
Developing Distributed, Real-time, and Embedded Systems with
Modeling Tools and Component Middleware: A Case Study

Gan Deng1, Douglas C. Schmidt1, Andrey Nechypurenko2,
Aniruddha Gokhale1

1 Department of EECS, Vanderbilt University
Nashville, Tennessee, USA 37203

{dengg, schmidt, gokhale}@dre.vanderbilt.edu
2 Siemens Corporate Technology, Munich, Germany

andrey.nechypurenko@Siemens.com

Abstract. Software for distributed real-time and embedded (DRE) sys-
tems must handle variabilities arising from (1) integration with various
legacy subsystems using different technologies, languages, and platforms,
(2) fine tuning needed to satisfy changing customer needs, and (3) appro-
priate packaging, configuration and deployment of functionality onto
available system resources. Developers of applications and middleware
must manage these variabilities without overcomplicating their solutions
and exceeding project time and effort constraints. This paper presents our
experience addressing domain- and middleware-specific variability
gained when applying MDD tools and component middleware platforms
to an inventory tracking system that manages the storage and flow of
goods in warehouses. Our experience shows that integrating MDD tools
and component middleware reduces DRE system development complex-
ity, improves reuse and maintainability, and increases developer produc-
tivity.

Keywords: Model-Driven Development, Component Middleware.

1 Introduction
Emerging trends and challenges. During the past decade, quality of service (QoS)-
enabled component middleware has emerged to help developers of distributed real-time
and embedded (DRE) systems (1) factor out reusable concerns (such as component life-
cycle management, authentication/authorization, and remoting) to enhance reuse and (2)
avoid having to deal with low-level, tedious, error-prone, and non-portable platform de-
tails, such as socket and thread programming. Standards-based QoS-enabled mid-
dleware technologies, such as Real-time CORBA [9] and Real-time Java [8], support
the provisioning of key QoS properties, such as (pre)allocating CPU resources, reserv-
ing network bandwidth/connections, and monitoring/enforcing the proper use of DRE
system resources at runtime to meet end-to-end QoS requirements, such as throughput,
latency, and jitter. QoS-enabled component middleware technologies, such as Light-
weight CCM [1] and Prism [3], further simplify QoS provisioning via metadata and
tools that help to (1) automate DRE system development lifecycle phases, such as pack-
aging, assembly, configuration, and deployment, and (2) improve component reusability
and performance by preventing premature commitment to specific QoS provisioning
decisions, such as allocating components to thread pools and selecting the underlying

transport protocols. As a result, software for large-scale DRE systems is increasingly
being assembled from reusable modular components available from commercial-off-
the-shelf (COTS) providers, rather than developed manually from scratch.

Although QoS-enabled component middleware technology provides many powerful
capabilities, it also yields the following challenges for developers of DRE systems:

• Increased scale. As DRE systems are joined together to form large-scale “systems
of systems,” developers rarely have in-depth knowledge of the entire system or an
integrated view of all the subsystems and libraries. This myopia can cause them to
implement suboptimal solutions that duplicate code unnecessarily, complicate sys-
tem evolution, and violate key architectural principles (e.g., using implementation-
specific functionality instead of public interfaces or prematurely committing to non-
portable deployment policies).

• Increased variability. Functional variabilities include different business-logic im-
plementations of the same interfaces, e.g., cranes, moving belts, and forklifts in our
inventory tracking system case study, may vary in their ability to transport certain
types of goods, depending on their weight, size, hazard-level, and other properties.
Non-functional variabilities include the configuration of middleware services (such
as naming, notification, security, or load balancing services), QoS-related configura-
tion policies (such as concurrency and priority policies), and configuration of mid-
dleware internals itself (such as which middleware features should be enabled for a
particular application in a particular environment).

The increased scale and variability of DRE systems requires developers to integrate
different platforms and tools that solve essentially the same types of problems – yet are
often non-portable and non-interoperable – without overcomplicating their solutions
and exceeding project time and effort constraints. Likewise, developers of reusable mid-
dleware must also address these challenges when refactoring common capabilities from
applications into effective reusable technologies and providing a portable operating en-
vironment for application developers. To maximize software reuse and productivity,
therefore, increased scale and variability must be addressed by combining technologies
that support alternative configurations and implementations of functionality more effec-
tively than today’s third-generation programming languages.

Solution approach →→→→ Integrating model-driven development and QoS-enabled
component middleware. A promising way to alleviate the challenges of DRE system
scale and variability described above is to integrate model-driven development (MDD)
[11, 5, 3, 13] techniques with QoS-enabled component middleware [2, 6]. MDD helps
resolve key software development and validation challenges encountered by component
middleware and DRE systems by combining (1) metamodeling, which defines type sys-
tems that precisely express key abstract syntax characteristics and static semantic con-
straints associated with particular application domains, such as software defined radios,
avionics mission computing, and inventory tracking, (2) domain-specific modeling lan-
guages (DSMLs), which provide programming notations that are guided by and extend
metamodels to formalize the process of specifying application logic and QoS-related
requirements in a domain, and (3) model transformations and code generation that
automate and ensure the consistency of software implementations with analysis infor-
mation associated with functional and QoS requirements captured by structural and be-
havioral models.

