For example, if a series of component implementation are
connected as a caller-callee chain via their facets and re-
ceptacles, with the embedded allowable rate constraints,
the assembly tools will be able to deduce a new set of al-
lowable rates for the new assembled application and em-
bed the constraints in the assembly descriptors [4].

4. Application deployment stage. At the final stage of

3

transforming a component assembly into a fully specified
and running application, component deployment tools are
responsible to ensure the runtime environment,e.g., the
set of component servers, provides adequate support for
the systemic behaviors the application demands. Sup-
port for systemic behaviors can either be provided by the
deployment tools via a special component server imple-
mentation that offers the required mechanisms, or via dy-
namically linking in the required mechanisms into com-
ponent servers. By controlling the systemic aspect sup-
port mechanisms, the deployment stage provides the last
chance in the CCM development lifecycle to control how
resources are allocated in the running application. Simi-
lar to component implementation, packaging and applica-
tion assembly stages, tools can be used to model and as-
sist the generation of deployment configuration to ensure
the systemic requirements of applications can be met.

2.3 Composing Real-time Aspects with
CORBA, CCM and CIAO

To address the dual challenges of customization and flexibil-
ity, component metadata representation and manipulation ca-
pabilities found in conventional component middleware must
therefore be extended. In particular, they must be able to con-
figure real-time policies at each of the different scopes listed
in Section 2.1 and at each of the lifecycle stages listed in Sec-
tion 2.2.

Systemic aspects tend to cross-cut functional boundaries.
Composing systemic aspects often requires resources and
mechanisms to be allocated and configured globally through-
out an application. Therefore, the XML document formats for
component and assembly metadata must be expanded to parse,
allocate and configure these resources and associate them with
component instances or component connections. Moreover, to
ensure a component server is equipped with the mechanisms
needed to support the provisioned QoS requirements, compo-
nent packaging and assembly metadata should include mid-
dleware modules that enable the control and configuration of
these resources.

We now summarize the strategies that can be applied to con-
figure real-time properties of DRE applications using the Real-
time CORBA features available in TAO and the QoS aspect
configuration capabilities of CIAO. First, requiring a real-time
ORB is not a policy of CORBA itself, but rather can be in-
ferred from the presence of other real-time policies at any of
the application lifecycle stages. If the priority model a com-
ponent implementation will use will always be the same, it
can be programmed directly into the component implementa-
tion; otherwise if a more flexible approach is appropriate, that
decision can be made at the component packaging, applica-

tion assembly, or even system deployment stages, and applied
to the entire component or only particular interfaces, recepta-
cles, or operations. Custom mappings of priorities specified by
clients into priorities actually used on a server can be installed
either at the component packaging or at the application assem-
bly stage. Connections can be marked as private, i.e., not for
re-use between other objects, either when facets and recepta-
cles are specified or when those connections are established
during application assembly. Thread pool sizes and priority-
banded connection policies can be specified during component
packaging or application assembly. Finally, connections can
be marked for pre-establishment at system initialization dur-
ing component packaging, application assembly, or system de-
ployment.

Compared to using a traditional CORBA implementation
to develop a simple client-server application, more steps are
seemingly required to develop the same application using
CCM, and CIAO adds even more steps for configuration of
real-time aspects. However, much of the complexity seen in
CIAO is inherent to the process of developing and deploying
DRE applications, and in fact otheraccidental complexities
that are addressed in CIAO can arise when developing DRE
applications either using Real-time CORBA directly or using
a component model implementation that does not provide ex-
plicit support for configuring real-time system aspects.

2.4 Example Application

We now examine a simple but illustrative example applica-
tion drawn from the avionics mission computing domain [5].
Figure 1 illustrates a prototypical DRE application scenario
involving three software entities: aRate Generator, which
wraps a hardware timer that triggers pushing of events at spe-
cific periodic rates to event consumers that register for those
events, aGPScomponent which wraps one or more hardware
devices for navigation, and aHead-up Display, which wraps
the hardware for a display device in the cockpit. The GPS
component caches its location value, which it refreshes from
the navigation hardware device when it receives a triggering
event from the Rate Generator Component. The GPS compo-
nent then pushes a triggering event to the Heads-up Display
component which in turn pulls the new value from the GPS
component and updates its displays in the cockpit.

