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Abstract. Software for distributed real-time and embedded (DRE) sys-
tems must handle variabilities arising from (1) integration with various 
legacy subsystems using different technologies, languages, and platforms, 
(2) fine tuning needed to satisfy changing customer needs, and (3) appro-
priate packaging, configuration and deployment of functionality onto 
available system resources. Developers of applications and middleware 
must manage these variabilities without overcomplicating their solutions 
and exceeding project time and effort constraints. This paper presents our 
experience addressing domain- and middleware-specific variability 
gained when applying MDD tools and component middleware platforms 
to an inventory tracking system that manages the storage and flow of 
goods in warehouses.  Our experience shows that integrating MDD tools 
and component middleware reduces DRE system development complex-
ity, improves reuse and maintainability, and increases developer produc-
tivity. 
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1   Introduction 
Emerging trends and challenges. During the past decade, quality of service (QoS)-
enabled component middleware has emerged to help developers of distributed real-time 
and embedded (DRE) systems (1) factor out reusable concerns (such as component life-
cycle management, authentication/authorization, and remoting) to enhance reuse and (2) 
avoid having to deal with low-level, tedious, error-prone, and non-portable platform de-
tails, such as socket and thread programming. Standards-based QoS-enabled mid-
dleware technologies, such as Real-time CORBA [9] and Real-time Java [8], support 
the provisioning of key QoS properties, such as (pre)allocating CPU resources, reserv-
ing network bandwidth/connections, and monitoring/enforcing the proper use of DRE 
system resources at runtime to meet end-to-end QoS requirements, such as throughput, 
latency, and jitter. QoS-enabled component middleware technologies, such as Light-
weight CCM [1] and Prism [3], further simplify QoS provisioning via metadata and 
tools that help to (1) automate DRE system development lifecycle phases, such as pack-
aging, assembly, configuration, and deployment, and (2) improve component reusability 
and performance by preventing premature commitment to specific QoS provisioning 
decisions, such as allocating components to thread pools and selecting the underlying 



transport protocols. As a result, software for large-scale DRE systems is increasingly 
being assembled from reusable modular components available from commercial-off-
the-shelf (COTS) providers, rather than developed manually from scratch. 

Although QoS-enabled component middleware technology provides many powerful 
capabilities, it also yields the following challenges for developers of DRE systems: 

• Increased scale. As DRE systems are joined together to form large-scale “systems 
of systems,” developers rarely have in-depth knowledge of the entire system or an 
integrated view of all the subsystems and libraries. This myopia can cause them to 
implement suboptimal solutions that duplicate code unnecessarily, complicate sys-
tem evolution, and violate key architectural principles (e.g., using implementation-
specific functionality instead of public interfaces or prematurely committing to non-
portable deployment policies). 

• Increased variability. Functional variabilities include different business-logic im-
plementations of the same interfaces, e.g., cranes, moving belts, and forklifts in our 
inventory tracking system case study, may vary in their ability to transport certain 
types of goods, depending on their weight, size, hazard-level, and other properties. 
Non-functional variabilities include the configuration of middleware services (such 
as naming, notification, security, or load balancing services), QoS-related configura-
tion policies (such as concurrency and priority policies), and configuration of mid-
dleware internals itself (such as which middleware features should be enabled for a 
particular application in a particular environment).  

The increased scale and variability of DRE systems requires developers to integrate 
different platforms and tools that solve essentially the same types of problems – yet are 
often non-portable and non-interoperable – without overcomplicating their solutions 
and exceeding project time and effort constraints. Likewise, developers of reusable mid-
dleware must also address these challenges when refactoring common capabilities from 
applications into effective reusable technologies and providing a portable operating en-
vironment for application developers. To maximize software reuse and productivity, 
therefore, increased scale and variability must be addressed by combining technologies 
that support alternative configurations and implementations of functionality more effec-
tively than today’s third-generation programming languages. 

Solution approach →→→→ Integrating model-driven development and QoS-enabled 
component middleware. A promising way to alleviate the challenges of DRE system 
scale and variability described above is to integrate model-driven development (MDD) 
[11, 5, 3, 13] techniques with QoS-enabled component middleware [2, 6]. MDD helps 
resolve key software development and validation challenges encountered by component 
middleware and DRE systems by combining (1) metamodeling, which defines type sys-
tems that precisely express key abstract syntax characteristics and static semantic con-
straints associated with particular application domains, such as software defined radios, 
avionics mission computing, and inventory tracking, (2) domain-specific modeling lan-
guages (DSMLs), which provide programming notations that are guided by and extend 
metamodels to formalize the process of specifying application logic and QoS-related 
requirements in a domain, and (3) model transformations and code generation that 
automate and ensure the consistency of software implementations with analysis infor-
mation associated with functional and QoS requirements captured by structural and be-
havioral models.  



