
Model-driven Middleware Specialization Techniques for Software Product-line
Architectures in Distributed Real-time and Embedded Systems

Arvind S. Krishna
�
, Aniruddha Gokhale

�
and Douglas C. Schmidt

�
,

Venkatesh Prasad Ranganath
�

and John Hatcliff
�

�
Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN�

Dept. of Computing and Information Sciences, Kansas State University

Abstract

Product-line architectures (PLA)s are an emerging
paradigm for developing software families for distributed
real-time and embedded (DRE) systems by customizing
reusable artifacts, rather than handcrafting software from
scratch. To reduce the effort of developing software PLAs
and product variants for DRE systems, it is common to
leverage general-purpose – ideally standard – middleware
platforms whose reusable services and mechanisms support
a range of application quality of service (QoS) require-
ments, such as predictability and low end-to-end latency.
While standard middleware provides generality and flexi-
bility to support many types of PLAs and product variants,
standard middleware implementations often incur unneces-
sary footprint overhead and lack optimizations needed to
meet the QoS needs of PLAs and product variants for DRE
systems. This paper describes systematic model driven de-
velopment (MDD) techniques for specializing implemen-
tations of standards-based, general-purpose middleware
to support the application-specific QoS needs of different
product variants created atop a PLA. Our preliminary re-
sults show that implementations of standard middleware
can be specialized transparently to better meet the QoS
needs of PLAs and product variants, without compromising
standards compliance.

1 Introduction

Software development organizations must innovate
rapidly, provide capabilities that meet user needs, and sus-
tain their competitive advantage in the face of time-to-
market pressures and limited software resources. As a re-
sult, many organizations are trying to reuse existing artifacts
and resources for a range of products, rather than handcraft-
ing software for each product from scratch. A promising
technology for systematically addressing the challenges of
large-scale mission-critical software systems is product-line
architectures (PLAs) [1].

In contrast to conventional software processes that pro-
duce separate point solutions, PLA-based processes develop
families of product variants [2] that share a common set of
capabilities, patterns, and architectural styles. PLAs can be
characterized using scope, commonality, and variabilities
(SCV) analysis [3], which is an engineering process that
identifies the scope of the product families in an application
domain and then determines the common and variable prop-
erties among them. Domain/systems engineers and soft-
ware architects use SCV analysis to guide decisions about
where and how to address possible variability and where the
common development strategies can be used.

PLAs have been developed and applied to a variety of
domains [4]; this paper focuses on applying PLAs to dis-
tributed, real-time and embedded (DRE) systems [5]. Ex-
amples of DRE systems include applications with hard
real-time requirements, such as avionics mission comput-
ing [6], as well as those with softer real-time requirements,
such as telecommunication call processing and streaming
video [7]. These DRE systems are characterized by their
stringent QoS requirements (such as low memory footprint,
power consumption, latency, and predictability), which of-
ten makes them harder to develop, maintain, and evolve
than conventional desktop and enterprise software.

The QoS challenges of DRE systems have hitherto led
developers to (re)invent custom applications that are tightly
coupled to specific hardware/software platforms, which is
tedious, error-prone, and costly to evolve over product life-
cycles. During the past decade, therefore, a key technology
for alleviating the tight coupling between applications and
their underlying platforms has been middleware [8], which
(1) functionally bridges the gap between applications and
platforms, (2) controls many aspects of end-to-end QoS,
and (3) simplifies the integration of components developed
by multiple technology suppliers.

Although middleware has been used successfully in
DRE systems [5, 6], key challenges must be overcome be-
fore it can be applied seamlessly to support the QoS needs
of PLA-based DRE systems. In particular, there is a need
for R&D to resolve the tension between: (1) the general-



ity of standards-based middleware, which benefits from a
reusable architecture designed to satisfy a broad range of
application requirements and (2) application-specific prod-
uct variants, which benefit from highly-optimized, custom
PLA middleware implementations. In resolving this ten-
sion, solutions should retain the portability and interoper-
ability capabilities provided by standard middleware.

The remainder of the paper is organized as follows: Sec-
tion 2 identifies key middleware optimization challenges
pertaining to PLA-based DRE systems; Section 3 explains
how we plan to apply model-driven sepcialization to mid-
dleware to address these challenges; Section 4 compares our
work with related research; and Section 5 presents conclud-
ing remarks.