We have created an MDD toolsuite called the Component Synthesis using Model Inte-
grated Computing (CoSMIC) [13, 20], which is an integrated collection of DSMLs that
support the development, deployment, configuration, and evaluation of QoS-enabled
component middleware-based DRE systems. We also created a DSML called the Ware-
house Modeling and Generation Language (WMGL) that models the physical layout of
the warehouse and then generates code to populate database tables that contain the in-
formation of warehouse mechanical facilities, storage facilities, and their interconnect-
ing relationships. In addition, we created a QoS-enabled component middleware plat-
form called Component-Integrated ACE ORB (CIAO) that combines Lightweight CCM
[1] capabilities with Real-time CORBA [9] features, such as thread pools and client-
propagated and server-declared priority policies.

To evaluate how the integration of MDD tools and QoS-enabled component middle-
ware helps resolve the challenges presented above, we have created an inventory track-
ing system (ITS), which provides logistics support to manage the flow of goods and
assets in and across warehouses. Users of an ITS include couriers (such as UPS, FedEx,
and DHL), airport baggage handling systems, and large trading and manufacturing
companies (such as Wal-Mart and Target). This paper presents our experience gained
while integrating MDD and QoS-enabled component middleware to address two key
concerns of ITS: warehouse configuration and component assembly, configuration, and
deployment. The goal of our integration efforts were to help (1) modularize key func-
tional and QoS concerns at higher levels of abstractions than third-generation program-
ming languages, such as Java and C++, (2) handle variabilities at different levels of
abstractions, e.g., by assembling a set of components to provision ITS functionality
based on warehouse requirements, and configuring middleware services via DSMLs,
and (3) automate key steps in the software lifecycle, such as generating deployment and
configuration XML metadata and/or source code from DSMLs, and automating the de-
ployment of components and services on a target running environment based on ware-
house-specific deployment requirements.

Paper organization. The remainder of this paper is organized as follows: Section 2
provides an overview of the ITS case study, focusing on the scale and variability of its
requirements, component architecture, and component middleware infrastructure; Sec-
tion 3 describes how we integrated and applied MDD tools and QoS-enabled middle-
ware to resolve key technical problems of our ITS case study; Section 4 compares our
work with related efforts; and Section 5 presents concluding remarks.

2 Overview of the ITS Case Study
An inventory tracking system (ITS) provides logistics support to manage the flow of
goods in and between warehouses, such as those shown in Figure 1. A key goal of an
ITS is to provide reliable, efficient, and convenient mechanisms that manage the ware-
house and the movement of inventory in a timely and reliable manner. For instance, an
ITS should enable human operators to configure warehouse storage organization criteria
and warehouse transportation facility criteria, maintain the set of goods known through-
out a DRE system (which may span organizational and even international boundaries),
and track warehouse assets using GUI-based operator monitoring consoles.

Figure 1: ITS Environment

2.1 ITS Actors and Use Cases
Figure 2 shows the primary actors and use cases in our ITS, which perform the follow-
ing activities:

Figure 2: Actors in Our ITS Case Study

• Configurator actors use ITS capabilities to configure the set of available facilities in
certain warehouses, such as the structure of transportation belts, routes used to de-
liver goods, and characteristics of storage facilities (e.g., whether hazardous goods
are allowed to be stored, maximum allowed total weight of stored goods, etc.).

• Operator actors use ITS capabilities to reorganize warehouses to fit future changes,
as well as dealing with other use cases, such as receiving goods, storing goods into
the warehouse, fetching goods from the warehouse and delivering to particular loca-
tion, dumping goods, goods inventory queries, specifying delivery time accuracy,
and updating operator console views.

• Operating Environment actors use ITS capabilities to tolerate partial failures due to
transportation hardware facility problems, such as broken belts. To handle such fail-
ures, the software associated with hardware devices must alert the ITS work flow
manager in real-time, i.e., with low latency delay, and higher processing priority.
The ITS must then recalculate the delivery possibilities dynamically in real-time
based on available transportation resources and delivery time requirements.

Although the ITS actors and use cases described above are present in most warehouses,
they can have significant variation in customer needs, warehouse specific requirements,
and integration with other subsystems. For example, the warehouse automation hard-
ware and software infrastructure is often supplied by multiple vendors who select dif-
ferent hardware and software platforms and tools. The resulting heterogeneity yields
integration and deployment challenges over an ITS lifetime since various components -
may be removed or replaced by components from other vendors.

2.2 ITS Component Architecture and Key Variabilities

Figure 3: Key ITS Architecture Components.

Figure 3 illustrates the components that form the core implementation and integration
units of our ITS case study. Some ITS components (such as the OperatorConsole) ex-
pose interfaces to end users, i.e., ITS operators. Other components represent hardware
entities, such as cranes, forklifts, and shelves. Yet other database management compo-
nents (such as GoodsRepository and StorageFacility) expose interfaces to manage data-
bases (such as the goods inventory and storage facilities). Finally, the event flow within
the ITS is controlled and coordinated by components (such as the WorkflowManager
and StorageManager). These various capabilities are illustrated in Figure 3 and de-
scribed below in the context of their associated ITS subsystems:

• The Warehouse Management subsystem consists of a set of high-level functional-
ity and decision making components. This subsystem calculates the destination loca-
tion and delegates other details to the Material Flow Control subsystem described be-
low.

