
An Efficient Adaptive Load Balancing Service for CORBA

Ossama Othman, Carlos O’Ryan, and Douglas C. Schmidt
fossama, coryan, schmidtg@uci.edu

Department of Electrical and Computer Engineering
University of California, Irvine
Irvine, CA 92697-2625, USA�

February 13, 2001

A subset of this paper will appear in the Distributed Systems
Engineering Journal’s “Online” edition, March 2000.

Abstract

CORBA is increasingly popular as distributed object com-
puting middleware for systems with stringent quality of ser-
vice (QoS) requirements, including scalability and depend-
ability. One way to improve the scalability and dependability
of CORBA-based applications is to balance system process-
ing load among multiple server hosts. Load balancing can
help improve system scalability by ensuring that client appli-
cation requests are distributed and processed equitably across
a group of servers. Likewise, it can help improve system de-
pendability by adapting dynamically to system configuration
changes that arise from hardware or software failures.

This paper presents three contributions to research on
CORBA-based load balancing. First, we describe deficiencies
with common load-balancing techniques, such as introducing
unnecessary overhead or not adapting dynamically to chang-
ing load conditions. Second, we present a novel adaptive load
balancing service that can be implemented efficiently using
standard CORBA features. Finally, we present the results of
benchmark experiments that evaluate the pros and cons of dif-
ferent load balancing strategies empirically by measuring the
overhead of each strategy and showing how well each strategy
balances system load.

Keywords: Middleware, patterns, CORBA, load balancing.

1 Introduction

Motivation: The growth of online Internet services during
the past decade has increased the demand for scalable and

�This work was funded in part by Automated Trading Desk, BBN, Cisco,
DARPA contract 9701516, and Siemens MED.

dependable distributed computing systems. For example, e-
commerce systems and online stock trading systems concur-
rently service many clients that transmit a large, often bursty,
number of requests. To protect initial hardware investments
and avoid overcommitting resources these systems scale incre-
mentally by connecting servers via high-speed networks and
either purchasing new servers as the number of clients increase
or leasing server cycles during peak hours.

An increasingly popular and cost effective technique to im-
prove networked server performance isload balancing, where
hardware and/or software mechanisms determine which server
will execute each client request. Load balancing mechanisms
distribute client workload equitably among back-end servers
to improve overall system responsiveness. These mechanisms
can be provided in any or all of the following layers in a dis-
tributed system:

� Network-based load balancing: This type of load bal-
ancing is provided by IP routers and domain name servers
(DNS) that service a pool of host machines. For example,
when a client resolves a hostname, the DNS can assign a dif-
ferent IP address to each request dynamically based on current
load conditions. The client then contacts the designated back-
end server, unaware that a different server could be selected
for its next DNS resolution. Routers can also be used to bind
a TCP flow to any back-end server based on the current load
conditions and then use that binding for the duration of the
flow.

High volume Web sites often use network-based load bal-
ancing at thenetworklayer (layer 3) andtransportlayer (layer
4). Layer 3 and 4 load balancing (referred to as “switch-
ing” in the trade literature [1]), use the IP address/hostname
and port, respectively, to determine where to forward pack-
ets. Load balancing at these layers is somewhat limited, how-
ever, by the fact that they do not take into account the content
of client requests. Instead, higher-layer mechanisms–such as
the so-called layer 5 switching described below–perform load
balancing in accordance with the content of requests, such as

1

pathname information within a URL.

� OS-based load balancing: This type of load balancing
is provided by distributed operating systems viaclustering,
load sharing1, andprocess migration[2] mechanisms. Clus-
tering is a cost effective way to achieve high-availability and
high-performance by combining many commodity computers
to improve overall system processing power. Processes can
then be distributed transparently among computers in the clus-
ter.

Clusters generally employ load sharing and process mi-
gration. Balancing load across processors–or more generally
across network nodes–can be achieved viaprocess migration
mechanisms [3], where the state of a process is transferred be-
tween nodes. Transferring process state requires significant
platform infrastructure support to handle platform differences
between nodes. It may also limit applicability to programming
languages based on virtual machines, such as Java.

� Middleware-based load balancing: This type of load
balancing is performed in middleware, often on a per-session
or per-request basis. For example, layer 5 switching [1] has
become a popular technique to determine which Web server
should receive a client request for a particular URL. This strat-
egy also allows the detection of “hot spots,”i.e., frequently ac-
cessed URLs, so that additional resources can be allocated to
handle the large number of requests for such URLs.

This paper focuses on another type of middleware-based
load balancing supported byobject request brokers(ORBs),
such as CORBA [4]. ORB middleware allows clients to invoke
operations on distributed objects without concern for object
location, programming language, OS platform, communica-
tion protocols and interconnects, and hardware [5]. Moreover,
ORBs can determine which client requests to route to which
object replicas on which servers.

Middleware-based load balancing can be used in conjunc-
tion with the specialized network-based and OS-based load
balancing mechanisms outlined above. It can also be ap-
plied on top of commodity-off-the-shelf (COTS) networks
and operating systems, which helps reduce cost. In addition,
middleware-based load balancing can provide semantically-
rich customization hooks to perform load balancing based on
a wide range of application-specific load balancing conditions,
such as run-time I/O vs. CPU overhead conditions.

CORBA load balancing example: To illustrate the benefits
of middleware-based load balancing, consider the CORBA-
based online stock trading system shown in Figure 1. A dis-
tributed online stock trading system creates sessions through
which trading is conducted. This system consists of multiple

1“Load sharing” should not be confused with “load balancing,”e.g., pro-
cessing resources can besharedamong processors but not necessarilybal-
anced.