2 Middleware Optimization Challenges for
PLA-based DRE Systems

This section uses a representative DRE system sce-
nario to identify common types of excessive generality in
middleware for PLAs and outlines how context-specific
specialization techniques help to alleviate this generality
without compromising standards compliance. Figure 1
illustrates key middleware optimization challenges asso-
ciated with the tension between (1) application-specific
product variants, which require highly-optimized and cus-
tomized PLA middleware implementations and (2) general-
purpose, standards-based middleware, which is multi-use
and thus designed to satisfy a broad range of application
requirements. Resolving this tension is essential to en-

Figure 1. Application-specific vs.
Application-independent Dimensions of
PLAs and Middleware

sure that middleware can support the QoS requirements of
PLA-based DRE systems. Unfortunately, implementations
of standards-based QoS-enabled middleware technologies,
such as Real-time CORBA [9] and Real-time Java [10], can
be excessively general and thus poorly suited to support
PLAs for DRE systems due to excessive time/space over-
head for product variants. Removing unwanted generality,

such as redundant functionality, navigation of multiple lay-
ers, and unnecessary checks, is therefore essential to opti-
mize general-purpose middleware implementations to meet
the QoS requirements of product variants. In turn, removing
this generality helps identify opportunities for further opti-
mizations, while still maintaining standard interfaces and
interoperability protocols.

2.1 PLA DRE Scenario Case Study

The remainder of this section uses a concise, yet rep-
resentative, DRE PLA scenario to (1) illustrate how the
challenges outlined above occur in practice and (2) iden-
tify system invariants that drive our specialization approach.
The scenario is based on the Boeing Bold Stroke avionics
mission computing PLA [11], which supports the Boeing
family of aircraft, including many product variants, such
as F/A-18E, F/A-18F, F-15E, F-15K, etc. Bold Stroke is
a component-based, publish/subscribe platform built atop
TAO [12], which is a standards-based Real-time CORBA [9]
implementation, and Prism [6], which is Qos-enabled com-
ponent middleware influenced by the Lightweight CORBA
Component Model (CCM) [13].

Figure 2 illustrates the BasicSP application scenario that
is the focus of this paper and is representative of rate-
based DRE systems in avionics, vetronics, and process con-
trol. This scenario involves four avionics mission comput-
ing components that periodically send GPS position up-
dates to a pilot and navigator cockpit displays. Commu-
nication between components uses the event-push/data-pull
model, with data producing components pushing an event
to notify new data is available and data consuming com-
ponents pulling data from the source. A Timer compo-
nent pulses a GPS navigation sensor component at a cer-
tain rate, which in turn publishes data_avail events to
an Airframe component. Aware that new data is avail-
able, this component then calls a method provided by the
Read_Data interface of the GPS component to retrieve
current location. After formatting the data, Airframe
sends a data_avail event to the Nav_Display com-
ponent, which then pulls the location and velocity data from
the Airframe component and displays this information on
the pilot’s heads-up display.

TIMER
20Hz

GPS NAV DISP
AIRFRAME

TIMER
20Hz

GPS NAV DISP
AIRFRAME

timeout data_avail

get_data ()

data_avail

get_data ()

Figure 2. BasicSP Application Scenario

The BasicSP scenario illustrates the following common-
alities and variabilities in the Bold Stroke PLA:

2



� Commonalities include the set of reusable compo-
nents (such as Display, Airframe, and GPS) in
Bold Stroke and middleware capabilities (such as con-
nection management, data transfer, concurrency, syn-
chronization, (de)marshaling, (de)multiplexing, and
error-handling) that occur in all product variants and� Variabilities include application-specific component
connections (such as how GPS and Airframe com-
ponents are connected in an F/A-18E vs. an F-15K),
different implementations (such as whether GPS or in-
ertial navigation algorithms are used), and components
specific to particular customers (such as restrictions on
this use of encryption in certain countries).