• The Material Flow Control subsystem executes high-level decisions calculated by
the Warehouse Management subsystem to deliver goods to the destination location.
This subsystem handles all related details, such as route (re)calculation and reserva-
tion of transportation and storage facilities.

• The Warehouse Hardware subsystem handles physical devices, such as sensors
and transportation units (e.g., belts, forklifts, cranes, and pallet jacks). Each sensor
device and transportation unit corresponds to a component type, such as GoodLoca-
tionSensor and TransportUnit.

The functionality of the ITS subsystems shown in Figure 3 can be monitored and con-
trolled by one or more OperatorConsole components. All persistence concerns are han-
dled via databases.

Implementing a large-scale ITS requires commonality and variability analysis [12], e.g.,
all transportation facilities are represented with the same component interface, i.e.,
TransportUnit. Implementations can vary, however, due to differences in hardware fa-
cilities for transporting certain types of goods, as well as different positioning precision
and transportation speeds. In general, variabilities resulting from different warehouse
configurations, hardware/software platforms, and QoS requirements yield much diver-
sity in ITS implementations, particularly for large-scale warehouses that deploy 100’s–
1,000’s of components. Section 3 evaluates key variabilities in detail and shows how
the integration of MDD tools and component middleware help address them.

2.3 ITS Component Technologies
The ITS component architecture is developed in accordance with the OMG’s CORBA
Component Model (CCM) [1]. The CCM implementation used for our ITS project is the
Component-Integrated ACE ORB (CIAO) [2], which is QoS-enabled component mid-
dleware built atop The ACE ORB (TAO) [7]. TAO is a highly configurable, open-source
Real-time CORBA Object Request Broker (ORB) that implements key patterns to meet
the demanding QoS requirements of DRE systems.

CIAO extends TAO by abstracting key QoS concerns (such as priority models, thread-
to-connection bindings, and timing properties) into elements that can be configured
declaratively via metadata. Promoting these QoS concerns as metadata disentangles
code for controlling these non-functional concerns from code that implements the appli-
cation logic, thus making DRE system development more flexible and productive. To
integrate component middleware with MDD tools, we developed a QoS-enabled de-
ployment and configuration engine (DAnCE) within CIAO that allows application de-
ployers to specify how existing components should be configured, deployed, and cus-
tomized into reusable services. Section 3.2.2 describes how DAnCE combines MDD
tools and component middleware to simplify the development of our ITS case study.

Table 1: ITS Case Study Characteristics

The ITS case study we developed using CIAO, DAnCE, and MDD tools contains ~500
storage facilities and ~200 ITS components deployed in the target environment. As
shown in Table 1, there are 2 OperatorConsoles, 1 TransportationFacility, 1 GoodRe-
pository, 1 StorageManager, 1 WorkflowManager, 1 StorageFacility, 18 GoodLo-
cationSensors and 168 TransportUnits. The 193 components are deployed into 191
processes, which in turn are hosted in 26 physical nodes. All components run in sepa-
rate processes except in two collocation cases: GoodRepository/StorageManager and
TransportationFacility/StorageFacility. The composition and configuration of other ITS
deployments may vary significantly, depending on warehouse facilities, computing
hardware, and software resources available in a warehouse.

3. Developing the ITS by Integrating MDD Tools and Component
Middleware
This section describes our experience gained when integrating MDD tools and compo-
nent middleware to address scalability and variability issues by enabling them to work
at higher levels of abstraction than components and classes written in third-generation
languages and distributed object computing platforms. We developed, integrated, and
applied MDD tools and QoS-enabled component middleware to our ITS case study to
help simplify and automate the following concerns:

• Modeling and synthesizing warehouse configurations, which involve simplifying
and automating the configuration of warehouse artifacts and population of ITS data-
bases available in various types of warehouses. Section 3.1 describes the Warehouse
Modeling and Generation Language (WMGL) MDD tool we developed to represent
warehouse structures and behaviors as higher-level models.

• Modeling and synthesizing component software deployment and configuration
concerns, which involve simplifying and automating the middleware and applica-
tions that implement ITS functionality. Section 3.2 describes how the CoSMIC
MDD tools and DAnCE were integrated with the CIAO CCM implementation to de-
velop, assemble, and deploy various types of ITS software components.

The remainder of this section describes key problems we faced when addressing these
concerns, presents our solutions, and evaluates these solutions in the context of the ITS
case study described in Section 2.

3.1 Addressing ITS Warehouse Configuration Concerns
A key challenge in designing an ITS is to provide a generic, reconfigurable DRE system
that can be deployed rapidly in different warehouse configurations or redeployed to
adapt to reconfigurations of an existing warehouse, taking into account the transporta-
tion and storage facilities, as well as the physical warehouse topology. The proper con-
figuration of an ITS depends heavily on the physical layout and transportation facilities
of a warehouse, which may vary in different circumstances. For example, it is common
to add new transportation facilities into an existing warehouse after it is deployed.

