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Abstract

CORBA is increasingly popular as distributed object com-
puting middleware for systems with stringent quality of ser-
vice (QoS) requirements, including scalability and depend-
ability. One way to improve the scalability and dependability
of CORBA-based applications is to balance system process-
ing load among multiple server hosts. Load balancing can
help improve system scalability by ensuring that client appli-
cation requests are distributed and processed equitably across
a group of servers. Likewise, it can help improve system de-
pendability by adapting dynamically to system configuration
changes that arise from hardware or software failures.

This paper presents four contributions to research on
CORBA-based load balancing. First, we describe deficien-
cies with common load-balancing techniques, such as intro-
ducing unnecessary overhead or not adapting dynamically to
changing load conditions. Second, we present a novel adap-
tive load balancing service that can be implemented efficiently
using standard CORBA features. Third, we describe the key
design challenges we faced when adding this load balancing
service to our CORBA ORB (TAO) and outline how we re-
solved the challenges by applying patterns. Finally, we present
the results of benchmark experiments that evaluate the pros
and cons of different load balancing strategies empirically by
measuring the overhead of each strategy and showing how
well each strategy balances system load.
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1 Introduction

Motivation: The growth of online Internet services during
the past decade has increased the demand for scalable and
dependable distributed computing systems. For example, e-
commerce systems and online stock trading systems concur-
rently service many clients that transmit a large, often bursty,
number of requests. To protect initial hardware investments
and avoid overcommitting resources these systems scale incre-
mentally by connecting servers via high-speed networks and
either purchasing new servers as the number of clients increase
or leasing server cycles during peak hours.

An increasingly popular and cost effective technique to im-
prove networked server performance isload balancing, where
hardware and/or software mechanisms determine which server
will execute each client request. Load balancing mechanisms
distribute client workload equitably among back-end servers
to improve overall system responsiveness. These mechanisms
can be provided in any or all of the following layers in a dis-
tributed system:

� Network-based load balancing: This type of load bal-
ancing is provided by IP routers and domain name servers
(DNS) that service a pool of host machines. For example,
when a client resolves a hostname, the DNS can assign a dif-
ferent IP address to each request dynamically based on current
load conditions. The client then contacts the designated back-
end server, unaware that a different server could be selected
for its next DNS resolution. Routers can also be used to bind
a TCP flow to any back-end server based on the current load
conditions and then use that binding for the duration of the
flow.

High volume Web sites often use network-based load bal-
ancing at thenetworklayer (layer 3) andtransportlayer (layer
4). Layer 3 and 4 load balancing (referred to as “switch-
ing” in the trade literature [1]), use the IP address/hostname
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and port, respectively, to determine where to forward pack-
ets. Load balancing at these layers is somewhat limited, how-
ever, by the fact that they do not take into account the content
of client requests. Instead, higher-layer mechanisms–such as
the so-called layer 5 switching described below–perform load
balancing in accordance with the content of requests, such as
pathname information within a URL.

� OS-based load balancing: This type of load balancing
is provided by distributed operating systems viaclustering,
load sharing1, andprocess migration[2] mechanisms. Clus-
tering is a cost effective way to achieve high-availability and
high-performance by combining many commodity computers
to improve overall system processing power. Processes can
then be distributed transparently among computers in the clus-
ter.

Clusters generally employ load sharing and process mi-
gration. Balancing load across processors–or more generally
across network nodes–can be achieved viaprocess migration
mechanisms [3], where the state of a process is transferred be-
tween nodes. Transferring process state requires significant
platform infrastructure support to handle platform differences
between nodes. It may also limit applicability to programming
languages based on virtual machines, such as Java.

� Middleware-based load balancing: This type of load
balancing is performed in middleware, often on a per-session
or per-request basis. For example, layer 5 switching [1] has
become a popular technique to determine which Web server
should receive a client request for a particular URL. This strat-
egy also allows the detection of “hot spots,”i.e., frequently ac-
cessed URLs, so that additional resources can be allocated to
handle the large number of requests for such URLs.

This paper focuses on another type of middleware-based
load balancing supported byobject request brokers(ORBs),
such as CORBA [4]. ORB middleware allows clients to invoke
operations on distributed objects without concern for object
location, programming language, OS platform, communica-
tion protocols and interconnects, and hardware [5]. Moreover,
ORBs can determine which client requests to route to which
object replicas on which servers.

Middleware-based load balancing can be used in conjunc-
tion with the specialized network-based and OS-based load
balancing mechanisms outlined above. It can also be ap-
plied on top of commodity-off-the-shelf (COTS) networks
and operating systems, which helps reduce cost. In addition,
middleware-based load balancing can provide semantically-
rich customization hooks to perform load balancing based on
a wide range of application-specific load balancing conditions,
such as run-time I/O vs. CPU overhead conditions.