The BasicSP scenario shown in Figure 2 requests new
inputs from the GPS component and updates the display
outputs with new aircraft position data at a rate of 20 Hz.
The time to process the inputs to the system and present the
output to cockpit displays should therefore be less than a
single 20 Hz frame. The rates at which these components
interact is yet another variability that could change in dif-
ferent product variants.

2.2 Common Types of Excessive Generality in
Middleware

We have thus far identified five common types of exces-
sive generality in middleware relevant to PLA-based DRE
system in general, and to the BasicSP scenario in particu-
lar, as shown in Figure 3. The challenges of each type of
generality are discussed below:

Figure 3. BasicSP Specialization Points

Challenge 1. Redundant remoting functionality for col-
located objects. In PLA-based DRE systems, such as
Bold Stroke, components are mapped to particular target

nodes late in the design process, e.g., during the deploy-
ment phase. Groups of components may be collocated (i.e.,
placed on the same processor) to minimize network over-
head in certain deployments. To optimize for this common
case across different product variants or contexts within a
single product, middleware implementations provide op-
timizations [14] that bypass the network and I/O subsys-
tems when objects are collocated. Even for collocated de-
ployments, however, standard middleware implementations
often still contain code capable of performing remoting,
which performs the (de)marshaling and framing logic used
to send requests across a network.

A challenge is therefore to develop middleware special-
ization techniques that can identify redundant functional-
ity (such as remoting code for collocated deployments) and
remove this functionality from selected parts of the mid-
dleware for certain product variants or application-specific
contexts.

Challenge 2. Redundant request creation and/or initial-
ization. To send a request to the server, middleware im-
plementations create a request, which contains buffer space
to hold the header and payload information for each invo-
cation. Rate-based DRE systems often repeatedly generate
periodic events, such as timeouts that drive periodic system
execution. Since most request information (such as message
size, operation name, and service context) does not change
across events, middleware implementations can use buffer
caching [15] strategies to minimize request creation. This
approach, however, can still incur the overhead of initializ-
ing the request header and payload for every request.

A challenge is therefore to develop middleware special-
ization techniques that can reuse pre-created requests (i.e.,
from previous invocations) partially and/or completely to
avoid redundant initialization for certain product variants
or application-specific contexts.

Challenge 3. Repeated resolution of the same request
dispatch. To minimize the time/space overhead incurred
by opening multiple connections to the same server, mid-
dleware often multiplexes requests on a single connection
between client and server processes. Multiple client re-
quests targeted for different request handlers in a server pro-
cess are therefore received on the same multiplexed connec-
tion. Standard Real-time CORBA servers typically process
a client request by navigating a series of middleware layers,
e.g., ORB core, object adapter(s), servant, and operation.
To optimize request demultiplexing, Real-time CORBA im-
plementations can combine active demultiplexing [16] and
perfect-hashing [17] strategies to bound worst case lookup
time to �����	� , irrespective of the nesting of the layers. This
optimization, however, can still incur non-trivial overhead
when navigating middleware layers and is redundant when
the target request handler remains the same across different
request invocations.

3



A challenge is therefore to develop middleware special-
ization techniques that avoid the expense of navigating lay-
ers of middleware to resolve the same request dispatch for
certain product variants or application-specific contexts.
Challenge 4. Redundant (de)marshaling checks. PLA-
based DRE systems may be deployed on platforms with
different instruction set byte orders. To support seamless
request processing irrespective of byte ordering, general-
purpose Real-time CORBA implementations therefore use
the general inter-ORB protocol (GIOP), which performs
byte order tests when (de)marshaling requests/responses.
These tests incur unnecessary overhead, however, when the
nodes a DRE system runs on have the same byte order.

A challenge is therefore to develop middleware special-
ization techniques that evaluate ahead-of-time deployment
properties to remove redundant (de)marshaling checks for
certain product variants or application-specific contexts.
Challenge 5. Overly extensible middleware frame-
works. Middleware is often developed as a set of frame-
works that can be extended and configured with alterna-
tive implementations of key components, such as differ-
ent types of transport protocols (e.g., TCP/IP, VME, or
shared memory), event demultiplexing mechanisms (e.g.,
reactive-, proactive-, or thread-based), request demultiplex-
ing strategies (e.g., dynamic hashing, perfect hashing, or ac-
tive demuxing), and concurrency models (e.g., thread-per-
connection, thread pool, or thread-per-request). A partic-
ular DRE product variant, however, may only use a small
subset of the potential framework alternatives. As a result,
general-purpose middleware may be overly extensible, i.e.,
contain unnecessary overhead for indirection and dynamic
dispatching that is not needed for use cases in a particular
context.