The layout information that is specified during the warehouse design phase should
therefore be amendable to changes after the warehouse is deployed. For example, when
deploying an ITS in a specific warehouse, all transportation facility units should be
mapped to their corresponding software entities, i.e., TransportationUnit components,

as described in section 2.2. Likewise, backend databases should capture and store ware-
house physical layout information (e.g., represented by the physical locations of trans-
portation and storage facilities), as well as the reachable range of each transportation
facility (i.e., the range within which a transportation unit can pickup and transport
goods).

Problem →→→→ Ad hoc, tightly coupled warehouse design. ITS developers have histori-
cally relied on ad hoc approaches (such as manually writing programs from scratch) to
(1) create software components that correspond to transportation facility units and (2)
store physical warehouse layout configurations into databases. Moreover, they often
hard code this information using third-generation programming languages, which overly
couples their solutions to particular warehouse configurations and technologies. Such
tight couplings make it hard to deploy an ITS in another warehouse with different con-
figurations and to evolve after the initial deployment since changes in the warehouse
configuration require modifications, recompilation, and redeployment of the code.

Solution →→→→ A DSML for warehouse configuration. To address the problems de-
scribed above, we have developed the Warehouse Modeling and Generation Language
(WMGL), which is a MDD tool that represents warehouse structures and behaviors as
higher-level models, which allows developers to visually depict and manipulate (1) the
transportation facility network, which includes position information (e.g., the physical
location and reachable areas) and properties (e.g., the type, capacity and toxicity of
items each transportation unit could transport in the network) and (2) the available stor-
age facilities, which include their physical position information and properties (e.g.,
storage capacity and type of goods they can store).

By capturing the physical position information of the transportation facilities and stor-
age facilities in models, WMGL can automatically deduce the topology of the ware-
house and generate a warehouse connectivity graph, which is a directed weighted graph
that represents the connectivity among transportation facilities and storage facilities.
The WorkflowManager component can then apply a shortest path algorithm on this
graph to determine the optimal transportation path to transfer a particular good from a
source (e.g., loading dock or gate) to its destination (e.g., a storage unit). The merits of
this approach are that whenever the warehouse is reorganized or a new transportation
facility or storage facility is added, the graph can be (re)generated automatically from
the model.

We selected Microsoft Visio to build WMGL since it supports a wide range of sophisti-
cated graphics capabilities and provides many pre-developed drawing types, such as
graphics elements required to model warehouse transportation units (e.g., forklifts,
cranes, and belts). Visio also provides an embeddable programming environment that
enables developers to build custom tools, such as writing extensible model interpreters
to describe the dynamic behaviors by extending the static Visio model. In addition,
Visio supports integration with popular database management systems, such as Oracle
and MySQL.

Figure 4 illustrates a Visio screenshot of an ITS WMGL model, where warehouse
model elements are available from the left-side master panel and the right-side panel
contains a drawing that represents a warehouse configuration consisting of two moving
angle belts, three cranes, four storage racks, two folk lifts and two gates. Modeling a
warehouse in WMGL involves drawing the concrete warehouse physical structure and

then adding customized properties (such as capacity, size, etc) to transportation and
storage facilities model elements. Warehouse modelers can also specify the reachable
range of particular transportation units (e.g., forklifts and cranes) visually and define
various properties (e.g., capacity, heating or cooling) of storage locations. To simplify
the use of WMGL during the modeling process, whenever a warehouse artifact (such as
a transportation unit or storage facility) is positioned in the warehouse model, WMGL
conveys to modelers what other warehouse artifacts are interconnected with it.

Figure 4. A Warehouse Configuration in WMGL

A key benefit of WMGL is its ability to automate the correct-by-construction transition
from WMGL model to executable warehouse configurations. After creating a WMGL
model, the corresponding configuration artifacts (such as lookup tables for transporta-
tion route calculation, lookup data for storage facility utilization planning, and schedul-
ing information for warehouse maintenance) are generated automatically via the
WMGL model interpreter.

To validate the correctness of a data model, the WMGL model interpreter applies analy-
sis and validation techniques to the warehouse model. Certain location-related con-
straints can be checked automatically to ensure that the physical layout and configu-
ration of the warehouse is valid and meaningful. For example, when a crane is posi-
tioned over a storage location, the WMGL model interpreter can ensure that the crane is
capable of reaching all the storage cells of the location. When WMGL discovers poten-
tial conflicts, it issues diagnostic messages to users. Additionally, when warehouse
modelers mistakenly model a transportation facility or a storage facility that is isolated
from the rest of the warehouse transportation facility network, the WMGL model inter-
preter will warn the modelers before generating code.

Once validated, WMGL can generate C++ or Java code, which is used to bootstrap ITS
components at runtime. For example, different domain-specific concerns captured by
WMGL can be extracted from the model and used to generate code artifacts that CIAO
components can use to populate the databases, construct the warehouse connectivity
graph, and initialize the backend databases by using generic database access libraries,
such as the Open Database Connectivity (ODBC) Template Library (OTL). After run-

ning the WMGL model interpreter, the ITS can begin the component-based deployment
and configuration process described in Section 3.2.