We have created an MDD toolsuite called the Component Synthesis using Model Inte-
grated Computing (CoSMIC) [13, 20], which is an integrated collection of DSMLs that 
support the development, deployment, configuration, and evaluation of QoS-enabled 
component middleware-based DRE systems. We also created a DSML called the Ware-
house Modeling and Generation Language (WMGL) that models the physical layout of 
the warehouse and then generates code to populate database tables that contain the in-
formation of warehouse mechanical facilities, storage facilities, and their interconnect-
ing relationships. In addition, we created a QoS-enabled component middleware plat-
form called Component-Integrated ACE ORB (CIAO) that combines Lightweight CCM 
[1] capabilities with Real-time CORBA [9] features, such as thread pools and client-
propagated and server-declared priority policies.  

To evaluate how the integration of MDD tools and QoS-enabled component middle-
ware helps resolve the challenges presented above, we have created an inventory track-
ing system (ITS), which provides logistics support to manage the flow of goods and 
assets in and across warehouses. Users of an ITS include couriers (such as UPS, FedEx, 
and DHL), airport baggage handling systems, and large trading and manufacturing 
companies (such as Wal-Mart and Target).  This paper presents our experience gained 
while integrating MDD and QoS-enabled component middleware to address two key 
concerns of ITS: warehouse configuration and component assembly, configuration, and 
deployment.  The goal of our integration efforts were to help (1) modularize key func-
tional and QoS concerns at higher levels of abstractions than third-generation program-
ming languages, such as Java and C++, (2) handle variabilities at different levels of 
abstractions, e.g., by assembling a set of components to provision ITS functionality 
based on warehouse requirements, and configuring middleware services via DSMLs, 
and (3) automate key steps in the software lifecycle, such as generating deployment and 
configuration XML metadata and/or source code from DSMLs, and automating the de-
ployment of components and services on a target running environment based on ware-
house-specific deployment requirements. 

Paper organization. The remainder of this paper is organized as follows: Section 2 
provides an overview of the ITS case study, focusing on the scale and variability of its 
requirements, component architecture, and component middleware infrastructure; Sec-
tion 3 describes how we integrated and applied MDD tools and QoS-enabled middle-
ware to resolve key technical problems of our ITS case study; Section 4 compares our 
work with related efforts; and Section 5 presents concluding remarks. 

2   Overview of the ITS Case Study 
An inventory tracking system (ITS) provides logistics support to manage the flow of 
goods in and between warehouses, such as those shown in Figure 1. A key goal of an 
ITS is to provide reliable, efficient, and convenient mechanisms that manage the ware-
house and the movement of inventory in a timely and reliable manner. For instance, an 
ITS should enable human operators to configure warehouse storage organization criteria 
and warehouse transportation facility criteria, maintain the set of goods known through-
out a DRE system (which may span organizational and even international boundaries), 
and track warehouse assets using GUI-based operator monitoring consoles.  

 



 

 

 

 

 

 

 

 

 

Figure 1: ITS Environment 

2.1 ITS Actors and Use Cases 
Figure 2 shows the primary actors and use cases in our ITS, which perform the follow-
ing activities: 

 
Figure 2: Actors in Our ITS Case Study 

• Configurator actors use ITS capabilities to configure the set of available facilities in 
certain warehouses, such as the structure of transportation belts, routes used to de-
liver goods, and characteristics of storage facilities (e.g., whether hazardous goods 
are allowed to be stored, maximum allowed total weight of stored goods, etc.).  

• Operator actors use ITS capabilities to reorganize warehouses to fit future changes, 
as well as dealing with other use cases, such as receiving goods, storing goods into 
the warehouse, fetching goods from the warehouse and delivering to particular loca-
tion, dumping goods, goods inventory queries, specifying delivery time accuracy, 
and updating operator console views.   

• Operating Environment actors use ITS capabilities to tolerate partial failures due to 
transportation hardware facility problems, such as broken belts. To handle such fail-
ures, the software associated with hardware devices must alert the ITS work flow 
manager in real-time, i.e., with low latency delay, and higher processing priority. 
The ITS must then recalculate the delivery possibilities dynamically in real-time 
based on available transportation resources and delivery time requirements.  



Although the ITS actors and use cases described above are present in most warehouses, 
they can have significant variation in customer needs, warehouse specific requirements, 
and integration with other subsystems. For example, the warehouse automation hard-
ware and software infrastructure is often supplied by multiple vendors who select dif-
ferent hardware and software platforms and tools. The resulting heterogeneity yields 
integration and deployment challenges over an ITS lifetime since various components -
may be removed or replaced by components from other vendors.  

2.2 ITS Component Architecture and Key Variabilities 

 

Figure 3: Key ITS Architecture Components. 