A challenge is therefore to develop middleware special-
ization techniques that can eliminate unnecessary over-
head associated with overly extensible middleware frame-
work implementations for certain product variants or
application-specific contexts.
To resolve the challenges presented above successfully, it
is crucial that (1) middleware implementations be special-
ized without compromising their standard interfaces and (2)
the effort of specifying and applying these specializations
to production middleware and PLAs for DRE systems be
minimized. Section 3 describes our approach to applying
model-driven middleware specializations that alleviate the
common types of excessive generality described above.

3 Model-driven Middleware Specialization:
Vision & Approach

Customizing middleware for different operating contexts
requires a systematic approach to designing and implement-
ing different context-specific specializations. Model-driven

Development (MDD) offers the right choice to realize a sys-
tematic and scientific approach to resolving the PLA mid-
dleware challenges described in Section 2. This paper de-
scribes our R&D that explores MDD techniques, which
leverage Ahead of Time (AOT) known PLA and product-
specific system properties, to specialize middleware and
thereby improve middleware performance and footprint.
For the MDD techniques to succeed we require the refactor-
ing of middleware and services so they are amenable to au-
tomatic and dynamic customization and optimization by us-
ing model-driven middleware specialization patterns [18].
Our vision of the MDD approach to middleware specializa-
tion is shown in Figure 4.

PLA
invariants

Middleware
models

Generative
middleware
specializer

Product-specific
assembly
variability

Product-specific
deployment
variability

Specialized
Middleware

Configuration
model

Variability
Weaver &
generator

Optimized
Middleware

validation

Figure 4. Model-driven Middleware Special-
ization

These specialization patterns are then mapped to mid-
dleware implementations via specialization tools, which are
part of the generative tool chain of the MDD tools. The spe-
cialization process can be divided into two steps: (1) identi-
fication of the specialization points and transformations and
(2) automating the delivery of the specializations. In the
specialization identification phase, higher level models cap-
ture the system invariant information. This information cap-
tured is used in the second phase to automate the delivery
of the specializations.

Development of this two step process requires first the
development of the delivery phase to automate the special-

4



ization and the development of MDD tools to drive the spe-
cialization process. In the remainder of this section, we
describe the Feature Oriented Customizer (FOCUS) MDD
tool we are developing to automate the PLA middleware
specializations.

3.1 FOCUS MDD Approach

This section describes our vision of the FOCUS MDD
tools that will be required to drive the FOCUS middleware
specializers described in Section 3.2. An MDD tool like
FOCUS must respond to the following key requirements:

� Defining and capturing PLA invariants – which will
require the modeling tool to provide capabilities to
capture the PLA-specific feature invariants. Modeling
tools will need to map these invariants to the features
in middleware that will be required to satisfy these in-
variants.

� Represent middleware models and their configura-
bility – which will require the modeling tool to provide
capabilities to represent middleware as building blocks
that can be configured and customized according to the
PLA and product-specific requirements. This capabil-
ity is driven by the state of art in middleware, which
comprises a composition and configuration of patterns-
based building blocks.

� Capturing product-specific functional and QoS
variability – which will require the ability to specify
product-specific variability incurred due to functional
and QoS requirements. This will also govern the vari-
ability in the assembly, configuration and deployment
of the product variant and the associated middleware
infrastructure.

The modeling capabilities described above represent a
multi-dimensional separation of concerns [19]. Each con-
cern could be represented using higher levels of abstractions
instead of low level code or platform-specific artifacts. The
mapping of these concerns by the FOCUS tool to platform-
specific artifacts represent the selected features of the mid-
dleware in terms of the chosen building blocks. Concerns
that crosscut layers of middleware and building blocks are
akin to aspects. Finally, the QoS requirements of product
variants map to specializations of the selected features of
the middleware. The remainder of this section describes the
specialization automations carried out by FOCUS.