ÿþýüûúùøþü
��úýüøû

��ý�ü��þ�þ� �þ�ü

��üø�øþ
�ú�ýø

��üø

���

�� ����ü��þ

�ø�ûøý� �ø���

��ÿ��ý����
�ø�ûøý�

������ �ü��þ

Figure 1:A Prototypical DRE Application Scenario

4

In practice, DRE applications are likely to involve a larger
number of components, with subsets of components connected
via specialized networking devices, such as VME-bus back-
planes. However, although applications and their real-time re-
quirements and deployment environments may differ, many
DRE systems share the kinds of rate-activated computation
and display/output QoS constraints illustrated here. Therefore,
this example represents a broader class of systems to which
our work on CIAO applies.

This example also helps to illustrate the benefits of devel-
oping DRE applications with CIAO, instead of with Real-time
CORBA directly or with component model implementations
that do not support explicit fine-grain configuration of key
QoS aspects. With CIAO’s extensions to the CCM develop-
ment paradigm, extending the example application shown in
Figure 1 is as easy as providing the new component imple-
mentations, packaging them with XML descriptors of their in-
terfaces and QoS constraints, and then using those packages to
compose new application via an XML assembly file. In con-
trast, extending a direct Real-time CORBA implementation of
the same application would requires more effort in modifying
code in each of the components,i.e., in addition to creating the
new servant implementations, to configure ORBs and POAs
to accommodate the servants and their QoS requirements, ac-
tivating the servants, setting up QoS attributes of the connec-
tions between the servants, and modifying how servants inter-
act.

When it is necessary to extend an existing application due
to changes in requirements or deployment platforms, the ben-
efits of using CIAO’s development model are magnified. For
example, suppose a collision warning component and its as-
sociated cockpit display and rate generation components were
added to the example application shown in Figure 1. Further
suppose the collision warning system may run at a faster or
slower rate than the navigation system depending on the kind
of aircraft and its intended operating environment, but should
always run at higher priority so that the pilot is always alerted
of an impending collision in time to take an evasive maneuver
(instead of worrying about the exact location of the aircraft).

ORBs conforming to Real-time CORBA specification allow
developers to specify thread pool priorities and servant imple-
mentations can specify rates of invocation on other servants
using mechanisms such as timers provided by the operating
system. However, adding the code to set priorities and timer
periods again involves intrusive modification of the servants
themselves. In comparison, CIAO’s real-time extensions to
CCM provide new XML formats to define all the real-time pa-
rameters and policies in real-time extension files. These files
can then be composed into an existing application assembly
without modifying the existing component implementations.

3 CIAO Configuration Infrastructure

3.1 Dynamic Assembly of Components

The process of dynamic assembly of application components
in CIAO is shown in Figure 2. The first stage of the CIAO sys-
tem lifecycle occurs off-line, when component package (.csd)
and assembly (.cad) files are generated by a modeling tool or
other prior stage of the tool chain. These files contain an ab-
stract specification of the configuration that is to be achieved
by CIAO in each particular deployment environment.

Assembly
Deployer

Assembly
Manager

Server
Activator

Component
Server

Container

Server
Activator

URLs

.csd file
.csd file

.cad file

Server
Activator

.cad name
Component

Server

Home

Component
Implementation

directory

Create
component

server
spawn

Create
container

install
home create

create

Figure 2:Online Component Assembly

Our implementation interprets these .csd and .cad files, and
creates and configures the components, their run-time server
environments, and QoS properties within the supporting ORB
and other related infrastructure. The dynamic version of
our CCM implementation currently runs several daemon pro-
cesses for each deployment environment: one or more Com-
ponent Installation/Server Activation (CISA) daemons on each
machine where components can be deployed, an additional
Assembly Manager daemon and an Assembly Deployer pro-
cess used by the system developer.