Evaluating WMGL for ITS. WMGL provides several benefits for our ITS case study.
For example, it visually captures warehouse information (such as positions, sizes, and
reachable areas), which helps reduce complexity. Moreover, the model analysis in the
WMGL interpreter detects warehouse design faults (such as isolated storage facilities)
during design rather than runtime. For our ITS case study in Table 1, the WMGL model
interpreter automatically generates ~7,000 lines of C++ code to describe the warehouse
layout and artifact property information, which could be readily used by CIAO compo-
nents.

In addition to the warehouse configuration aspects, WMGL embodies certain assump-
tion and rules about the mapping (usage patterns) from problem domain of warehouse
management to the solution domain of component middleware. These mapping rules are
defined by experienced software architects and then enforced by the WMGL modeling
and code generation environment. These enforcement mechanisms reduce the probabil-
ity of architectural rules violation discussed in Section 1 and ensure the proper usage of
component middleware.

3.2 Addressing ITS Component Deployment and Configuration Concerns
As discussed in Section 2, our ITS case study is a DRE system composed of CCM com-
ponents developed using CIAO, which is a QoS-enabled component middleware im-
plementation that supports the OMG Deployment and Configuration (D&C) specifica-
tion [4]. In this specification, deployment is the sequence of activities between (1) the
acquisition of software and its associated metadata and (2) the actual execution of soft-
ware in a target environment based on the acquired software and associated metadata.
Likewise, configuration is the process of mapping known variations in the application
requirements space to known variations in the software (and particularly the middle-
ware) solution space [11]. Below, we discuss how we resolved key component de-
ployment and configuration challenges that arose when developing the ITS.

3.2.1 Automating ITS Deployment and Configuration Profile Generation
Installing an ITS into a warehouse involves configuring the functional and non-func-
tional behavior of its software components and deploying them throughout the underly-
ing hardware and software infrastructure. Like other large-scale DRE systems, ITS is
assembled from many independently developed reusable components, as described in
Section 2.2. These components must be deployed and configured so that (1) assemblies
meet ITS operational requirements and (2) interactions between the components meet
ITS QoS requirements. Developers must address a number of crosscutting concerns
when deploying and configuring component-based ITS applications, including (1) iden-
tifying dependencies between ITS component implementation artifacts (such as the Op-
eratorConsole component having dependencies on both QT runtime library and the
WorkflowManager component implementation library), (2) specifying the connectivity
between ports of ITS components, and (3) mapping ITS components to the appropriate
nodes in the target environment where the ITS will be deployed.

Problem →→→→ Ad hoc deployment and configuration profile creation of components
for diverse system requirements. Large-scale DRE systems, such as an ITS, may re-

quire creation of assemblies containing 100’s-1000’s of components. Conventional
techniques for deploying and configuring such component-based systems can incur both
inherent and accidental complexities. Common inherent complexities involve ensuring
syntactic and semantic compatibility, e.g., only connecting ports of components in an
ITS assembly with matching types. Common accidental complexities stem from using
ad hoc techniques for writing and modifying middleware and application configuration
files, e.g., handcrafting XML files describing component metadata (such as the dozens
of connections between components in ITS assemblies), which are very large, even for
relatively simple groups of connected components. Such ad hoc techniques are tedious
and error-prone, making it hard to adapt the ITS to new deployment and configuration
requirements, such as another warehouse that may have different types of transportation
units or ITS operator console GUI terminals.

Solution →→→→ Model-driven deployment and configuration of ITS components. In our
ITS project, system deployment and configuration is performed via the CoSMIC tool-
suite. At the heart of CoSMIC is the Platform-Independent Component Modeling Lan-
guage (PICML) [13], which is a DSML that implements the OMG D&C specification
and provides capabilities to handle complex component engineering tasks, such as
multi-aspect visualization and manipulation of components and the interactions of their
subsystems, component deployment planning, and hierarchical modeling and generation
of component assemblies. PICML itself is developed using the Generic Modeling Envi-
ronment (GME) [5], which is an environment for building and processing DSMLs.

PICML allows modelers to define component interfaces and component compositions,
and establish connections among components visually. In our ITS, for example, PICML
is used to model the connections among the ITS components, such as the
facet/receptacle connection between WorkflowManager component and the Storage-
Facility component, and the event source/sink connections between the WorkflowMan-
ager component and OperatorConsole component. These interacting components are
connected together to form a valid component assembly. The semantic rules associated
with component assemblies are enforced by constraints defined in PICML’s metamodel
and model interpreter. Its metamodel defines static semantic rules that determine valid
connections between components. Its model interpreter ensure the dynamic semantics
of models built using PICML, which can range from performing analysis of models to
synthesizing code for components and their metadata.

PICML contains multiple model interpreters, each performing a particular function. The
most commonly used interpreter for our ITS is the packaging interpreter, which gener-
ates XML descriptors to address various concerns in the CCM D&C specification.
These XML descriptors include (1) component interface descriptors, which capture
information about component interfaces including component ports, (2) component im-
plementation descriptors, which capture information about component implementations,
such as the dependencies and the connections among components, (3) implementation
artifact descriptors, which capture information about implementation artifacts including
dependencies between such artifacts, (4) component package descriptors, which capture
information about grouping of multiple implementations of the same component inter-
face into component packages, (5) package configuration descriptors, which capture
information about specific configurations of such component packages, and (6) compo-
nent domain descriptors, which capture information about the target environment in
which the component-based application will be deployed.