Network

Clients

R
eq

ue
st

s

R
ep

lie
s

Session Factories
(Replicas)

Session Factory
Groups

Figure 1: A Distributed Online Stock Trading System

back-end servers–calledreplicas–that process session creation
requests sent by clients over a network. A replica is an object
that can perform the same tasks as the original object. Server
replicas that perform the same operations can be grouped to-
gether intoback-end server groups, which are also known as
replica groupsor object groups.

For the example in Figure 1, asession factory[6] is repli-
cated in an effort to reduce the load on any given factory. The
load in this case is a combination of (1) the average number of
session creation requests per unit time and (2) the total amount
of resources employed currently to create sessions at a given
location. Loads are then balanced across all replicas in the ses-
sion factory replica group. The replicas need not reside at the
same location.

The sole purpose of session factories is to create stock trad-
ing sessions. Therefore, factories need not retain state,i.e.,
they arestateless. Moreover, in this type of system client re-
quests arrive dynamically–not deterministically–and the dura-
tion of each request many not be knowna priori.

These conditions require that the distributed online stock
trading system be able to redistribute requests to replicas dy-
namically. Otherwise, one or more replicas may potentially
become overloaded, whereas others will be underutilized. In
other words, the system mustadapt to changing load condi-
tions. In theory, applying adaptivity in conjunction with mul-
tiple back-end servers can

� Increase the scalability and dependability of the system;

2

� Reduce the initial investment when the number of clients
is small; and

� Allow the system to scale up gracefully to handle more
clients and processing workload in larger configurations.

In practice, achieving this degree of scalability and depend-
ability requires a sophisticated load balancing service. Ide-
ally, this service should be transparent to existing online stock
trading components. Moreover, if incoming requests arrive
dynamically, a load balancing service may not benefit from
a priori QoS specifications, scheduling, or admission control
and must therefore adapt dynamically to changes in run-time
conditions.

The CORBA load balancing service described in this pa-
per fulfills the needs of applications with high scalability re-
quirements, such as the online stock trading system described
above. In contrast, neither the network-based nor OS-based
load balancing solutions provide as straightforward, portable,
and economical a means of adapting load balancing decisions
based on application-level request characteristics, such as con-
tent and duration.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 outlines the pros and cons of al-
ternative load balancing architectures; Section 3 evaluates the
performance of alternative load balancing strategies empiri-
cally; Section 4 compares our adaptive middleware-based load
balancing service with related work; and Section 5 presents
concluding remarks.

2 Overview of Alternative CORBA
Load Balancing Strategies and Ar-
chitectures

In this section we describe a variety of strategies and architec-
tures for devising CORBA load balancing services.

2.1 Load Balancing Strategies

There are various strategies for designing CORBA load bal-
ancing services. These strategies can be classified along the
following orthogonal dimensions:

Client binding granularity: A load balancerbindsa client
request to a replica each time a load balancing decision is
made. Specifically, a client’s requests are bound to the replica
selected by the load balancer. Client binding mechanisms in-
clude GIOPLOCATION FORWARD messages, modified stan-
dard CORBA services, orad hocproprietary interfaces. Re-
gardless of the mechanism, client binding can be classified ac-
cording to its granularity, as follows:

� Per-session– Client requests will continue to be for-
warded to the same replica for the duration of asession2,
which is usually defined by the lifetime of the client [7].

� Per-request– Each client request will be forwarded to a
potentially different replica,i.e., bound to a replica each
time a request is invoked.

� On-demand– Client requests can be re-bound to another
replica whenever deemed necessary by the load balancer.
This design forces a client to send its requests to a differ-
ent replica than the one it is sending requests to currently.

Balancing policy: When designing a load balancing service
it is important to select an appropriate algorithm that decides
which replica will process each incoming request. For exam-
ple, applications where all requests generate nearly identical
amounts of load can use a simple round-robin algorithm, while
applications where load generated by each request cannot be
predicted in advance may require more advanced algorithms.
In general, load balancing policies can be classified into the
following categories:

� Non-adaptive– A load balancer can use non-adaptive
policies, such as a simple round-robin algorithm or a ran-
domization algorithm, to select which replica will handle
a particular request.

� Adaptive– A load balancer can use adaptive policies
that utilize run-time information, such as the amount of
idle CPU available on each back-end server, to select the
replica that will handle a particular request.

2.2 Load Balancing Architectures

By combining the strategies described above in various ways,
it is possible to create the alternative load balancing architec-
tures described below. In the ensuing discussion, we evaluate
the pros and cons of these strategiesqualitatively. Section 3
then evaluates these different strategiesquantitatively.

Non-adaptive per-session architectures: One way to de-
sign a CORBA load balancer is make to the load balancer
select the target replica when a client/server session is first
established,i.e., when a client obtains an object reference to
a CORBA object–namely the replica–and connects to that ob-
ject, as shown in Figure 2.

Note that the balancing policy in this architecture isnon-
adaptivesince the client interacts with the same server to
which it was directed originally, regardless of that server’s load
conditions. This architecture is suitable for load balancing

2In the context of CORBA, asessiondefines the period of time during
which a client is connected to a given server for the purpose of invoking re-
mote operations on objects in that server.

3

: Client : Server Replica

: Load Balancer

1. s
end_request()

2. L
OCATIO

N_FORWARD()

3. send_request()

Figure 2: A Non-Adaptive Per-Session Architecture

policies that implement round-robin or randomized balancing
algorithms.

Different clients can be directed to different object repli-
cas by either using (1) a middleware activation daemon, such
as a CORBA Implementation Repository [8] or (2) a lookup
service, such as the CORBA Naming or Trading service. For
example, Orbix [9] provides an extension to the CORBA Nam-
ing Service that returns references to object replicas in either
a random or round-robin order.