The Assembly Manager stores an internal table with the tar-
get platform availability information. The Assembly Deployer
tells the Assembly Manager which assemblies of components
(each assembly is defined in a separate .cad file) should be
deployed on which target machines. The Assembly Manager
parses the XML structures in the .cad file, and generates its
own internal data structure as an intermediate representation
of that assembly. The Assembly Manager then traverses this
intermediate representation, instructing each CISA daemon to
install and configure specific component servers and contain-
ers, to create specific homes, and to instantiate specific com-
ponent instances. Each CISA daemon has additional informa-
tion about the component implementations available on that
endsystem

The dynamic component assembly approach suffers from

5

the following drawbacks:

� XML parsing may be too expensive to be performed dur-
ing system initialization.

� Multiple process address spaces may be required to coor-
dinate the creation and assembly of components.

� Online loading of component implementation from DLLs
or shared objects may not be supported by RTOS plat-
forms like VxWorks where such facilities are not avail-
able.

3.2 Static Assembly of Components

To address the drawbacks of dynamic assembly approaches,
we implemented an alternative approach to component assem-
bly wherein as much work as possible in the assembly process
is done offline. The fundamental intuition in understanding
our approach is that in DRE systems the stages of the overall
system lifecycle are similar to those in more dynamic conven-
tional component-oriented client-server applications. How-
ever, in ourstatic configurationapproach several phases of the
CIAO CCM lifecycle are compressed into the compile-time
and system-initialization phases, so that (1) for testing and ver-
ification purposes the set of components in an application can
be identified and analyzed before run-time, and (2) overheads
for run-time operation following initialization are reduced and
made more predictable. Furthermore, due to the nuances of
the platforms traditionally used for deploying DRE systems,
not all features of conventional platforms are available. Our
approach therefore avoids certain mechanisms that are either
unavailable or too costly in terms of performance.

We follow these intuitions in our approach, taking the ex-
isting configuration phases in the online approach described
in the previous section and pushing several of them earlier in
the configuration lifecycle. We ensure that our approach can
be realized in the context of platforms like VxWorks, by re-
factoring the configuration mechanisms and retargeting them
to use only the services available on the target real-time plat-
forms.

Static
Assembly

Parser

.csd file
.csd file

.cad file

Component
Implementation

directory

.cad
file name

Configuration Info (.h)

Main application driver (.cpp)

Build file

Main driver (.cpp)
main()
{
 ……
 config_engine.configure(config info)
 ……...
}

Offline Online

Statically
parsed
config info

Figure 3:Static Component Assembly

In the static configuration approach, shown in Figure 3,
configurations XML files are translated in a code genera-
tion step just before compile time (managed by the same
projectMakefile processes that do the compilation) into C++
header and source files that are then compiled and linked with
the main application. The result is that all such XML pars-
ing has been moved off-line (before run-time), and the result-
ing information is linked statically into the application itself.
Each endsystem boots and initializes in a single process ad-
dress space, so that there is no need for inter-process commu-
nication to create and assemble components.

3.3 Component Configuration in CIAO and
PRISM

Figure 4 shows the different steps involved in component as-
sembly using CIAO and PRISM. We map the similarities be-
tween the individual stages in the two models. The PRISM
component model also includes a number of other activities
including but not limited to initialization of services like per-
sistence, distribution and concurrency. We focus only on the
component assembly part and hence consider initialization of
these services out of scope.

Create home

Create
component
factory

Create
component
impl

Create
support for facet,
receptacle and equivalent
interface

Init Receptacle,
EventSupplier &
EventSink

Create
connection

Install
home

Create
component

Register component
(e.g. with a naming

service)

Create
container

CIAO PRISM

Create home
executor

Create home
servant

Register with POA
and create object
reference to home

C1

C2

C3

C4

C5

C2.1

C2.2

C2.3

P1

P2

P3

P4

P5

Figure 4:Correspondence between CIAO and PRISM

The following are the steps in the assembly of components
in PRISM. A home object is created (P1) for each compo-
nent, that is then responsible for creating a component factory
(P2) for that component. Each component’s factory creates the
component implementation (P3). Within the component im-
plementation, the facets, receptacles and equivalent interfaces
are created (P4) so that connections can be made from/to other
components. Finally the connections between the facets and
receptacles are made in (P5). In step (P5), apart from mak-
ing connections between facets and receptacles, connections
are made between event suppliers and event sinks. In PRISM,
a connection between an event supplier and an event sink is
established by means of the TAO Real-Time Event Channel
(RTEC). These correspond to the “publishes” and “consumes”
ports in CCM, though it must be noted that currently in the
CIAO implementation we do not use the RTEC to connect a