After using PICML to create component assemblies for our ITS based on warehouse-
specific deployment and configuration requirements, we used its packaging interpreter
to generate the metadata needed to deploy the ITS assemblies. As shown in Figure 5,
this metadata includes the list of implementation artifacts associated with each compo-
nent instance, the list of connections between the different component instances, the
organization of the application into different levels of hierarchy, and the default proper-
ties with which each component instance is initialized. PICML’s packaging interpreter
generates the different types of metadata in the form of XML descriptors that are tedi-
ous and error-prone to write manually. This metadata is used by CIAO to drive the de-
ployment of the complete ITS applications.

Figure 5. Partial PICML Assembly Model for ITS

Evaluating PICML for ITS. In our ITS case study, we applied PICML to a warehouse
scenario where 193 ITS components are deployed across 26 physical nodes. Based on
the deployment decisions discussed earlier, ~400 connections must be established
among these component ports. All these connections are specified by using two types of
XML descriptor files, i.e., component interface descriptors and component implementa-
tion descriptors. To create a deployment profile for this case study is prohibitively tedi-
ous and error-prone without tool support, i.e., the XML files are hard to write manually
since cross-referenced identifiers specify the component connections in accordance with
the OMG’s D&C standard.

In contrast, it is much easier to create a PICML model for these connections visually
than writing XML files manually. The PICML packaging interpret generates all six
types of descriptor files described above, with a total number of 582 XML files averag-
ing ~25 lines per file. By automatically generating the deployment via PICML’s model
interpreter, it enforces the correct-by-construction paradigm in component-based ap-
plication development, which eliminates a common source of errors.

Our experience applying PICML to model the ITS deployment structure also shows that
it raises the level of abstraction at which developers work and helps them concentrate
on certain aspects (e.g., deployment structure) in the multidimensional problem space
associated with applying component middleware for DRE systems. This separation of
concerns in turn eliminates many sources of accidental complexities and improves over-
all system quality.

3.2.2 Automate ITS Component Deployment to Target Environment
To complete the deployment of ITS application, it is necessary to take the metadata
describing the concerns from multiple actors and bring them together in an effective
fashion into the target environment. Section 3.2.1 explains how the PICML MDD tool
addresses key concerns in the ITS component configuration and assembly phase by
automatically and correctly synthesizing various types of XML descriptors. These XML
descriptors then form a profile that specifies system deployment requirements.

To deploy an ITS assembly, deployers must perform certain tasks based on the deploy-
ment profile, including (1) preparation, which takes the pre-built ITS software package
and brings it into a component software repository under the deployer’s control, (2)
installation, which downloads the ITS components to component server processes that
run in each node in the target environment, including embedded system nodes used to
host TransportUnit components and PC nodes that host other types of ITS components,
such as WorkflowManager and OperatorConsole, (3) configuration, which customizes
properties of components on each node based on metadata in the deployment profile,
and (4) launching, which connects the ports of the ITS components that are distributed
throughout the target environment based on metadata in the deployment profile and
executes the whole component assembly.

Problem →→→→ Ad hoc deployment mechanisms for variable ITS deployment require-
ments. In an ITS environment, each of the four deployment steps described above can
have variations due to the differences in the given deployment profiles. For example,
depending on the scale and amount of warehouse facilities, different ITS systems often
have different number of nodes. Moreover, different types of nodes usually have differ-
ent resources available, such as OS, network interfaces, CPU and memory. Large-scale
warehouses usually have hundreds of such nodes that form a heterogeneous distributed
environment. Conventional techniques for deploying large-scale component-based DRE
systems can incur both inherent and accidental complexities. Common inherent com-
plexities involve (1) ensuring component runtime libraries are compatible with the host-
ing nodes (e.g., OS compatibility) and (2) creating the correct number of processes to
host components based on the specified deployment profile (e.g., some ITS components
might be hosted in the same process to improve performance, whereas other ITS com-
ponents might be hosted in different processes to improve system fault tolerance and
reliability). Common accidental complexities stem from using ad hoc techniques for
moving component runtime binaries and other dependent runtime libraries to the corre-
sponding nodes for deployment. To perform these changes manually is not only tedious
and error-prone, but also makes the deployment effort hard to reuse, e.g., there is no
easy way to migrate one component running from one node/process to another when a
deployment profile changes.

Solution →→→→ Standards-based deployment and configuration framework. To support
automatic ITS component deployment and configuration capability, we developed a
run-time framework called the Deployment And Configuration Engine (DAnCE), whose
structure is shown in the right part of the Figure 6. As shown in this figure, ITS system
developers can model various D&C concerns for a warehouse via PICML, which auto-
matically generates the corresponding D&C profile for the designated system. DAnCE
then takes the generated profile, and automatically deploys the system into the CIAO
component middleware platform.