Load balancing services based on a per-session client bind-
ing architecture can satisfy requirements for application trans-
parency, increased system dependability, minimal overhead,
and CORBA interoperability. The primary benefit of per-
session client binding is that it incurs less run-time overhead
than the alternative architectures described below.

Non-adaptive per-session architectures do not, however, sat-
isfy the requirement to handledynamicclient operation re-
quest patterns adaptively. In particular, forwarding is per-
formed only when the client binds to the object,i.e., when
it invokes its first request. Overall system performance may
suffer, therefore, if multiple clients that impose high loads are
bound to the same server, even if other servers are less loaded.
Unfortunately, non-adaptive per-session architectures have no
provisions to reassign their clients to available servers.

Non-adaptive per-request architectures: A non-adaptive
per-request architecture shares many characteristics with the
non-adaptive per-session architecture. The primary difference
is that a client is bound to a replicaeach timea request is
invoked in the non-adaptive per-request architecture, rather
than just onceduring the initial request binding. This archi-
tecture has the disadvantage of degrading performance due to
increased communication overhead, as shown in Section 3.2.

Non-adaptive on-demand architectures: Non-adaptive
on-demand architectures have the same characteristics as
their per-session counterparts described above. However,
non-adaptive on-demand architectures allow re-shuffling of
client bindings at an arbitrary point in time. Note that run-time
information, such as CPU load, is not used to decide when to
rebind clients. Instead, clients could be re-bound at regular
time intervals, for example.

Adaptive per-session architecture: This architecture is
similar to the non-adaptive per-session approach. The pri-
mary difference is that an adaptive per-session can use run-
time load information to select the replica, thereby alleviat-
ing the need to bind new clients to heavily loaded replicas.
This strategy only represents a slight improvement, however,
since the load generated by clients can change after binding
decisions are made. In this situation, the adaptive on-demand
architecture offers a clear advantage since it can respond to
dynamic changes in client load.

Adaptive per-request architectures: A more adaptive re-
quest architecture for CORBA load balancing is shown in Fig-
ure 3. This design introduces a front-end server, which is a

: Client : Server Replica

: Load Balancer

1. send_request()

2. send_request()

load_advisory()

report_load()

The front-end
server proxy.

Figure 3: An Adaptive Per-request Architecture

proxy [10] that receives all client requests. In this case, the
“front-end server” is the load balancer. The load balancer
selects an appropriate back-end server replica in accordance
with its load balancing policy and forwards the request to that
replica. The front-end server proxy waits for the replica’s re-
ply to arrive and then returns it to the client. Informational
messages–calledload advisories–are sent from the load bal-
ancer to replicas when attempting to balance loads. These ad-
visories cause the replicas to either accept requests or redirect
them back to the load balancer.

The primary benefit of an adaptive request forwarding archi-
tecture is its potential for greater scalability and fairness. For
example, the front-end server proxy can examine the current
load on each replica before selecting the target of each request,
which may allow it to distribute load more equitably. Hence,
this forwarding architecture is suitable for use with adaptive
load balancing policies.

Unfortunately, this architecture can also introduce excessive
latency and network overhead because each request is pro-
cessed by a front-end server. Moreover, two new network mes-
sages are introduced:

1. The request from the front-end server to the replica; and

2. The corresponding reply from the back-end server
(replica) to the front-end server.

4

In addition, to ensure that the system is scalable and depend-
able (e.g., no single point of failure), multiple intermediate
servers may be required. This configuration in turn requires
complex algorithms that propagate the current load informa-
tion to all front-end servers. It also requires a mechanism to
assign clients to the correct front-end server. In a sense, there-
fore, the load balancing problem must be solved both for back-
endand front-end servers, which complicates system design
and implementation.

Adaptive on-demand architecture: This architecture is the
primary focus of the remainder of this paper. As shown in Fig-
ure 4, clients receive an object reference to the load balancer

: Client : Server Replica

: Load Balancer

1. s
end_request()

2. L
OCATIO

N_FORWARD() load_advisory()

report_load()

3. send_request()

Figure 4: An Adaptive On-Demand Architecture

initially. Using CORBA’s standardLOCATION FORWARD

mechanism, the load balancer can redirect the initial client re-
quest to the appropriate target server replica. CORBA clients
will continue to use the new object reference obtained as part
of the LOCATION FORWARD message to communicate with
this replica directly until they are redirected again or finish
their conversation.

Unlike the non-adaptive architectures described earlier,
adaptive load balancers that forward requests on-demand can
monitor replica load continuously. Using this load information
and the policies specified by an application, a load balancer
can determine how equitably the load is distributed. When
load becomes unbalanced, the load balancer can communicate
with one or more replicas and request them to use the standard
CORBA LOCATION FORWARD mechanism to redirect subse-
quent clients back to the load balancer. The load balancer will
then redirect the client to a less loaded replica. Upon receipt
of aLOCATION FORWARDmessage, a standard CORBA client
ORB re-contacts the load balancer, which then redirects the
client transparently to a less heavily loaded replica.

Using this architecture, the overall distributed object com-
puting system can (1) recover from unequitable client/replica
bindings while (2) amortizing the additional network and pro-
cessing overhead over multiple requests. This strategy re-
quires minimal changes to the application initialization code
and no changes to the object implementations (servants) them-
selves.

The primary drawback with adaptive on-demand architec-
tures is that server replicas must be prepared to receive mes-
sages from a load balancer and redirect clients to that load bal-
ancer. Although the required changes do not affect application
logic, application developers must modify a server’s initializa-
tion and activation components to respond to the load advisory
messages mentioned above.