6

publisher and consumer. For our comparisons, hence, we do
not take into account the connections established by means of
the RTEC. Note that most of the object creations in the above
steps are plain C++ objects created on the heap.

The following are the steps in the assembly of components
in the CIAO implementation of CCM. A CCM Container ob-
ject is created (C1) to hold the different components. The con-
tainer acts as a common place to set different policies such as
transaction, persistence,etc.. Note that, in contrast, we do not
have a corresponding concept of a container in PRISM and
hence in our instrumentation we don’t consider this for our
comparison. A home object is created (C2) and is installed on
the container created in (C1). This involves three substeps -
A home executor object is created (C2.1) and a home servant
object is created (C2.2). The home servant object is then reg-
istered with the POA (C2.3) and an object reference created
that can then be used to created components using the home.
Note that, in contrast with the PRISM component model, there
are a lot of CORBA objects being created in the CIAO CCM
implementation. The next step (C2.3) is to create components
using the home object reference created in the previous step.
A component’s object reference is advertised with a Naming
service (C2.4). This step is an optional step and is done only if
it is specified so in the component assembly descriptor XML
files. Finally connections are established between matching
publisher and consumer ports and facets and receptacles re-
spectively, according to the connection specifications in the
descriptor files. The CIAO implementation currently does not
use the TAO RTEC to establish connections between publisher
and consumer ports. The connection is achieved thru a plain
two-way call mechanism.

4 Empirical Evaluation of CIAO

Our objectives in evaluating CIAO’s configuration infrastruc-
ture are twofold. First, we want to quantify the performance
improvement static CIAO offers with respect to initialization
time over dynamic CIAO. Second, we want to compare the
static configuration implementation in CIAO with the avionics
domain-specific PRISM component model [6] used by Boe-
ing.

4.1 Evaluation of Dynamic and Static Configu-
ration Mechanisms

4.1.1 Experiment Design

Experiments to compare the kinds of static and dynamic con-
figuration mechanisms described in Sections 3.1 and 3.2 must
be performed on a platform that can (1) support necessary
dynamic configuration mechanisms such as shared object li-

braries, and (2) offer suitable real-time performance. We
therefore chose Linux as our experimental platform to evaluate
the relative performance of static and dynamic configuration
mechanisms in CIAO, as it provides both of these capabilities.

To minimize any effect of varying application logic on our
comparisons, we chose to use a very basic scenario within the
Boeing Open Experimentation Platform (OEP) for the DARPA
PCES program - the Basic Single Processor (BasicSP) sce-
nario. This scenario models the data flow and processing that
happens when the information from a navigation GPS device
is used to display the route taken by the aircraft on the cock-
pit display. This scenario uses three components as shown in
Figure 12. The GPS device periodically makes current posi-
tion information available thru its facet interface. It publishes
the availability thru itsdataAvailableport that is connected to
the AIRFRAME component. The AIRFRAME component,
on receiving thedataAvailable“event” from the GPS, gets
the position information thru the GPS component facet. The
AIRFRAME component, in turn, publishes an event that is
received by the DISPLAY component. The DISPLAY compo-
nent gets the position data from the AIRFRAME and displays
the route on the display device. Note that the data flow uses a
push-pull model, where an “event” is pushed to indicate that
data is ready to be collected. Then those who are interested
can collect the data by querying the appropriate component.