As shown in Figure 6, DAnCE consists of implementations of a set of standards-based
runtime interfaces that deal with the instantiation, installation, setting up connections,
monitoring, and termination of components on the nodes of the target environment.
These interfaces include the ExecutionManager, DomainApplicationManager, Node-
Manager and NodeApplicationManager defined by the OMG D&C specification. The
ExecutionManager and DomainApplicationManager run at the global domain level,
whereas the NodeManager and NodeApplicationManager run on each node. The Execu-
tionManager and NodeManager manage the lifecycle of the ITS deployment process to
help configure component servers on the nodes, install components into containers, and
set up connections among components that may be distributed across multiple nodes.

�������

� 	
 ���

�������

� 	
 ���

�������

� 	
 ���

�������

� 	
 ���

Figure 6. DAnCE Architecture and PICML Relationship

When ITS deployers instruct an ExecutionManager to deploy an ITS assembly, they
must give the ExecutionManager the XML-based deployment profile generated by the
PICML MDD tool. The ExecutionManager takes this profile as input and creates an in-
memory representation of the metadata by parsing the XML files. The DAnCE Do-
mainApplicationManager then populates a global in-memory deployment plan that de-
scribes a mapping of a configured ITS assembly into a target domain, which includes
the information about nodes where components will be deployed, the mapping of com-
ponent to nodes, the information about connections among component instances, the
information about process collocation strategies and attribute configurations of compo-
nents. Depending on the total number of nodes needed for a particular deployment, the
DomainApplicationManager then splits the global plan into multiple local (node-level)
deployment plans and passes them to each individual NodeManager, based on the
specification in the PICML model of the ITS.

After each node-level deployment plan is sent to each corresponding NodeManager, the
NodeManager will then parse the node-level deployment plan to find out the compo-
nents that will be deployed on the node that it manages, and fetch the runtime libraries
from the centralized component repository if these libraries are not in the local file sys-
tem. This will in turn trigger the NodeApplicationManager residing in the node to
spawn one or more NodeApplications, i.e., component servers, depending on the collo-

cation strategy specified in the ITS PICML model. After NodeApplications are spawned,
the specified components will then be installed into the container of the NodeApplica-
tions and attributes specified in the PICML model will be configured by the container.

After components are installed in each individual node, DAnCE will create connections
among components, some of which may reside in hundreds of nodes in the warehouse.
After the component deployment and application launch is complete, DAnCE also as-
sists in monitoring and tearing down the application after it finishes executing.

Evaluating DAnCE for ITS. Based on the information captured by PICML, DAnCE
maps the ITS software packages onto a running DRE system based on particular de-
ployment profile. Without DAnCE tool support it is prohibitively hard to (re)install all
193 components on 26 nodes in our ITS case study manually, while taking into consid-
eration of the heterogeneous software/hardware platforms, and variable component con-
figuration, and process collocation strategies.

In contrast, by using DAnCE in conjunction with PICML, the whole deployment proc-
ess is automated and simplified for deployers. Moreover, when the warehouse is recon-
figured, deployers need only extend the existing ITS WMGL and PICML models. The
new ITS can then be redeployed and configured correctly via an OperatorConsole ter-
minal by the ExecutionManager without manual intervention.

Our experiments with different deployment scenarios and development of the corre-
sponding MDD tools show the complementary relationships between modeling tools
(i.e., WMGL/CoSMIC) and underlying component infrastructure and D&C frameworks
(i.e. CIAO/DAnCE). In particular, it is important to base the code generation process on
the underlying middleware, thereby reducing the complexity of model interpreters since
they only need to understand the middleware APIs.

4. Related Work
Our work extends earlier work on Model-Integrated Computing (MIC) [14] that focused
on modeling and synthesizing embedded software. Examples of MIC technology used
today include GME [5] and Ptolemy [15] (used primarily in the real-time and embedded
domain) and Model Driven Architecture (MDA) based on UML and XML (which have
been used primarily in the business domain). Our work combines GME metamodeling
mechanisms and UML to model and synthesize component middleware used to config-
ure and deploy DRE systems.

Cadena [17] is an MDD tool for building and modeling component-based DRE systems,
with the goal of applying static analysis, model-checking, and lightweight formal meth-
ods to enhance these systems. Unlike our work, however, Cadena does not support ac-
tivities such as component packaging, generating deployment plan descriptors, and hi-
erarchical modeling of component assembly, thus it introduces additional burden to
DRE application developers to accomplish such tasks. In our work, such aspects could
be captured through PICML MDD tool and then all the deployment and configuration
work could be automated through DAnCE.

Lacour et. al. [16] use the Globus Toolkit to deploy CCM components on a computa-
tional grid. Unlike our work, this work provides neither a higher-level modeling tool for
application developers to capture various concern aspects, such as deployment planning

and collocation strategy modeling, nor does it provide a way to automatically generate a
deployment profile for the application. Also, unlike our approach, their tools and mid-
dleware platforms are targeted for enterprise distributed application instead of DRE
systems, which have more stringent QoS requirements.

5. Concluding Remarks
Our prior work on MDD focused on the architectural design and implementation of
CoSMIC and its DSMLs and our prior work on QoS-enabled component middleware
focused on the design and optimization of CIAO. This paper focuses on our experience
gained when integrating and applying these technologies to an inventory tracking sys-
tem (ITS) case study in the warehouse management domain. The lessons we learned
thus far include:

• The component middleware paradigm and implementations such as CIAO, elevates
the abstraction level of middleware to enhance software developer quality and pro-
ductivity. It also introduces extra complexities, however, that are hard to handle in an
ad hoc manner for large-scale DRE applications. For example, the Lightweight CCM
and Deployment and Configuration (D&C) specifications require many configura-
tion files due to their large number of configuration points.