It is possible to overcome some drawbacks of adaptive
on-demand load balancers, however, by applying standard
CORBA portable interceptors [11]. Likewise, implementa-
tions based on the patterns [12] in the CORBA Component
Model (CCM) [13] can implement load balancing without re-
quiring changes to application code. In the CCM, acontainer
is responsible for configuring the portable object adapter
(POA) [5] that manages a component. Thus, TAO’s adap-
tive on-demand load balancer just requires enhancing standard
CCM containers so they support load balancing, without incur-
ring other changes to application code.

3 Performance Results

For load balancing to improve the overall performance of
CORBA-based systems significantly, the load balancing ser-
vice must incur minimal overhead. A key contribution of
TAO’s load balancing service is that it increases overall system
throughput by distributing requests across multiple back-end
servers (replicas) without increasing round-trip latency and jit-
ter significantly.

This section describes the design and results of several ex-
periments we performed to measure the benefits of TAO’s load
balancing strategy empirically, as well as to demonstrate the
limitations with the alternative load balancing strategies out-
lined in Section 2. The first set of experiments in Section 3.2
show the amount of overhead incurred by the request forward-
ing architectures described in this paper. The second set of
experiments in Section 3.3 demonstrate how TAO’s load bal-
ancer can maintain balanced loads dynamicallyandefficiently,
whereas alternative load balancing strategies cannot.

3.1 Hardware/Software Benchmarking Plat-
form

Benchmarks performed for this paper were run using three 733
MHz dual CPU Intel Pentium III workstations, and one 400
MHz quad CPU Intel Pentium II Xeon workstation, all running
Debian GNU/Linux “potato” (GLIBC 2.1), with Linux kernel
version 2.2.16. GNU/Linux is an open-source operating sys-
tem that supports kernel-level multi-tasking, multi-threading,
and symmetric multiprocessing. All workstations are con-
nected through a 100 Mbps ethernet switch. This testbed is
depicted in Figure 5. All benchmarks were run in the POSIX

5

Dual CPU
Replica Host

Dual CPU
Load Balancer

HostQuad CPU
Client Host

Dual CPU
Replica Host

100 MBps
Network Switch

Figure 5: Load Balancing Experiment Testbed

real-time thread scheduling class [14]. This scheduling class
enhances the integrity of our results by ensuring the threads
created during the experiment were not preempted arbitrarily
during their execution.

The core CORBA benchmarking software is based on the
“Latency ” performance test distributed with the TAO open-
source software release.3 Figure 1 illustrates the basic design
of this performance test. All benchmarks use one of the fol-
lowing variations of theLatency test:

1. Classic Latency test: In this benchmark, we use high-
resolution OS timers to measure the throughput, latency, and
jitter of requests made on an instance of a CORBA object that
verifies a given integer is prime. Prime number factorization
provides a suitable workload for our load balancing tests since
each operation runs for a relatively long time. In addition, it
is a stateless service that shields the results from transitional
effects that would otherwise occur when transferring state be-
tween load balanced stateful replicas.

2. Latency test with non-adaptive per-request load balanc-
ing strategy: This variant ofLatency test was designed to
demonstrate the performance and scalability ofoptimal load
balancing using per-request forwarding as the underlying re-
quest forwarding architecture. This variant added a special-
ized “forwarding server” to the test, whose sole purpose was
to forward requests to a target server at the fastest possible
rate. No changes were made to the client.

3. Latency test with TAO’s adaptive on-demand load bal-
ancing strategy: This variant of theLatency test added

3See$TAOROOT/performance-tests/Latency/ in the TAO re-
lease for the source code of this benchmark.

support for TAO’s adaptive on-demand load balancer to the
classicLatency test. TheLatency test client code re-
mained unchanged, thereby preserving client transparency.
This variant quantified the performance and scalability impact
of TAO’s adaptive on-demand load balancer.

3.2 Benchmarking the Overhead of Load Bal-
ancing Mechanisms

These benchmarks measure the degree of end-to-end overhead
incurred by adding load balancing to CORBA applications.

Overhead measurement technique: The overhead experi-
ments presented in this paper compute the throughput, latency,
and jitter incurred to communicate between a single-threaded
client and a single-threaded server (i.e., one replica) using the
following four request forwarding architectures:

1. No load balancing: To establish a performance base-
line without load balancing, theLatency performance test
was first run between a single-threaded client and a single-
threaded server (one replica) residing on separate worksta-
tions. These results reflect the baseline performance of a TAO
client/server application.

2. A non-adaptive per-session client binding architec-
ture: We then configured TAO’s load balancer to use the
non-adaptive per-session load balancing strategy when balanc-
ing loads on aLatency test server. We did this by simply
adding the registration code to theLatency test server imple-
mentation, which causes the replica to register itself with the
load balancer so that it can be load balanced. No changes to
the coreLatency test implementation were made. Since the
replica sends no feedback to the load balancer, this benchmark
establishes a baseline for the best performance achievable by
a load balancer that utilizes a per-session client binding gran-
ularity.

3. A non-adaptive per-request client binding architec-
ture: Next, we added a specialized non-adaptive per-request
“forwarding server” to the originalLatency test. This server
just forwards client requests to an unmodified backend server.
The forwarding server resided on a different machine than ei-
ther the client or backend server, which themselves each ran
on separate workstations. Since the forwarding server is es-
sentially a lightweight load balancer, this benchmark provides
a baseline for the best performance achievable by a load bal-
ancer using a per-request client binding granularity.

4. An adaptive on-demand client binding architecture:
Finally, TAO’s adaptive on-demand client binding granular-
ity was included in the experiment, which reacts to the cur-
rent load on theLatency test server. TAO’s load balancer,
the client, and the server each ran on separate workstations,
i.e., three workstations were involved in this benchmark. No

6

changes were made to the client portion of theLatency test,
nor were any substantial changes made to the core servant im-
plementation.