Figure 3 illustrates the components that form the core implementation and integration 
units of our ITS case study. Some ITS components (such as the OperatorConsole) ex-
pose interfaces to end users, i.e., ITS operators. Other components represent hardware 
entities, such as cranes, forklifts, and shelves. Yet other database management compo-
nents (such as GoodsRepository and StorageFacility) expose interfaces to manage data-
bases (such as the goods inventory and storage facilities). Finally, the event flow within 
the ITS is controlled and coordinated by components (such as the WorkflowManager 
and StorageManager). These various capabilities are illustrated in Figure 3 and de-
scribed below in the context of their associated ITS subsystems: 

• The Warehouse Management subsystem consists of a set of high-level functional-
ity and decision making components. This subsystem calculates the destination loca-
tion and delegates other details to the Material Flow Control subsystem described be-
low.   

• The Material Flow Control subsystem executes high-level decisions calculated by 
the Warehouse Management subsystem to deliver goods to the destination location. 
This subsystem handles all related details, such as route (re)calculation and reserva-
tion of transportation and storage facilities. 

• The Warehouse Hardware subsystem handles physical devices, such as sensors 
and transportation units (e.g., belts, forklifts, cranes, and pallet jacks). Each sensor 
device and transportation unit corresponds to a component type, such as GoodLoca-
tionSensor and TransportUnit. 



The functionality of the ITS subsystems shown in Figure 3 can be monitored and con-
trolled by one or more OperatorConsole components. All persistence concerns are han-
dled via databases.  

Implementing a large-scale ITS requires commonality and variability analysis [12], e.g., 
all transportation facilities are represented with the same component interface, i.e., 
TransportUnit. Implementations can vary, however, due to differences in hardware fa-
cilities for transporting certain types of goods, as well as different positioning precision 
and transportation speeds. In general, variabilities resulting from different warehouse 
configurations, hardware/software platforms, and QoS requirements yield much diver-
sity in ITS implementations, particularly for large-scale warehouses that deploy 100’s–
1,000’s of components. Section 3 evaluates key variabilities in detail and shows how 
the integration of MDD tools and component middleware help address them. 

2.3 ITS Component Technologies  
The ITS component architecture is developed in accordance with the OMG’s CORBA 
Component Model (CCM) [1]. The CCM implementation used for our ITS project is the 
Component-Integrated ACE ORB (CIAO) [2], which is QoS-enabled component mid-
dleware built atop The ACE ORB (TAO) [7]. TAO is a highly configurable, open-source 
Real-time CORBA Object Request Broker (ORB) that implements key patterns to meet 
the demanding QoS requirements of DRE systems.  

CIAO extends TAO by abstracting key QoS concerns (such as priority models, thread-
to-connection bindings, and timing properties) into elements that can be configured 
declaratively via metadata. Promoting these QoS concerns as metadata disentangles 
code for controlling these non-functional concerns from code that implements the appli-
cation logic, thus making DRE system development more flexible and productive. To 
integrate component middleware with MDD tools, we developed a QoS-enabled de-
ployment and configuration engine (DAnCE) within CIAO that allows application de-
ployers to specify how existing components should be configured, deployed, and cus-
tomized into reusable services. Section 3.2.2 describes how DAnCE combines MDD 
tools and component middleware to simplify the development of our ITS case study. 

 

Table 1: ITS Case Study Characteristics 



The ITS case study we developed using CIAO, DAnCE, and MDD tools contains ~500 
storage facilities and ~200 ITS components deployed in the target environment. As 
shown in Table 1, there are 2 OperatorConsoles, 1 TransportationFacility, 1 GoodRe-
pository, 1 StorageManager, 1 WorkflowManager, 1 StorageFacility, 18 GoodLo-
cationSensors and 168 TransportUnits. The 193 components are deployed into 191 
processes, which in turn are hosted in 26 physical nodes. All components run in sepa-
rate processes except in two collocation cases: GoodRepository/StorageManager and 
TransportationFacility/StorageFacility. The composition and configuration of other ITS 
deployments may vary significantly, depending on warehouse facilities, computing 
hardware, and software resources available in a warehouse. 

3. Developing the ITS by Integrating MDD Tools and Component 
Middleware 
This section describes our experience gained when integrating MDD tools and compo-
nent middleware to address scalability and variability issues by enabling them to work 
at higher levels of abstraction than components and classes written in third-generation 
languages and distributed object computing platforms.  We developed, integrated, and 
applied MDD tools and QoS-enabled component middleware to our ITS case study to 
help simplify and automate the following concerns: 

• Modeling and synthesizing warehouse configurations, which involve simplifying 
and automating the configuration of warehouse artifacts and population of ITS data-
bases available in various types of warehouses. Section 3.1 describes the Warehouse 
Modeling and Generation Language (WMGL) MDD tool we developed to represent 
warehouse structures and behaviors as higher-level models. 