NavDisplayPeriodic
Rate

Generator

GPS Airframe

Figure 5:Boeing BasicSP Scenario

Experiment testbed. The experiments comparing the dy-
namic and static configurations of CIAO were performed on
a Pentium-IV 2.5GHz with 500MB RAM, 512KB cache and
running RedHat Linux 9. For the timing measurements, we
used the high resolution timer implementation that internally
uses the Pentium Timestamp counter (TSC). The TSC incre-
ments every tick of the processor thus offering a nanosecond
resolution timestamp. CIAO 0.4.1 was used for the compari-
son.

4.1.2 Empirical Results

We use histograms to do all the comparisons due to the fact
that they offer both insights into the density of distribution of
the samples and a visual estimate of the differences. We can
also determine the upper and lower bound on outliers in the
histogram.
Time for assembly. Figure 13.a shows the total time taken
for assembling all the components - this includes creating
homes, containers and components and establishing neces-
sary connections between the components. The static config-

7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 1 10 100 1000

Fr
eq

ue
nc

y

Static CIAO
Dynamic CIAO

Figure 6:Static vs Dynamic: Total Time Taken for Assem-
bly

uration approach takes very little time (avg=2.36msec) when
compared to the dynamic approach (avg=281msec). This per-
formance improvement is not very surprising since the dy-
namic configuration parses XML files at runtime and also
loads shared objects containing component implementations,
both of these avoided in the static approach. We now proceed
to analyze the individual segments to investigate which seg-
ment contributes the most to the longer time for the dynamic
approach.

Time for component server creation. This comparison is
shown in Figure 14. It is obvious that this stage contributes the
most (avg=125.41msec) to the delay observed in the dynamic
approach. This is the stage in which a component server pro-
cess is spawned off in the dynamic approach, whereas in the
static approach a component server object is created in-process
(avg=0.1msec) right at the beginning. Spawning off a separate
process incurs a lot of overhead and this is reflected in the dy-
namic approach plot.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 1 10 100 1000

Fr
eq

ue
nc

y

Static CIAO
Dynamic CIAO

Figure 7:Static vs Dynamic: Component Server Creation
time

Time for home creation. Figure 15 shows this comparison.
This is shared objects/DLLs, which is relatively expensive.
The three different lobes for the dynamic configuration could
be attributed to the slight differences between components and
the XML parsing associated with their home descriptors in
the XML file. Here again, the static approach takes very lit-
tle time (avg=0.15msec) when compared to the dynamic ap-
proach(avg=24.16msec).

Time for container/component creation, component regis-
tration, and connections. These comparisons are shown in

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.1 1 10 100 1000

Fr
eq

ue
nc

y

Static CIAO
Dynamic CIAO

Figure 8:Static vs Dynamic: Home Creation time

Disk Space Memory Size
Static BasicSP 56,258 K 5,246 K

Dynamic BasicSP 87,127 K 15,323 K

Table 1:Staic vs. Dynamic CIAO Footprint Summary

Figure 16, Figure 17, Figure 18 and Figure 19 respectively.
There is not much difference between the two in terms of these
activities. The slight difference between the two approaches
can be attributed to the XML parsing overhead incurred by the
dynamic approach. Moreover, the dynamic approach uses the
visitor pattern to traverse the parsed XML data structure which
incurs a slight overhead (e.g., double dispatching) when com-
pared to the simple for loop construct used by the static ap-
proach to traverse the offline-parsed component information
stored in tables.

Footprint measurements. Table4.2.2 shows a comparison
of the footprints for the BasicSP application using static and
dynamic configurations of CIAO.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.5 1 1.5 2 2.5 3 3.5 4

Fr
eq

ue
nc

y

Static CIAO
Dynamic CIAO

Figure 9:Static vs Dynamic: Container Creation time

4.2 Evaluation of Static Configuration in
PRISM and CIAO

4.2.1 Experiment Design

Experiments to compare open standards-based component
models to domain-specific component models must be run
within the platform for which the domain-specific component
model implementation was designed. We therefore used a
PowerPC board running VxWorks to evaluate the performance
of static configuration mechanisms in PRISM and CIAO.