Overhead benchmark results: The results illustrated in
Figure 6 quantify the latency imposed by adding load

Latency Comparison

0

100

200

300

400

500

600

700

Classic Latency
Performance Test

Latency Test w/Per-
Session Load

Balancer

Latency Test w/Per-
Request Load

Balancer

Latency Test w/TAO
On-Demand Load

Balancer

La
te

nc
y

(u
se

cs
)

Latency - Jitter

Average Latency

Latency + Jitter

Figure 6: Load Balancing Latency Overhead

balancing–specifically request forwarding–to theLatency
performance test. All overhead benchmarks were run with
200,000 iterations. As shown in this figure, a non-adaptive
per-session approach imposes essentially no latency overhead
to the classicLatency test. In contrast, the non-adaptive
per-request approach more than doubles the average latency.
TAO’s adaptive on-demand approach adds little latency. The
slight increase in latency incurred by TAO’s approach is
caused by

� The additional processing resources the load monitor
needs to perform load monitoring; and

� The resources used when sending periodic load reports to
the load balancer,i.e., “push-based” load monitoring.

These results clearly show that it is possible to minimize la-
tency overhead, yet still provide adaptive load balancing. As
shown in Figure 6, the jitter did not change appreciably be-
tween each of the test cases, which illustrates that load bal-
ancing hardly affects the time required for client requests to
complete.

Figure 7 shows how the average throughput differs between
each load balancing strategy. Again, only one client and one
server were used for this experiment. Not surprisingly, the
throughput remained basically unchanged for the non-adaptive
per-session approach since only one out of 200,000 requests
was forwarded. The remaining requests were all sent to di-
rectly to the server,i.e., all requests were running at their max-
imum speed.

Throughput Comparison

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Classic
Latency

Performance
Test

Latency Test
w/Per-Session
Load Balancer

Latency Test
w/Per-Request
Load Balancer

Latency Test
w/TAO On-

Demand Load
Balancer

T
hr

ou
gh

pu
t (

ev
en

ts
 p

er
 s

ec
on

d)

Figure 7: Load Balancing Throughput Overhead

Figure 7 illustrates that throughput decreases dramatically
in the per-request strategy due to the fact that it (1) forwards re-
quests on behalf of the client and (2) forwards replies received
from the replica to the client, thereby doubling the commu-
nication required to complete a request. This architecture is
clearly not suitable for throughput-sensitive applications.

In contrast, the throughput in TAO’s load balancing ap-
proach only decreased slightly with respect to the case where
no load balancing was performed. The slight decrease in
throughput can be attributed to the same factors that caused
the slight in increase in latency described above,i.e., (1) addi-
tional resources used by the load monitor and (2) the commu-
nication between the load balancer and the load monitor.

3.3 Load Balancing Strategy Effectiveness

The following set of benchmarks quantify how effective each
load balancing strategy is at maintaining balanced load across
a given set of replicas. First, the effectiveness of the non-
adaptive per-session load balancing strategy is shown. Next,
the effectiveness of the adaptive on-demand strategy employed
by TAO is illustrated. In all cases, we used theLatency test
from the overhead benchmarks in Section 3.2 for the experi-
ments.

Effectiveness measurement technique:The goal of this
benchmark was to overload certain replicas in a group and then
measure how different load balancing strategies handled the
imbalanced loads. We hypothesized that loads across repli-
cas should remain imbalanced when using non-adaptive per-
session load balancing strategies. Conversely, when using
adaptive load balancing strategies, such as TAO’s adaptive
load balancing strategy, loads across replicas should be bal-
anced shortly after imbalances are detected.

To create this situation, fourLatency test server replicas–
each with a dedicated CPU–were registered with TAO’s

7

load balancer during each effectiveness experiment. Eight
Latency test clients were then launched. Half the clients
issued requests at a higher rate than the other half. For ex-
ample, the first client issued requests at a rate of ten requests
per-second, the second client issued requests at a rate of five
requests per-second, the third at ten requests per-second, etc.
The actual load was not important for this set of experiments.
Instead, it was therelativeload on each replica that was impor-
tant,i.e., a well balanced set of replicas should have relatively
similar loads, regardless of the actual values of the load.

Effectiveness benchmark results: The results of the effec-
tiveness tests are described below.

� Non-adaptive per-session load balancing effectiveness:
For this experiment, TAO’s load balancer was configured to
use itsround-robinload balancing strategy. This strategy does
not perform any analysis on reported loads, but simply for-
wards client requests to a given replica. The client then con-
tinues to issue requests to the same replica over the lifetime of
that replica. The load balancer thus applies thenon-adaptive
per-sessionstrategy,i.e., it is only involved during the initial
client request.

Figure 8 illustrates the loads incurred on each of the
Latency server replicas using non-adaptive per-session load

Loads Under Non-Adaptive Per-Session
Strategy

0

5

10

15

20

25

1 40 79 11
8

15
7

19
6

23
5

27
4

31
3

35
2

39
1

43
0

Elapsed Time (seconds)

Lo
ad

 (
re

qu
es

ts
/s

ec
on

d)

Replica 1
Replica 2
Replica 3
Replica 4

Figure 8: Effectiveness of Non-Adaptive Per-Session Load
Balancing

balancing. The results quantify the degree to which loads
across replicas become unbalanced by using this strategy.
Since there is no feedback loop between the replicas and the
load balancer, it is not possible to shift load from highly loaded
replicas to less heavily loaded replicas.

Note that two of the replicas (3 and 4) had the same load.
The line representing the load on replica 3 is obscured by

the line representing the load on replica 4. In addition, note
that the same number of iterations were issued by each client.
Since some clients issued requests at a faster rate (10 Hz),
however, those clients completed their execution before the
clients with the lower request rates (5 Hz). This difference
in request rate accounts for the sudden drop in load half way
before the slower (i.e., low load) clients completed their exe-
cution.