• Modeling and synthesizing component software deployment and configuration 
concerns, which involve simplifying and automating the middleware and applica-
tions that implement ITS functionality.  Section 3.2 describes how the CoSMIC 
MDD tools and DAnCE were integrated with the CIAO CCM implementation to de-
velop, assemble, and deploy various types of ITS software components.  

The remainder of this section describes key problems we faced when addressing these 
concerns, presents our solutions, and evaluates these solutions in the context of the ITS 
case study described in Section 2.  

3.1 Addressing ITS Warehouse Configuration Concerns 
A key challenge in designing an ITS is to provide a generic, reconfigurable DRE system 
that can be deployed rapidly in different warehouse configurations or redeployed to 
adapt to reconfigurations of an existing warehouse, taking into account the transporta-
tion and storage facilities, as well as the physical warehouse topology. The proper con-
figuration of an ITS depends heavily on the physical layout and transportation facilities 
of a warehouse, which may vary in different circumstances. For example, it is common 
to add new transportation facilities into an existing warehouse after it is deployed.  

The layout information that is specified during the warehouse design phase should 
therefore be amendable to changes after the warehouse is deployed. For example, when 
deploying an ITS in a specific warehouse, all transportation facility units should be 
mapped to their corresponding software entities, i.e., TransportationUnit components, 



as described in section 2.2. Likewise, backend databases should capture and store ware-
house physical layout information (e.g., represented by the physical locations of trans-
portation and storage facilities), as well as the reachable range of each transportation 
facility (i.e., the range within which a transportation unit can pickup and transport 
goods).   

Problem →→→→ Ad hoc, tightly coupled warehouse design. ITS developers have histori-
cally relied on ad hoc approaches (such as manually writing programs from scratch) to 
(1) create software components that correspond to transportation facility units and (2) 
store physical warehouse layout configurations into databases.  Moreover, they often 
hard code this information using third-generation programming languages, which overly 
couples their solutions to particular warehouse configurations and technologies. Such 
tight couplings make it hard to deploy an ITS in another warehouse with different con-
figurations and to evolve after the initial deployment since changes in the warehouse 
configuration require modifications, recompilation, and redeployment of the code. 

Solution →→→→ A DSML for warehouse configuration. To address the problems de-
scribed above, we have developed the Warehouse Modeling and Generation Language 
(WMGL), which is a MDD tool that represents warehouse structures and behaviors as 
higher-level models, which allows developers to visually depict and manipulate (1) the 
transportation facility network, which includes position information (e.g., the physical 
location and reachable areas) and properties (e.g., the type, capacity and toxicity of 
items each transportation unit could transport in the network) and (2) the available stor-
age facilities, which include their physical position information and properties (e.g., 
storage capacity and type of goods they can store). 

By capturing the physical position information of the transportation facilities and stor-
age facilities in models, WMGL can automatically deduce the topology of the ware-
house and generate a warehouse connectivity graph, which is a directed weighted graph 
that represents the connectivity among transportation facilities and storage facilities. 
The WorkflowManager component can then apply a shortest path algorithm on this 
graph to determine the optimal transportation path to transfer a particular good from a 
source (e.g., loading dock or gate) to its destination (e.g., a storage unit). The merits of 
this approach are that whenever the warehouse is reorganized or a new transportation 
facility or storage facility is added, the graph can be (re)generated automatically from 
the model. 

We selected Microsoft Visio to build WMGL since it supports a wide range of sophisti-
cated graphics capabilities and provides many pre-developed drawing types, such as 
graphics elements required to model warehouse transportation units (e.g., forklifts, 
cranes, and belts). Visio also provides an embeddable programming environment that 
enables developers to build custom tools, such as writing extensible model interpreters 
to describe the dynamic behaviors by extending the static Visio model. In addition, 
Visio supports integration with popular database management systems, such as Oracle 
and MySQL.  

Figure 4 illustrates a Visio screenshot of an ITS WMGL model, where warehouse 
model elements are available from the left-side master panel and the right-side panel 
contains a drawing that represents a warehouse configuration consisting of two moving 
angle belts, three cranes, four storage racks, two folk lifts and two gates. Modeling a 
warehouse in WMGL involves drawing the concrete warehouse physical structure and 



then adding customized properties (such as capacity, size, etc) to transportation and 
storage facilities model elements.  Warehouse modelers can also specify the reachable 
range of particular transportation units (e.g., forklifts and cranes) visually and define 
various properties (e.g., capacity, heating or cooling) of storage locations. To simplify 
the use of WMGL during the modeling process, whenever a warehouse artifact (such as 
a transportation unit or storage facility) is positioned in the warehouse model, WMGL 
conveys to modelers what other warehouse artifacts are interconnected with it. 

 

Figure 4. A Warehouse Configuration in WMGL 

A key benefit of WMGL is its ability to automate the correct-by-construction transition 
from WMGL model to executable warehouse configurations. After creating a WMGL 
model, the corresponding configuration artifacts (such as lookup tables for transporta-
tion route calculation, lookup data for storage facility utilization planning, and schedul-
ing information for warehouse maintenance) are generated automatically via the 
WMGL model interpreter. 