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3

Fr
eq

ue
nc

y

Static CIAO
Dynamic CIAO

Figure 10:Static vs Dynamic: Component Creation time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Fr
eq

ue
nc

y

Static CIAO
Dynamic CIAO

Figure 11: Static vs Dynamic: Component Registration
time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5

Fr
eq

ue
nc

y

Static CIAO
Dynamic CIAO

Figure 12:Static vs Dynamic: Connection Creation time

We instrumented the relevant parts of the PRISM compo-
nent model that were provided as part of the Boeing PCES
OEP release 3.0. For these experiments we again used the
application scenario and components shown in Figure 12 and
described in Section 4.2.

Experiment testbed. The experiments comparing PRISM
and CIAO static configuration were run on a Motorola 5110-
2263 VME board with a MPC7410 500 Mhz processor on a
100Mhz bus with 512MB RAM and running VxWorks. High
resolution timestamps were taken at the beginning and end of
an interval. A high resolution timestamp consists of a ker-
nel tick counter and a system tick counter. The kernel tick
counter, obtained using the VxWorkstickGet()call is a low-
resolution tick counter that advances every 5msec. The sys-
tem tick counter, obtained usingsysTimestamp()call, is a high-
resolution tick counter that advances every 40ns and reinitial-
izing to 0 every 5msec. These tick counters can be combined
to obtain the time elapsed since system start and their differ-
ence gives elapsed interval time, which is then converted to
nanoseconds. Boeing PCES OEP release 3.0 was used for the
PRISM measurements. These experiments were conducted us-
ing a post-1.4 (prerelease) version of ACE/TAO/CIAO.

4.2.2 Empirical Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3

Fr
eq

ue
nc

y

PRISM
CIAO

Figure 13:PRISM vs CIAO: Time for Home Creation

Time for home creation. Figure 20 shows the time taken
by PRISM and CIAO to create a home object. In the case of
PRISM, home object is just a native C++ object and hence
the home creation time is the time for one dynamic memory
allocation and some subsequent initialization of the home ob-
ject. In the case of CIAO, the home creation is a more elabo-
rate process involving creation of a home executor and home
servant. The home servant is registered to the POA and an
object reference created for later use to create components.
These are CORBA objects and creating and activating them
is more expensive than creating a native C++ object. We be-
lieve this to be the reason for the difference in home creation
between CIAO and PRISM. We believe the smaller lobes for
both PRISM and CIAO to be outliers. We believe another key
overhead in CIAO could be from the different CORBA related

9

operations,e.g.building CORBA policy lists, especially since
such operations could possibly involveCORBA::Anytypes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.5 1 1.5 2 2.5 3 3.5 4

Fr
eq

ue
nc

y

PRISM
CIAO

Figure 14:PRISM vs CIAO: Time for Component Creation

Time for component creation. Figure 21 shows a compari-
son of the component creation time in PRISM and CIAO. For
the CIAO case, the different lobes correspond to different com-
ponents - the left lobe corresponding to the DISPLAY com-
ponent and the right lobe corresponding to the DEVICE and
AIRFRAME components. We believe that this variation is due
to differences in the generated component initialization code
generated for the DISPLAY component vs the other compo-
nents. As shown in Figure 12, the DISPLAY component has
only one receptacle and one consumer port. The timer trig-
ger to the DEVICE component has been implemented using
another component which sends periodic timer events to the
DEVICE component. Hence the DEVICE and AIRFRAME
components have each a facet, a receptacle and a publisher
port. We surmise that the two lobes could represent such dis-
similarities between components. The PRISM model does not
show this pronounced variation because the objects are native
C++ objects, as opposed to CORBA objects in CIAO, and the
resulting difference is hence very minimal. We believe that the
creation of CORBA objects vs the creation of C++ objects is
again the contributing factor between the CIAO and PRISM
models in terms of creation of components.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fr
eq

ue
nc

y

PRISM
CIAO

Figure 15:Time for Connection Creation

Time for connection creation. Figure 22 shows a compari-
son of the connection creation time in PRISM and CIAO. We
believe that the creation of CORBA objects vs the creation of
C++ objects is again the contributing factor between the CIAO
and PRISM models in terms of creation of connections also.