� TAO’s adaptive load balancing strategy effectiveness:
This test demonstrated the benefits of an adaptive load balanc-
ing strategy. Therefore, we increased the load imposed by each
client and increased the number of iterations from 200,000 to
750,000. Four clients running at 100 Hz and another four run-
ning at 50 Hz were started and ended simultaneously.

Client request rates were increased to exaggerate load im-
balance and to make the load balancing more obvious as it
progresses. It was necessary to increase the number of iter-
ations in this experiment because of the higher client request
rates. If the number of iterations were capped at the 200,000
used in the overhead experiments in Section 3.2 this experi-
ment could have ended before loads across the replicas were
balanced.

As Figure 9 illustrates, the loads across all four replicas fluc-

Loads Under Adaptive On-Demand Strategy

0
20

40
60
80

100

120
140
160

180
200

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

65
1

70
1

75
1

Elapsed Time (seconds)

Lo
ad

 (
re

qu
es

ts
/s

ec
on

d)

Replica 1

Replica 2

Replica 3

Replica 4

Figure 9: Effectiveness of Adaptive On-Demand Load Balanc-
ing

tuated for a short period of time until an equilibrium load of
150 Hz was reached.4 The initial load fluctuations result from
the load balancer periodically rebinding clients to less loaded
replicas. By the time a given rebind completed, the replica
load had become imbalanced, at which point the client was re-
bound to another replica. These initial fluctuations are typical
of the adaptive load balancing hazards.

4The 150 Hz equilibrium load corresponds to one 100 Hz client and one
50 Hz client on each of the four replicas.

8

The load balancer required several iterations to balance the
loads across the replicas,i.e., to stabilize. Had it not been for
the dampening built into TAO’s adaptive on-demand load bal-
ancing strategy, it is likely that replica loads would have oscil-
lated for the duration of the experiment. Dampening prevents
the load balancer from basing its decisions on instantaneous
replica loads, and to use average loads instead.

It is instructive to compare the results in Figure 9 to the
non-adaptive per-session load balancing architecture results in
Figure 8. Loads in the non-adaptive approach remained imbal-
anced. Using the adaptive on-demand approach, the overhead
is minimizedandloads remain balanced.

After it was obvious that the loads were balanced,i.e., equi-
librium was reached, the experiment was terminated. This ac-
counts for the uniform drops in load depicted in Figure 9. Con-
trast this to the non-uniform drops in load that occured in the
overhead experiments in Section 3.2, where clients were al-
lowed to complete all iterations. In both cases, the number of
iterations is less important than the fact that the iterations were
executed to (1) illustrate the effects of load balancing and (2)
ensure that the overall results were not subject to transient ef-
fects, such as periodic execution of operating system tasks.

The actual time required to reach the equilibrium load de-
pends greatly on the load balancing strategy. The example
above was based on aminimum dispersionstrategy, which en-
sures that load differences fall within a certain tolerance,i.e., it
attempts to ensure that the average difference in load between
each replica is minimized. A more sophisticated adaptive load
balancing strategy could have been employed to improve the
time to reach equilibrium. Regardless of the complexity of
the adaptive load balancing strategy, these results show that
adaptive load balancing strategies can maintain balanced loads
across a given set of replicas.

4 Related Work

This section outlines related research on load balancing and
describes how it compares and contrasts to our work on TAO’s
load balancing service. We first compare our middleware-
based load balancing strategies with work at other levels of
abstractions. Next, we describe how our work compares with
other research on CORBA-based load balancing.

4.1 Related Research on Load Balancing

As discussed in Section 1, load balancing mechanisms have
been implemented at various levels, such as in the network,
OS, and middleware. Some implementations, such as the Con-
dor [15] and Beowulf [16] clustering systems combine as-
pects from multiple levels. This paper focuses primarily on

middleware-based load balancing, but many concepts and pat-
terns used in middleware-based load balancing also apply to
network-based and OS-based load balancing, as described be-
low.

Network-based load balancing: Network-based load bal-
ancing implementations often make decisions based on the fre-
quency with which a given location is accessed. The decision
of where to service a request can be made at various stages
along the path to its destination. For example, a router or DNS
server could decide where to send a request.

Network-based load balancing has the disadvantage that
load balancing decisions are based solely on the request tar-
get, which hampers flexibility greatly. However, recent devel-
opments in network-based load balancing do take advantage
of request content. These hybrid implementations [1] provide
finer-grained load analysis, which can improve load balancing
decisions. Nevertheless, the choice of metric used in load bal-
ancing decisions is still restricted to the frequency with which
a given target is accessed.

Unfortunately, frequency alone is not always an adequate
load metric since some requests may incur large loads on
the target host,e.g., when Web servers process CGI requests.
When combined with load balancing decisions based solely on
target access frequency, the increased loads from such requests
can degrade overall system performance. It is possible to an-
alyze the content of each request to determine if it is a “high
load” request, but this requiresa priori knowledge of the re-
quests behavior, which may not be feasible in many distributed
computing systems.

OS-based load balancing: Some distributed operating sys-
tems, such as Chorus [17], can distribute processes transpar-
ently across remote OS endsystem nodes. Tools, such as GNU
Queue [18], run a service that allows a user to run remote pro-
cesses as if they were run on the local machine,i.e., essen-
tially transparently. Load balancing performed at this level
has the advantage that it can be implemented transparently to
applications. When loads are too high at their current loca-
tion, running applications can be migrated to other nodes rel-
atively transparently. As with the network-based architecture,
however, load balancing at this level makes it hard to choose
which metric to use when deciding where to move processes
since application-level metrics and policies are not available at
this level.