3.2 FOCUS Approach for Specialization Automa-
tion

Figure 5 illustrates the actors, tools and workflow in FO-
CUS. The different phases in the FOCUS approach can be
broken down as follows:

Figure 5. FOCUS Approach

� Identification of specializations. The most impor-
tant step in the specialization process is the identification
of specialization points to eliminate generality. Rather
than selecting ad-hoc points, we examine the critical re-
quest/response processing path within middleware to sys-
tematically identify sources for specialization. Identifica-
tion of these points have the greatest potential for increas-
ing performance improvement. For example, middleware
implementations run on top of multiple protocol imple-
mentations such as TCP/IP, UDP and shared memory. To
seamlessly support and add new protocol implementations,
middleware implementations are designed using the strat-
egy [20] and template method pattern [20] that allow the dif-
ferent protocol implementations to be dynamically loaded
within the middleware. These designs incur indirections
and dynamic dispatching in middleware components along
the critical request/response processing path.
� Capturing specializations as rules. Figure 7 illustrates
how specializations are expressed as rules. In this phase, a
middleware developer lays down the specialization rule re-
quired to transform general-purpose middleware into opti-
mized middleware stack. These directly stem from the spe-
cialization points identified in the previous step.
� Middleware Annotation. Figure 8 shows how the rules
are used to annotate the middleware. In conjunction with
capturing the specialization rules, the middleware developer
annotates the middleware source with specialization hooks.
These hooks are inserted as comments in the source code
that do not interfere with the normal request/response pro-
cessing. However, in the specialized mode, these hooks are
used to weave in specialized code using a customizer en-
gine.

5



Client OBJ
REF

Object
(Servant)

in args
operation()
out args +

return

IDL
STUBS

ORB
INTERFACE

IDL
SKEL

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

2

3

5

4

1

1

2

3

4

5

Specialization on Location

Specialize CORBA
header

Eliminate redundant
demarshaling checks

Specialize ORB Component
implmentation

Optimize for Target
Location

Figure 6. FOCUS: Specialization Identifica-
tion

Figure 7. FOCUS: Capturing Specialization
Rules

Figure 8. FOCUS: Middleware Annotation

� FOCUS Transformations. Figure 9 illustrates the dif-
ferent steps in this phase. (1) A product-line application
developer chooses the specializations that are suitable for
the variant. This is done during the CV analysis phase. (2)
A transformation engine, then uses the rules specified in the
rules file (3) performs the transformations specified in the
file using the hooks left in the middleware code and (4) Op-
timizing compiler then uses the modified source file to gen-
erate executable platform code.

Figure 9. FOCUS: Transformation Process

The advantage of this approach is that the transforma-
tions are applied to the source directly enabling an opti-
mizing compiler to generate optimized code. However, a
disadvantage is that aspects provide a superior mechanism
of weaving code. However, irrespective of the actual ap-
proach, our specialization rules are applicable across differ-
ent mechanisms. The specializations in addition will not
change the CORBA interfaces CORBA interfaces, for ex-
ample, no addition of operation parameters to interface op-
erations, which will avoid breaking CORBA compatibility.

4 Related Research

This section compares our work on context-specific spe-
cializations for middleware-based PLAs for DRE systems
with related research in a range of system and application
domains.
Operating systems. Specialization techniques have been
applied to operating systems. For example, the Synthesis
Kernel [21] generated custom system calls for specific sit-
uations to collapse layers and eliminate unnecessary proce-
dure calls. This approach has been extended to use incre-
mental specialization techniques. For example, [22] have
identified several invariants for an OS read() call on
HP/UX. Based on these invariants, code is synthesized to
adapt to different situations. Once the invariants fail, either
re-plugging code is used to adapt to a different invariant or
default unoptimized code is used. Our work is extending

6



the catalog of specializations to encompass middleware in-
variants in the context of PLA-based DRE systems, which
have some different constraints. For example, we do not
consider re-plugging costs in many DRE systems since it
would considerably increase jitter for a product variant.