To validate the correctness of a data model, the WMGL model interpreter applies analy-
sis and validation techniques to the warehouse model. Certain location-related con-
straints can be checked automatically to ensure that the physical layout and configu-
ration of the warehouse is valid and meaningful. For example, when a crane is posi-
tioned over a storage location, the WMGL model interpreter can ensure that the crane is 
capable of reaching all the storage cells of the location. When WMGL discovers poten-
tial conflicts, it issues diagnostic messages to users. Additionally, when warehouse 
modelers mistakenly model a transportation facility or a storage facility that is isolated 
from the rest of the warehouse transportation facility network, the WMGL model inter-
preter will warn the modelers before generating code. 

Once validated, WMGL can generate C++ or Java code, which is used to bootstrap ITS 
components at runtime. For example, different domain-specific concerns captured by 
WMGL can be extracted from the model and used to generate code artifacts that CIAO 
components can use to populate the databases, construct the warehouse connectivity 
graph, and initialize the backend databases by using generic database access libraries, 
such as the Open Database Connectivity (ODBC) Template Library (OTL). After run-



ning the WMGL model interpreter, the ITS can begin the component-based deployment 
and configuration process described in Section 3.2. 

Evaluating WMGL for ITS. WMGL provides several benefits for our ITS case study.  
For example, it visually captures warehouse information (such as positions, sizes, and 
reachable areas), which helps reduce complexity. Moreover, the model analysis in the 
WMGL interpreter detects warehouse design faults (such as isolated storage facilities) 
during design rather than runtime. For our ITS case study in Table 1, the WMGL model 
interpreter automatically generates ~7,000 lines of C++ code to describe the warehouse 
layout and artifact property information, which could be readily used by CIAO compo-
nents. 

In addition to the warehouse configuration aspects, WMGL embodies certain assump-
tion and rules about the mapping (usage patterns) from problem domain of warehouse 
management to the solution domain of component middleware. These mapping rules are 
defined by experienced software architects and then enforced by the WMGL modeling 
and code generation environment. These enforcement mechanisms reduce the probabil-
ity of architectural rules violation discussed in Section 1 and ensure the proper usage of 
component middleware. 

3.2 Addressing ITS Component Deployment and Configuration Concerns  
As discussed in Section 2, our ITS case study is a DRE system composed of CCM com-
ponents developed using CIAO, which is a QoS-enabled component middleware im-
plementation that supports the OMG Deployment and Configuration (D&C) specifica-
tion [4]. In this specification, deployment is the sequence of activities between (1) the 
acquisition of software and its associated metadata and (2) the actual execution of soft-
ware in a target environment based on the acquired software and associated metadata. 
Likewise, configuration is the process of mapping known variations in the application 
requirements space to known variations in the software (and particularly the middle-
ware) solution space [11]. Below, we discuss how we resolved key component de-
ployment and configuration challenges that arose when developing the ITS. 

3.2.1 Automating ITS Deployment and Configuration Profile Generation 
Installing an ITS into a warehouse involves configuring the functional and non-func-
tional behavior of its software components and deploying them throughout the underly-
ing hardware and software infrastructure.  Like other large-scale DRE systems, ITS is 
assembled from many independently developed reusable components, as described in 
Section 2.2. These components must be deployed and configured so that (1) assemblies 
meet ITS operational requirements and (2) interactions between the components meet 
ITS QoS requirements.  Developers must address a number of crosscutting concerns 
when deploying and configuring component-based ITS applications, including (1) iden-
tifying dependencies between ITS component implementation artifacts (such as the Op-
eratorConsole component having dependencies on both QT runtime library and the 
WorkflowManager component implementation library), (2) specifying the connectivity 
between ports of ITS components, and (3) mapping ITS components to the appropriate 
nodes in the target environment where the ITS will be deployed. 

Problem →→→→ Ad hoc deployment and configuration profile creation of components 
for diverse system requirements.  Large-scale DRE systems, such as an ITS, may re-



quire creation of assemblies containing 100’s-1000’s of components. Conventional 
techniques for deploying and configuring such component-based systems can incur both 
inherent and accidental complexities.  Common inherent complexities involve ensuring 
syntactic and semantic compatibility, e.g., only connecting ports of components in an 
ITS assembly with matching types. Common accidental complexities stem from using 
ad hoc techniques for writing and modifying middleware and application configuration 
files, e.g., handcrafting XML files describing component metadata (such as the dozens 
of connections between components in ITS assemblies), which are very large, even for 
relatively simple groups of connected components. Such ad hoc techniques are tedious 
and error-prone, making it hard to adapt the ITS to new deployment and configuration 
requirements, such as another warehouse that may have different types of transportation 
units or ITS operator console GUI terminals.  