Middleware-based load balancing: Middleware-based
load balancing implementations reside between the applica-
tion and the OS/network. Middleware shields the application
from tedious and error-prone low-level OS complexities, while
also providing a powerful interface to make load balancing
at this level as transparent as possible, if not completely
transparent. Moreover, middleware can be implemented

9

with sufficient flexibility to overcome the disadvantages in
network-based and OS-based load balancing architectures.

CORBA is a prime example of a technology that provides
the following capabilities needed to implement an effective
load balancing service:

� Application developers can customize how their system
is load balanced without being restricted by the limited–
and often hard-coded–metrics available in network-based
and OS-based load balancing.

� Applications can select at run-time the metric(s) used in
load balancing decisions.

� New metrics can also be defined with relative ease by
separating interface from implementation,i.e., exposing
a consistent interface for each implementation. For ex-
ample, a load monitoring component can be implemented
for a specific load metric, yet keep the load balancing ser-
vice load metric neutral.

Moreover, a middleware-based load balancing service can
be used in conjunction with network- and OS-based load bal-
ancing facilities, which supports some interesting load balanc-
ing combinations. For example, if an application just needs to
balance load based on request frequency a middleware-based
load balancer can delegate load balancing tasks to the net-
work or OS layers. Conversely, the middleware-based load
balancer itself could be load balanced at the network or OS
level, thereby providing additional network/host resources for
use by the middleware-based load balancer and other applica-
tions.

Other examples of middleware-based load balancing in-
clude some Web server implementations. Web servers can
forward HTTP requests [19] to any one of a number hosts that
replicate the target web page. Overall throughput can be in-
creased using any of the load balancing approaches detailed in
this paper. The key is that the web server performs the HTTP
request load balancing.

The CORBA-based load balancing concepts detailed in this
paper are generally applicable to other middleware imple-
mentations, such as COM+ [20]. In fact, a middleware-
based load balancing service calledComponent Load Balanc-
ing (CLB) [21] is available from Microsoft for COM+ appli-
cations.

4.2 Related Work on CORBA-based Load Bal-
ancing

CORBA load balancing can be implemented at several levels
in the OMG reference architecture, such as the following:

ORB-level: Load balancing can be implemented inside the
ORB itself. For example, a load balancing implementation can

take direct advantage of request invocation information avail-
able within the POA when it makes load balancing decisions.
Moreover, middleware resources used by each object can also
be monitored directly via this design, as described in [22]. For
example, Inprise’s VisiBroker implements a similar strategy,
where Visibroker’s object adapter [23] creates object refer-
ences that point to Visibroker’s Implementation Repository,
called the OSAgent, that plays both the role of an activation
daemon and a load balancer.

ORB-level techniques have the advantage that the amount
of indirection involved when balancing loads can be reduced
because load balancing mechanisms are closely coupled with
the ORBe.g., the length of communication paths is shortened.
However, ORB-level load balancing has the disadvantage that
it requires modifications to the ORB itself. Unless or un-
til such modifications are adopted by the OMG, they will be
proprietary, which reduces their portability and interoperabil-
ity. Therefore, TAO’s load balancing service does not rely on
ORB-level extensions or non-standard features.

TAO’s load balancing service does not require any modifi-
cations to the ORB core or object adapter. Instead, it takes
advantage of standard mechanisms in CORBA 2.X to imple-
ment adaptive load balancing. Like the Visibroker implemen-
tation and the strategies described in [22], TAO’s approach
is transparent to clients. Unlike the ORB-based approaches,
however, our implementation only uses standard CORBA fea-
tures. Thus, it can be ported to any C++ CORBA ORB that
implements the CORBA 2.2 or newer specification.

Service-level: Load balancing can also be implemented as a
CORBA service. For example, the research reported in [24]
extends the CORBA Event Service to support both load bal-
ancing and fault tolerance. Their system builds a hierarchy of
event channelsthat fan out from event sourcesuppliersto the
event sinkconsumers. Each event consumer is assigned to a
different leaf in the event channel hierarchy, and both fixed and
adaptive load balancing is performed to distribute consumers
evenly. In contrast, TAO’s load balancing service can be used
for application defined objects, as well as event services.

Various commercial CORBA implementations also provide
service-level load balancing. For example, IONA’s Orbix [25]
can perform load balancing using the CORBA Naming Ser-
vice. Different replicas are returned to different clients when
they resolve an object. This design represents a typical non-
adaptive per-session load balancer, which suffers from the dis-
advantages described in Section 2. BEA’s WebLogic [26] uses
a per-request load balancing strategy, also described in Sec-
tion 2. In contrast, TAO’s load balancing service does not in-
cur the per-request network overhead of the BEA strategy, yet
can still adapt to dynamic changes in the load, unlike Orbix’s
load balancing service.

10

5 Concluding Remarks

As network-centric computing becomes more pervasive and
applications become more distributed, the demand for greater
scalability and dependability is increasing. Distributed system
scalability can degrade significantly, however, when servers
become overloaded by the volume of client requests. To al-
leviate such bottlenecks, load balancing mechanisms can be
used to distribute system load across object replicas residing
on multiple servers.

Load can be balanced at several levels, including the net-
work, OS, and middleware. Network-based and OS-based
load balancing architectures suffer from several limitations:

� The lack of flexibility arises from the inability to sup-
port application-definedmetrics at run-time when mak-
ing load balancing decisions.

� The lack of adaptability occurs due to the absence of
load-related feedback from a given set of replicas, as well
as the inability to control if and when a given replica
should accept additional requests.

Thus, middleware-based load balancing architectures–
particularly those based on standard CORBA–have been
devised to overcome the limitations with network-based and
OS-based load balancing mechanisms outlined above.