5 Related Work

Universal Network Architecture Service (UNAS) [10] is a
commercial product that automatically generates software ar-
chitectures and supports distributed and heterogeneous soft-
ware systems. One of the main strengths of UNAS is its ability
to rapidly build, execute and experimentally compare a set of
reasonable architectural design alternatives. While UNAS is a
proprietary CASE tool that addresses concerns of large-scale
software development, the static configuration approach that
we discuss here is an alternative approach to dynamic config-
uration in the context of our specific CCM implementation and
could be chosen as a strategy during code generation as part of
a larger CCM tool-chain which conforms to open standards
from OMG.

6 Concluding Remarks

The experiments performed in the dissertation show that CIAO
adds only a small amount of overhead by comparing the per-
formance of equivalent CIAO application to that based on
TAO. The proportion of overhead will diminish even more
with the increase of the size of the payload of an operation.
CIAO also does not degrade the predictability of applications
by adversely affect the jitter. The current implementation of
CIAO, however, does demand more secondary storage and pri-
mary memory for running CIAO applications. The impact on
extra footprint and storage space is expected to lessen as im-
plementation of CIAO evolves and when the dependencies to
unused libraries are removed.

This chapter also shows that CIAO’s run-time supports for
real-time applications impose only a small amount of over-
head to the overall performance and does not adversely affect
the predictability. Moreover, CIAO’s real-time extension has
shown to enable the composition of real-time behaviors into
an application flexibly andeffectively. Because developers can
now integrate real-time behaviors over the whole application
end-to-end, this extension can make developing, maintaining
and validating large scale DRE applications easier.

Based on the results obtained in this section, we now offer
the following observations and recommendations for develop-
ers of complex real-time systems:

Observation. The experiments performed in this chapter are
modeled after existing TAO Latency performance tests and the
real-time validation tests for TAO’s Real-time CORBA imple-
mentation [11]. Comparing CIAO’s implementations to their
TAO-based counterparts, one striking difference is how easy
it is to develop and modify CIAO-based tests. Developing
TAO test programs requires writing new tests. That is, sev-
eral specific programs are required to provide different tests of
different configurations, as in the case of basic performance

10

tests for TAO with and without RT-ORB. Contrarily, CIAO re-
quires only one application assembly but different configura-
tions were achieved by using different standard tools provided
in CIAO, i.e., by changing the deployment environment con-
figuration to use regular component server or real-time com-
ponent server.

The real-time validation tests provide even more obvious
contrast. TAO-based test programs requires elaborated design
of test procedures, options, and configuration into the pro-
grams themselves and can only be run using the corresponding
Perl scripts. In contrast, CIAO tests use only a limited num-
ber of simple component implementations running on com-
mon run-time environment. Different test configurations can
be selected by simply deploying an assembly with different
combination of application composition and real-time behav-
iors. However, CIAO does require significant more storage
space and memory.

Recommendation. This observation shows that although
CIAO does impose modest performance overhead, application
developed using CIAO actually can achieve superior perfor-
mance much easier than using TAO as CIAO-based applica-
tions are much easier to reason, maintain, modify and enhance.
CIAO applications can, therefore, be optimized to achieve bet-
ter performance with lower cost. Further work on CIAO is
needed, however, to reduce CIAO’s footprint so that CIAO
can be applied to application domains where there is stringent
memory limitation. It’s important to be able to also make the
CIAO implementation more robust and be able to compose
CIAO internal modules based on application requirements.
Reflective middleware techniques, such as dynamicTAO [12],
is one such approach worth investigating.

Observation. The development paradigm provided by CCM
allows developers to attach relevant metadata in each lifecycle
phase. It is important to “bind” the information at proper life-
cycle phase to maintain as much as flexibility. Based on the
example scenario in our experiment, we draw the following
recommendations:
Recommendation.

� Bind decisions early if possible. Some information
can be ignored after it is checked at a particular lifecy-
cle phase. For example, after the component packaging
phaseensuresthat each event sink has a corresponding
executor, the application assembly and system deploy-
ment phases need not be concerned with that issue. This
has the overall benefit of simplifying decisions made later
in the system lifecycle.