Solution →→→→ Model-driven deployment and configuration of ITS components. In our 
ITS project, system deployment and configuration is performed via the CoSMIC tool-
suite. At the heart of CoSMIC is the Platform-Independent Component Modeling Lan-
guage (PICML) [13], which is a DSML that implements the OMG D&C specification 
and provides capabilities to handle complex component engineering tasks, such as 
multi-aspect visualization and manipulation of components and the interactions of their 
subsystems, component deployment planning, and hierarchical modeling and generation 
of component assemblies. PICML itself is developed using the Generic Modeling Envi-
ronment (GME) [5], which is an environment for building and processing DSMLs.  

PICML allows modelers to define component interfaces and component compositions, 
and establish connections among components visually. In our ITS, for example, PICML 
is used to model the connections among the ITS components, such as the 
facet/receptacle connection between WorkflowManager component and the Storage-
Facility component, and the event source/sink connections between the WorkflowMan-
ager component and OperatorConsole component.  These interacting components are 
connected together to form a valid component assembly.  The semantic rules associated 
with component assemblies are enforced by constraints defined in PICML’s metamodel 
and model interpreter.  Its metamodel defines static semantic rules that determine valid 
connections between components. Its model interpreter ensure the dynamic semantics 
of models built using PICML, which can range from performing analysis of models to 
synthesizing code for components and their metadata.  

PICML contains multiple model interpreters, each performing a particular function. The 
most commonly used interpreter for our ITS is the packaging interpreter, which gener-
ates XML descriptors to address various concerns in the CCM D&C specification.  
These XML descriptors include (1) component interface descriptors, which capture 
information about component interfaces including component ports, (2) component im-
plementation descriptors, which capture information about component implementations, 
such as the dependencies and the connections among components, (3) implementation 
artifact descriptors, which capture information about implementation artifacts including 
dependencies between such artifacts, (4) component package descriptors, which capture 
information about grouping of multiple implementations of the same component inter-
face into component packages, (5) package configuration descriptors, which capture 
information about specific configurations of such component packages, and (6) compo-
nent domain descriptors, which capture information about the target environment in 
which the component-based application will be deployed. 



After using PICML to create component assemblies for our ITS based on warehouse-
specific deployment and configuration requirements, we used its packaging interpreter 
to generate the metadata needed to deploy the ITS assemblies.  As shown in Figure 5, 
this metadata includes the list of implementation artifacts associated with each compo-
nent instance, the list of connections between the different component instances, the 
organization of the application into different levels of hierarchy, and the default proper-
ties with which each component instance is initialized.  PICML’s packaging interpreter 
generates the different types of metadata in the form of XML descriptors that are tedi-
ous and error-prone to write manually.  This metadata is used by CIAO to drive the de-
ployment of the complete ITS applications.  

 

Figure 5.  Partial PICML Assembly Model for ITS 

Evaluating PICML for ITS. In our ITS case study, we applied PICML to a warehouse 
scenario where 193 ITS components are deployed across 26 physical nodes. Based on 
the deployment decisions discussed earlier, ~400 connections must be established 
among these component ports. All these connections are specified by using two types of 
XML descriptor files, i.e., component interface descriptors and component implementa-
tion descriptors. To create a deployment profile for this case study is prohibitively tedi-
ous and error-prone without tool support, i.e., the XML files are hard to write manually 
since cross-referenced identifiers specify the component connections in accordance with 
the OMG’s D&C standard. 

In contrast, it is much easier to create a PICML model for these connections visually 
than writing XML files manually. The PICML packaging interpret generates all six 
types of descriptor files described above, with a total number of 582 XML files averag-
ing ~25 lines per file. By automatically generating the deployment via PICML’s model 
interpreter, it enforces the correct-by-construction paradigm in component-based ap-
plication development, which eliminates a common source of errors. 

Our experience applying PICML to model the ITS deployment structure also shows that 
it raises the level of abstraction at which developers work and helps them concentrate 
on certain aspects (e.g., deployment structure) in the multidimensional problem space 
associated with applying component middleware for DRE systems. This separation of 
concerns in turn eliminates many sources of accidental complexities and improves over-
all system quality. 



3.2.2 Automate ITS Component Deployment to Target Environment 
To complete the deployment of ITS application, it is necessary to take the metadata 
describing the concerns from multiple actors and bring them together in an effective 
fashion into the target environment.  Section 3.2.1 explains how the PICML MDD tool 
addresses key concerns in the ITS component configuration and assembly phase by 
automatically and correctly synthesizing various types of XML descriptors. These XML 
descriptors then form a profile that specifies system deployment requirements.  