This paper illustrates the performance of adaptive
middleware-based load balancing mechanisms developed
using the standard CORBA features provided by the TAO
ORB [27]. Though CORBA provides solutions for many
distributed system challenges, such as predictability, secu-
rity, transactions, and fault tolerance, it still lacks standard
solutions to tackle other important challenges faced by
distributed systems architects and developers. Chief among
those missing facilities are load balancing, state caching, and
state replication.

The CORBA-based load balancing service provided by
TAO fills part of this gap by allowing distributed applications
to be load balanced adaptively and efficiently. This service
increases overall system throughput by distributing requests
across multiple back-end server replicas without increasing
round-trip latency substantially or assuming predictable, or
homogeneous loads. As a result, developers can concentrate
on their core application behavior, rather than wrestling with
complex infrastructure mechanisms needed to make their ap-
plication distributed, scalable, and dependable.

TAO and TAO’s load balancing service have been applied
to a wide range of distributed applications, including many
telecommunication systems, aerospace/military systems,
online trading systems, medical systems, and manufacturing
process control systems. All the source code, examples,
and documentation for TAO, its load balancing service,

and its other CORBA services is freely available from URL
http://www.cs.wustl.edu/ �schmidt/TAO.html .
A paper describing the design of TAO’s load balancing service
appears in [28].

References
[1] E. Johnson and ArrowPoint Communications, “A Comparative

Analysis of Web Switching Architectures.”
http://www.arrowpoint.com/solutions/whitepapers/wsarchv6.html,
1998.

[2] G. Coulouris, J. Dollimore, and T. Kindberg,Distributed Systems:
Concepts and Design. Harlow, England: Pearson Education Limited,
2001.

[3] F. Douglis and J. Ousterhout, “Process Migration in the Sprite
Operating System,” inProceedings of the7th International Conference
on Distributed Computing Systems, (Berlin, West Germany),
pp. 18–25, IEEE, Sept. 1987.

[4] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 2.4 ed., Oct. 2000.

[5] M. Henning and S. Vinoski,Advanced CORBA Programming With
C++ . Addison-Wesley Longman, 1999.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[7] N. Pryce, “Abstract Session,” inPattern Languages of Program Design
(B. Foote, N. Harrison, and H. Rohnert, eds.), Reading, MA:
Addison-Wesley, 1999.

[8] M. Henning, “Binding, Migration, and Scalability in CORBA,”
Communications of the ACM special issue on CORBA, vol. 41, Oct.
1998.

[9] S. Baker,CORBA Distributed Objects using Orbix. Addison Wesley
Longman, 1997.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - A System of Patterns. Wiley
and Sons, 1996.

[11] Adiron, LLC, et al., Portable Interceptor Working Draft – Joint Revised
Submission. Object Management Group, OMG Document
orbos/99-10-01 ed., October 1999.

[12] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrency and
Distributed Objects, Volume 2. New York, NY: Wiley & Sons, 2000.

[13] BEA Systems,et al., CORBA Component Model Joint Revised
Submission. Object Management Group, OMG Document
orbos/99-07-01 ed., July 1999.

[14] Khanna, S.,et al., “Realtime Scheduling in SunOS 5.0,” inProceedings
of the USENIX Winter Conference, pp. 375–390, USENIX Association,
1992.

[15] J. Basney and M. Livny, “Deploying a High Throughput Computing
Cluster,”High Performance Cluster Computing, vol. 1, May 1999.

[16] D. Ridge, D. Becker, P. Merkey, and T. Sterling, “Beowulf: Harnessing
the Power of Parallelism in a Pile-of-PCs,” inProceedings, IEEE
Aerospace, IEEE, 1997.

[17] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P. Leonard, and
W. Neuhauser, “Overview of the CHORUS Distributed Operating
Systems,” Tech. Rep. CS-TR-90-25, Chorus Systems, 1990.

11

[18] W. G. Krebs, “Queue Load Balancing / Distributed Batch Processecing
and Local RSH Replacement System.”
http://www.gnuqueue.org/home.html, 1998.

[19] Sun-Netscape Alliance, “Technical Overview of Netscape Application
Server 4.0.”
http://www.iplanet.com/products/whitepaper/whitepaper3.html, 2000.

[20] D. Box, Essential COM. Addison-Wesley, Reading, MA, 1997.

[21] T. Ewald, “Use Application Center or COM and MTS for Load
Balancing Your Component Servers.”
http://www.microsoft.com/msj/0100/loadbal/loadbal.asp, 2000.

[22] M. Lindermeier, “Load Management for Distributed Object-Oriented
Environments,” inProceedings of the 2nd International Symposium on
Distributed Objects and Applications (DOA 2000), (Antwerp,
Belgium), OMG, Sept. 2000.

[23] I. Inprise Corporation, “VisiBroker for Java 4.0: Programmer’s Guide:
Using the POA.”
http://www.inprise.com/techpubs/books/vbj/vbj40/programmers-
guide/poa.html,
1999.

[24] K. S. Ho and H. V. Leong, “An Extended CORBA Event Service with
Support for Load Balancing and Fault-Tolerance,” inProceedings of
the International Symposium on Distributed Objects and Applications
(DOA’99), (Antwerp, Belgium), OMG, Sept. 2000.

[25] IONA Technologies, “Orbix 2000.”
www.iona-iportal.com/suite/orbix2000.htm.

[26] BEA Systems Inc., “WebLogic Administration Guide.”
http://edoc.bea.com/wle/.

[27] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[28] O. Othman, C. O’Ryan, and D. C. Schmidt, “The Design of an
Adaptive CORBA Load Balancing Service,”IEEE Distributed Systems
Online, vol. 2, Apr. 2001.

12