Middleware. Specialization techniques have also been
applied to various generations of middleware. [23] de-
scribes the use of the Tempo C program partial evaluator
tool to automatically optimize common software architec-
ture structures with respect to fixed application contexts.
For instance, the authors show how partial evaluation can
be applied to fold together and optimize layers in early gen-
erations of middleware, i.e., a remote procedure call (RPC)
implementation, by specializing RPC invocations to the size
and type of remote procedure parameters (yielding speed-
ups of 1.7x and 3.5x).

Other domains. Specialization mechanisms have been
applied to computer graphics, database systems, and neu-
ral networks. In computer graphics, for example, ray trac-
ing algorithms compute information on how light rays tra-
verse a scene based on different origination. Specialization
of these algorithms [24] for a given scene has yielded better
performance rather than general purpose approaches. Sim-
ilarly in databases [25], general-purpose queries have been
transformed into specific programs optimized for a given
input. Similarly, training neural networks [26] for a given
scenario has improved its performance. The specializations
described in this paper, in contrast, focus on specializations
that customize standards-based, general-purpose middle-
ware for particular product variants and application-specific
contexts.

5 Concluding Remarks & Future Work

Product-line architectures (PLAs) enable organizations
to reconfigure their software quickly to respond to new mis-
sions and new business opportunities [1]. PLAs are particu-
larly applicable for large-scale distributed real-time and em-
bedded (DRE) systems since reusable software families can
be built for a domain (such as avionics, vetronics, or ship-
board computing) where applications share many functional
and architectural properties and then customized to meet the
specific needs of product variants. Standards-based middle-
ware is a key infrastructure technology for PLAs since it
provides many reusable policies and mechanisms to sim-
plify the development, customization, and deployment of
product variants. The stringent demands of DRE systems,
however, require conservation of resources, while simulta-
neously providing the desired QoS. It is therefore essen-
tial to optimize standards-based middleware implementa-
tions by eliminating extraneous functionality and extensi-
bility not needed for particular product variants.

This paper systematically identifies the generality within
middleware implementations and describes our FOCUS
MDD approach for automating the specializations. Cur-
rently, we have handcrafted the middleware specializations
that resolve the challenges described in Section 2. Prelim-
inary results show that application of our specializations
improves end-to-end throughput and latency measures by
 25% over general-purpose middleware. Our future work
on FOCUS, will involve:

� Identifying the different types transformations neces-
sary to specialize middleware implementations from
our handcrafted approach. For example, examination
of our handcrafted approach showed that transforma-
tions require capabilities of weaving/removing code at
specific points within middleware,� Specifying a XML DTD that will provide a structure
for capturing the different specializations. Simultane-
ously, the middleware implementation will be anno-
tated with markers to aid in the automation process,� Development of scripting tools that will parse the
XML specialization document and automate the spe-
cializations, and� Devlopment of Modeling paradigm that will deter-
mine transformations required to specialize middle-
ware from system models and generate specialization
transformations that will be executed by the FOCUS
tool. We plan to integrate the modeling paradigm
with CoSMIC [27]1 which is an integrated collection
of domain-specific modeling languages (DSMLs) and
generative tools that support the development, con-
figuration, deployment, and validation of component-
based DRE systems.

References

[1] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns. Boston: Addison-Wesley, 2002.

[2] D. C. Sharp, “Reducing Avionics Software Cost Through
Component Based Product Line Development,” in
Proceedings of the 10th Annual Software Technology
Conference, Apr. 1998.

[3] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and
Variability in Software Engineering,” IEEE Software,
vol. 15, November/December 1998.

[4] J. Greenfield, K. Short, S. Cook, and S. Kent, Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. New York: John Wiley & Sons,
2004.

[5] B. S. Doerr and D. C. Sharp, “Freeing Product Line
Architectures from Execution Dependencies,” in
Proceedings of the 11th Annual Software Technology
Conference, Apr. 1999.

1CoSMIC’s open-source MDD tools are available for download at
www.dre.vanderbilt.edu/cosmic.

7



[6] W. Roll, “Towards Model-Based and CCM-Based
Applications for Real-Time Systems,” in Proceedings of the
International Symposium on Object-Oriented Real-time
Distributed Computing (ISORC), (Hakodate, Hokkaido,
Japan), IEEE/IFIP, May 2003.