To deploy an ITS assembly, deployers must perform certain tasks based on the deploy-
ment profile, including (1) preparation, which takes the pre-built ITS software package 
and brings it into a component software repository under the deployer’s control, (2) 
installation, which downloads the ITS components to component server processes that 
run in each node in the target environment, including embedded system nodes used to 
host TransportUnit components and PC nodes that host other types of ITS components, 
such as WorkflowManager and OperatorConsole, (3) configuration, which customizes 
properties of components on each node based on metadata in the deployment profile, 
and (4) launching, which connects the ports of the ITS components that are distributed 
throughout the target environment based on metadata in the deployment profile and 
executes the whole component assembly. 

Problem →→→→ Ad hoc deployment mechanisms for variable ITS deployment require-
ments. In an ITS environment, each of the four deployment steps described above can 
have variations due to the differences in the given deployment profiles. For example, 
depending on the scale and amount of warehouse facilities, different ITS systems often 
have different number of nodes. Moreover, different types of nodes usually have differ-
ent resources available, such as OS, network interfaces, CPU and memory. Large-scale 
warehouses usually have hundreds of such nodes that form a heterogeneous distributed 
environment. Conventional techniques for deploying large-scale component-based DRE 
systems can incur both inherent and accidental complexities. Common inherent com-
plexities involve (1) ensuring component runtime libraries are compatible with the host-
ing nodes (e.g., OS compatibility) and (2) creating the correct number of processes to 
host components based on the specified deployment profile (e.g., some ITS components 
might be hosted in the same process to improve performance, whereas other ITS com-
ponents might be hosted in different processes to improve system fault tolerance and 
reliability). Common accidental complexities stem from using ad hoc techniques for 
moving component runtime binaries and other dependent runtime libraries to the corre-
sponding nodes for deployment. To perform these changes manually is not only tedious 
and error-prone, but also makes the deployment effort hard to reuse, e.g., there is no 
easy way to migrate one component running from one node/process to another when a 
deployment profile changes. 

Solution →→→→ Standards-based deployment and configuration framework. To support 
automatic ITS component deployment and configuration capability, we developed a 
run-time framework called the Deployment And Configuration Engine (DAnCE), whose 
structure is shown in the right part of the Figure 6. As shown in this figure, ITS system 
developers can model various D&C concerns for a warehouse via PICML, which auto-
matically generates the corresponding D&C profile for the designated system. DAnCE 
then takes the generated profile, and automatically deploys the system into the CIAO 
component middleware platform.  



As shown in Figure 6, DAnCE consists of implementations of a set of standards-based 
runtime interfaces that deal with the instantiation, installation, setting up connections, 
monitoring, and termination of components on the nodes of the target environment. 
These interfaces include the ExecutionManager, DomainApplicationManager, Node-
Manager and NodeApplicationManager defined by the OMG D&C specification. The 
ExecutionManager and DomainApplicationManager run at the global domain level, 
whereas the NodeManager and NodeApplicationManager run on each node. The Execu-
tionManager and NodeManager manage the lifecycle of the ITS deployment process to 
help configure component servers on the nodes, install components into containers, and 
set up connections among components that may be distributed across  multiple nodes.  
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Figure 6. DAnCE Architecture and PICML Relationship 

When ITS deployers instruct an ExecutionManager to deploy an ITS assembly, they 
must give the ExecutionManager the XML-based deployment profile generated by the 
PICML MDD tool. The ExecutionManager takes this profile as input and creates an in-
memory representation of the metadata by parsing the XML files. The DAnCE Do-
mainApplicationManager then populates a global in-memory deployment plan that de-
scribes a mapping of a configured ITS assembly into a target domain, which includes 
the information about nodes where components will be deployed, the mapping of com-
ponent to nodes, the information about connections among component instances, the 
information about process collocation strategies and attribute configurations of compo-
nents. Depending on the total number of nodes needed for a particular deployment, the 
DomainApplicationManager then splits the global plan into multiple local (node-level) 
deployment plans and passes them to each individual NodeManager, based on the 
specification in the PICML model of the ITS. 

After each node-level deployment plan is sent to each corresponding NodeManager, the 
NodeManager will then parse the node-level deployment plan to find out the compo-
nents that will be deployed on the node that it manages, and fetch the runtime libraries 
from the centralized component repository if these libraries are not in the local file sys-
tem. This will in turn trigger the NodeApplicationManager residing in the node to 
spawn one or more NodeApplications, i.e., component servers, depending on the collo-



cation strategy specified in the ITS PICML model. After NodeApplications are spawned, 
the specified components will then be installed into the container of the NodeApplica-
tions and attributes specified in the PICML model will be configured by the container. 

After components are installed in each individual node, DAnCE will create connections 
among components, some of which may reside in hundreds of nodes in the warehouse.  
After the component deployment and application launch is complete, DAnCE also as-
sists in monitoring and tearing down the application after it finishes executing. 