• The MDD paradigm expedites application development with the proper integration
of the modeling tool and underlying technical infrastructure such as the DAnCE
D&C framework. In our ITS case study, if the warehouse model is the only missing
or changing concern in the system (which is typical for end users), little new applica-
tion code must be written, yet the complexity of the generation tool remains manage-
able due to the limited number of well-defined configuration “hot spots” exposed by
the underlying infrastructure. Likewise, when component deployment plans are in-
complete or must change, the effort required is significantly less than starting from
the raw component middleware without MDD tool support, since the application
could evolve from the existing set of PICML and WMGL models.

• Domain-specific modeling techniques can help to reduce the learning curve for end
users. For example, warehouse modelers in our ITS project need little or no knowl-
edge of how to write component software since they interact with the system through
higher-level models that correspond to the “language” understood by domain engi-
neers and visual modeling environments, such as WMGL.

• Despite the benefits of using visual MDD tools to describe different aspects of the
large scale DRE systems, it is still labor intensive and error-prone to manually show
all ~400 connections for the relatively small amount of components we have in ITS.
This observation motivates the need for further research in the automating the syn-
thesis of large-scale DRE systems based on the different types of meta- and semantic
information about assembly units, such as components or services.

CoSMIC's MDD tools are available at www.dre.vanderbilt.edu/cosmic and the CIAO
QoS-enabled component middleware is available at www.dre.vanderbilt.edu/CIAO.
GME is available at www.isis.vanderbilt.edu/Projects/gme.

References
[1] Object Management Group: “Lightweight CORBA Component Model Revised Submission”,
Object Management Group, Inc. May 2003, realtime/03-05-05
 [2] N. Wang, D. Schmidt, A. Gokhale, C. Gill, C. Rodrigues, B. Natarajan, J. Loyall, and R.
Schantz, “QoS-enabled Middleware,” Middleware for Communications, Wiley and Sons, New
York.
[3] D. Sharp and W. Roll, “Model-Based Integration of Reusable Component-Based Avionics
System”, Proceedings of the Workshop on Model-Driven Embedded Systems in RTAS, Washing-
ton DC, May 2003.
[4] Object Management Group: “Deployment and Configuration for Component-based Distrib-
uted Applications”, www.omg.org/docs/ptc/03-07-02.pdf, June 2003.
[5] A. Ledeczi “The Generic Modeling Environment”, Workshop on Intelligent Signal Processing,
Budapest, Hungary, May 17, 2001.
[6], T. Ritter, M. Born, T. Untersch, T. Weis, “A QoS Metamodel and its Realization in a
CORBA Component Infrastructure,” Proceedings of the 36 Hawaii International Con-
ference on System Sciences, Software Technology Track, Distributed Object and Component-
based Software Systems Minitrack, Honolulu, HW, Jan. 2003.
[7] D. Schmidt, D. Levine, and S. Mungee, “The Design and Performance of Real-Time Object
Request Brokers,” Computer Communications, vol. 21, no. 4, Apr. 1998.
[8] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, and M. Turnbull, The Real-
Time Specification for Java, Addison-Wesley, 2000.
[9] Object Management Group: “Real-time CORBA”, Adopted Specification of the Object Man-
agement Group, Inc. August 2002 Adopted Specification formal/02-08-02.
[10] G. Edwards, G. Deng, D. Schmidt, A. Gokhale, and B. Natarajan, “Model-driven Configura-
tion and Deployment of Component Middleware Publisher/Subscriber Services”, Proceedings of
the 3rd ACM International Conference on Generative Programming and Component Engineering,
Vancouver, CA, October 2004.
[11] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools, Wiley and Sons, 2004.
[12] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and Variability in Software Engineer-
ing,” IEEE Software, November/December, 1998.
[13] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and D. Schmidt, “A Plat-
form-Independent Component Modeling Language for Distributed Real-time and Embedded Sys-
tems,” Proceedings of the 11th IEEE Real-Time and Embedded Technology and Applications
Symposium, San Francisco, CA, Mar, 2005.
[14] J. Sztipanovits and G. Karsai, “Model-Integrated Computing,” IEEE Computer, vol. 30, pp.
110–112, Apr. 1997.
[15] J. T. Buck and S. Ha and E. A. Lee and D. G. Messerschmitt, “Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems”, International Journal of Computer Simula-
tion, Special Issue on Simulation Software Development Component Development Strategies,
Vol.4, April 1994.
[16] S. Lacour, C. Perez, T. Priol, “Deploying CORBA Components on a Computational Grid:
General Principles and Early Experiments Using the Globus Toolkit”, Proceedings of the 2nd
International Working Conference on Component Deployment (CD 2004), Edinburgh, UK, May
2004.
[17] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Cadena: An Integrated Develop-
ment, Analysis, and Verification Environment for Component-based Systems,” Proceedings of
the 25th International Conference on Software Engineering, Portland, OR, May, 2003.