� (Re)bind decisions flexibly.Other information, and the
results of previous decisions that have relied on it, cross-
cut several phases of the system lifecycle. For example,
after the sets of available event source and sink rates are
ensured to match along component dependences in the

assembly phase, the resulting sets of rates and the compo-
nent dependences are still needed in the system deploy-
ment phase. This allows configuration of concerns that
cross-cut the architectural boundaries of component, ap-
plication, and system, as well as the configuration phase
for each of these architectural levels.

� QoS aspects tend to cross-cut functional boundaries.
Notice especially that QoS information is often refined in
subsequent lifecycle phases after it is introduced. Func-
tional information, on the other hand, tends to be more
fixed once it is specified in a given phase. This reflects
a natural point of difference between CIAO and con-
ventional CCM in which functional information tends to
compose in a more object-oriented manner, while the “lo-
cality of reference” of QoS decisions tends to be orga-
nized around aspect modularity that cross-cuts object and
even component boundaries. CIAO is designed with the
necessary refinement of QoS aspects in mind, and the un-
derstanding that decisions can improve with additional
information as long as prior decisions can be kept flexi-
ble and revisited as needed. Conventional CCM on the
other hand is designed more for functional properties that
once specified remain stable for all subsequent composi-
tion stages.

References
[1] Object Management Group: CORBA Messaging Specification. Object

Management Group. OMG Document orbos/98-05-05 edn. (1998)

[2] Schmidt, D.C., Vinoski, S.: An Overview of the CORBA Messaging
Quality of Service Framework. C++ Report12 (2000)

[3] Subramonian, V., Gill, C.: A Generative Programming Framework for
Adaptive Middleware. In: Hawaii International Conference on System
Sciences, Software Technology Track, Adaptive and Evolvable Software
Systems Minitrack, HICSS 2003, Honolulu, HW, HICSS (2003)

[4] Wang, N., Gill, C.: Improving Real-Time System Configuration
via a QoS-aware CORBA Component Model. In: Hawaii Interna-
tional Conference on System Sciences, Software Technology Track,
Distributed Object and Component-based Software Systems Minitrack,
HICSS 2003, Honolulu, HW, HICSS (2003)

[5] Sharp, D.C., Roll, W.C.: Model-Based Integration of Reusable
Component-Based Avionics System. In: Proceedings of the Workshop
on Model-Driven Embedded Systems in RTAS 2003. (2003)

[6] Roll, W.: Towards Model-Based and CCM-Based Applications for
Real-Time Systems. In: Proceedings of the International Symposium
on Object-Oriented Real-time Distributed Computing (ISORC), Hako-
date, Hokkaido, Japan, IEEE/IFIP (2003)

[7] Pyarali, I., Schmidt, D.C., Cytron, R.: Techniques for Enhancing Real-
time CORBA Quality of Service. IEEE Proceedings Special Issue on
Real-time Systems91 (2003)

[8] Douglas Niehaus,et al.: Kansas University Real-Time (KURT) Linux.
www.ittc.ukans.edu/kurt/ (2004)

[9] Gill, C., Schmidt, D.C., Cytron, R.: Multi-Paradigm Scheduling for Dis-
tributed Real-Time Embedded Computing. IEEE Proceedings, Special
Issue on Modeling and Design of Embedded Software91 (2003)

[10] Royce, W., Boehm, B., Druffel, C.: Employing unas technology for
software architecture education at the university of southern california.
In: Proceedings of the eleventh annual Washington Ada symposium &
summer ACM SIGAda meeting on Ada, ACM Press (1994) 113–121

11

[11] Pyarali, I., Schmidt, D.C., Cytron, R.: Achieving End-to-End Pre-
dictability of the TAO Real-time CORBA ORB. In:8th IEEE Real-
Time Technology and Applications Symposium, San Jose, IEEE (2002)

[12] Kon, F., Campbell, R.H.: Supporting Automatic Configuration of
Component-Based Distributed Systems. In: Proceedings of the5

th

Conference on Object-Oriented Technologies and Systems, San Diego,
CA, USENIX (1999) 175–178

12