Evaluating DAnCE for ITS. Based on the information captured by PICML, DAnCE 
maps the ITS software packages onto a running DRE system based on particular de-
ployment profile. Without DAnCE tool support it is prohibitively hard to (re)install all 
193 components on 26 nodes in our ITS case study manually, while taking into consid-
eration of the heterogeneous software/hardware platforms, and variable component con-
figuration, and process collocation strategies.  

In contrast, by using DAnCE in conjunction with PICML, the whole deployment proc-
ess is automated and simplified for deployers. Moreover, when the warehouse is recon-
figured, deployers need only extend the existing ITS WMGL and PICML models. The 
new ITS can then be redeployed and configured correctly via an OperatorConsole ter-
minal by the ExecutionManager without manual intervention. 

Our experiments with different deployment scenarios and development of the corre-
sponding MDD tools show the complementary relationships between modeling tools 
(i.e., WMGL/CoSMIC) and underlying component infrastructure and D&C frameworks 
(i.e. CIAO/DAnCE). In particular, it is important to base the code generation process on 
the underlying middleware, thereby reducing the complexity of model interpreters since 
they only need to understand the middleware APIs. 

4. Related Work 
Our work extends earlier work on Model-Integrated Computing (MIC) [14] that focused 
on modeling and synthesizing embedded software.  Examples of MIC technology used 
today include GME [5] and Ptolemy [15] (used primarily in the real-time and embedded 
domain) and Model Driven Architecture (MDA) based on UML and XML (which have 
been used primarily in the business domain).  Our work combines GME metamodeling 
mechanisms and UML to model and synthesize component middleware used to config-
ure and deploy DRE systems. 

Cadena [17] is an MDD tool for building and modeling component-based DRE systems, 
with the goal of applying static analysis, model-checking, and lightweight formal meth-
ods to enhance these systems. Unlike our work, however, Cadena does not support ac-
tivities such as component packaging, generating deployment plan descriptors, and hi-
erarchical modeling of component assembly, thus it introduces additional burden to 
DRE application developers to accomplish such tasks. In our work, such aspects could 
be captured through PICML MDD tool and then all the deployment and configuration 
work could be automated through DAnCE. 

Lacour et. al. [16] use the Globus Toolkit to deploy CCM components on a computa-
tional grid. Unlike our work, this work provides neither a higher-level modeling tool for 
application developers to capture various concern aspects, such as deployment planning 



and collocation strategy modeling, nor does it provide a way to automatically generate a 
deployment profile for the application. Also, unlike our approach, their tools and mid-
dleware platforms are targeted for enterprise distributed application instead of DRE 
systems, which have more stringent QoS requirements.  

5. Concluding Remarks 
Our prior work on MDD focused on the architectural design and implementation of 
CoSMIC and its DSMLs and our prior work on QoS-enabled component middleware 
focused on the design and optimization of CIAO.  This paper focuses on our experience 
gained when integrating and applying these technologies to an inventory tracking sys-
tem (ITS) case study in the warehouse management domain. The lessons we learned 
thus far include:   

• The component middleware paradigm and implementations such as CIAO, elevates 
the abstraction level of middleware to enhance software developer quality and pro-
ductivity. It also introduces extra complexities, however, that are hard to handle in an 
ad hoc manner for large-scale DRE applications. For example, the Lightweight CCM 
and Deployment and Configuration (D&C) specifications require many configura-
tion files due to their large number of configuration points.  

• The MDD paradigm expedites application development with the proper integration 
of the modeling tool and underlying technical infrastructure such as the DAnCE 
D&C framework. In our ITS case study, if the warehouse model is the only missing 
or changing concern in the system (which is typical for end users), little new applica-
tion code must be written, yet the complexity of the generation tool remains manage-
able due to the limited number of well-defined configuration “hot spots” exposed by 
the underlying infrastructure. Likewise, when component deployment plans are in-
complete or must change, the effort required is significantly less than starting from 
the raw component middleware without MDD tool support, since the application 
could evolve from the existing set of PICML and WMGL models. 

• Domain-specific modeling techniques can help to reduce the learning curve for end 
users. For example, warehouse modelers in our ITS project need little or no knowl-
edge of how to write component software since they interact with the system through 
higher-level models that correspond to the “language” understood by domain engi-
neers and visual modeling environments, such as WMGL. 

• Despite the benefits of using visual MDD tools to describe different aspects of the 
large scale DRE systems, it is still labor intensive and error-prone to manually show 
all ~400 connections for the relatively small amount of components we have in ITS. 
This observation motivates the need for further research in the automating the syn-
thesis of large-scale DRE systems based on the different types of meta- and semantic 
information about assembly units, such as components or services. 

CoSMIC's MDD tools are available at www.dre.vanderbilt.edu/cosmic and the CIAO 
QoS-enabled component middleware is available at www.dre.vanderbilt.edu/CIAO.  
GME is available at www.isis.vanderbilt.edu/Projects/gme. 
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