[7] D. C. Schmidt, V. Kachroo, Y. Krishnamurthy, and
F. Kuhns, “Applying QoS-enabled Distributed Object
Computing Middleware to Next-generation Distributed
Applications,” IEEE Communications Magazine, vol. 38,
pp. 112–123, Oct. 2000.

[8] G. Blair, A. Campbell, and D. C. Schmidt, “Middleware
Technologies for Future Communication Networks,” IEEE
Network, vol. 18, Jan. 2004.

[9] Object Management Group, Real-time CORBA
Specification, OMG Document formal/02-08-02 ed., Aug.
2002.

[10] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
D. Hardin, and M. Turnbull, The Real-Time Specification
for Java. Addison-Wesley, 2000.

[11] D. C. Sharp and W. C. Roll, “Model-Based Integration of
Reusable Component-Based Avionics System,” in Proc. of
the Workshop on Model-Driven Embedded Systems in RTAS
2003, May 2003.

[12] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design
and Performance of Real-Time Object Request Brokers,”
Computer Communications, vol. 21, pp. 294–324, Apr.
1998.

[13] Object Management Group, Lightweight CCM RFP,
realtime/02-11-27 ed., Nov. 2002.

[14] N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation
Optimizations for CORBA,” C++ Report, vol. 11,
pp. 47–52, November/December 1999.

[15] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo,
and A. Gokhale, “Applying Optimization Patterns to the
Design of Real-time ORBs,” in Proceedings of the ����
Conference on Object-Oriented Technologies and Systems,
(San Diego, CA), pp. 145–159, USENIX, May 1999.

[16] I. Pyarali, T. H. Harrison, and D. C. Schmidt,
“Asynchronous Completion Token: an Object Behavioral
Pattern for Efficient Asynchronous Event Handling,” in
Pattern Languages of Program Design 3 (R. Martin,
F. Buschmann, and D. Riehle, eds.), Reading,
Massachusetts: Addison-Wesley, 1997.

[17] D. C. Schmidt, “GPERF: A Perfect Hash Function
Generator,” in Proceedings of the ����� C++ Conference,
(San Francisco, California), pp. 87–102, USENIX, Apr.
1990.

[18] G. Daugherty, “A proposal for the specialization of ha/dre
systems,” in Proceedings of the ACM SIGPLAN 2004
Symposium on Partial Evaluation and Program
Manipulation (PEPM 04), (Verona, Italy), ACM, Aug.
2004.

[19] P. Tarr and H. Ossher and W. Harrison and S.M. Sutton, “N
Degrees of Separation: Multi-Dimensional Separation of
Concerns,” in Proceedings of the International Conference
on Software Engineering, pp. 107–119, May 1999.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[21] C. Pu, H. Massalin, and J. Ioannidis, “The Synthesis
kernel,” Computing Systems, vol. 1, pp. 11–32, Winter 1988.

[22] C. Pu, T. Autery, A. Black, C. Consel, C. Cowan, J. W.
Jon Inouye, Lakshmi Kethana, and K. Zhang, “Optimistic
incremental specialization: Streamlining a commercial
operating system,” in Symposium of Operating System
Principles, (Copper Mountain Resort, Colorado), Dec.
1995.

[23] R. Marlet, S. Thibault, and C. Consel, “Efficient
Implementations of Software Architectures via Partial
Evaluation,” Automated Software Engineering: An
International Journal, vol. 6, pp. 411–440, October 1999.

[24] P. Andersen, “Partial Evaluation Applied to Ray Tracing,”
DIKU Research Report 95/2, DIKU, 1995.

[25] C. Sakama and H. Itoh, “Partial Evaluation of Queries in
Deductive Databases,” New Generation Computing, vol. 6,
no. 2,3, pp. 249–258, 1988.

[26] L. Lei, G.-H. Moll, and J. Kouloumdjian, “A Deductive
Database Architecture Based on Partial Evaluation,”
SIGMOD Record, vol. 19, pp. 24–29, September 1990.

[27] Institute for Software Integrated Systems, “Component
Synthesis using Model Integrated Computing (CoSMIC).”
www.dre.vanderbilt.edu/cosmic, Vanderbilt University,
Nashville, TN.

8