1“Load sharing” should not be confused with “load balancing,”e.g., pro-
cessing resources can besharedamong processors but not necessarilybal-
anced.

Our previous research on middleware has examined many
dimensions of ORB endsystem design, including static [6]
and dynamic [7] scheduling, event processing [8], I/O sub-
system [9] and pluggable protocol [10] integration, syn-
chronous [11] and asynchronous [12] ORB Core architectures,
ORB fault tolerance [13], systematic benchmarking of multi-
ple ORBs [14], patterns for ORB extensibility [15] and ORB
performance [16]. This paper focuses on another dimension
in the CORBA research domain:the design and performance
of middleware-based load balancing mechanisms developed
using standard CORBA.Our approach is based on standard
CORBA features available in any ORB compliant with the
CORBA 2.3 [4] (or later) specification. This approach can
also be generalized to other distributed object computing mid-
dleware, such as COM+ and Java RMI, that offer similar fea-
tures.

CORBA load balancing example: To illustrate the benefits
of middleware-based load balancing, consider the CORBA-
based online stock trading system shown in Figure 1. A dis-
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Figure 1: A Distributed Online Stock Trading System

tributed online stock trading system creates sessions through
which trading is conducted. This system consists of multiple
back-end servers–calledreplicas–that process session creation
requests sent by clients over a network. A replica is an object
that can perform the same tasks as the original object. Server
replicas that perform the same operations can be grouped to-
gether intoback-end server groups, which are also known as
replica groupsor object groups.
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For the example in Figure 1, asession factory[17] is repli-
cated in an effort to reduce the load on any given factory. The
load in this case is a combination of (1) the average number of
session creation requests per unit time and (2) the total amount
of resources employed currently to create sessions at a given
location. Loads are then balanced across all replicas in the ses-
sion factory replica group. The replicas need not reside at the
same location.

The sole purpose of session factories is to create stock trad-
ing sessions. Therefore, factories need not retain state,i.e.,
they arestateless. Moreover, in this type of system client re-
quests arrive dynamically–not deterministically–and the dura-
tion of each request many not be knowna priori.

These conditions require that the distributed online stock
trading system be able to redistribute requests to replicas dy-
namically. Otherwise, one or more replicas may potentially
become overloaded, whereas others will be underutilized. In
other words, the system mustadapt to changing load condi-
tions. In theory, applying adaptivity in conjunction with mul-
tiple back-end servers can

� Increase the scalability and dependability of the system;

� Reduce the initial investment when the number of clients
is small; and

� Allow the system to scale up gracefully to handle more
clients and processing workload in larger configurations.

In practice, achieving this degree of scalability and depend-
ability requires a sophisticated load balancing service. Ide-
ally, this service should be transparent to existing online stock
trading components. Moreover, if incoming requests arrive
dynamically, a load balancing service may not benefit from
a priori QoS specifications, scheduling, or admission control
and must therefore adapt dynamically to changes in run-time
conditions.

CORBA’s rich set of features provides the means to realize
an adaptive load balancing service. CORBA is an effective
choice for distributed systems due to the inherent distribution
and common heterogeneity of clients and servers written in
different programming languages running on different hard-
ware and software platforms. In this context, CORBA can sim-
plify system implementation because it offers a language- and
platform-neutral communication infrastructure. Moreover, it
reduces development effort by offering higher level program-
ming abstractions that shield application developers from dis-
tribution complexities, thereby allowing them to concentrate
their efforts on stock trading business logic.

In theory, having multiple back-end servers can (1) increase
the scalability and dependability of the system, (2) reduce the
initial investment when the number of clients is small, and
(3) allow the system to scale up gracefully to handle more
clients and processing workload in larger configurations. In

practice, achieving this degree of scalability and dependability
requires a sophisticated load balancing service. Ideally, inte-
grating support for such a service should be transparent to ex-
isting online stock trading components. Moreover, if incoming
requests arrive dynamically, a load balancing service may not
benefit froma priori QoS specifications, scheduling, or admis-
sion control and must thereforeadaptdynamically to changes
in run-time conditions.

The CORBA load balancing service described in this pa-
per fulfills the needs of applications with high scalability re-
quirements, such as the online stock trading system described
above. In contrast, neither the network-based nor OS-based
load balancing solutions provide as straightforward, portable,
and economical a means of adapting load balancing decisions
based on application-level request characteristics, such as con-
tent and duration.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 summarizes the requirements of
CORBA-based load balancing services and outlines the pros
and cons of alternative solution architectures; Section 3 de-
scribes the design of our load balancing service, which is
based on standard CORBA features and implemented us-
ing the TAO open-source2 CORBA-compliant ORB; Sec-
tion 4 evaluates the performance of alternative load balanc-
ing strategies empirically; Section 5 compares our adaptive
middleware-based load balancing service with related work
and outlines our future plans for enhancing TAO’s load balanc-
ing service; and Section 6 presents lessons learned and con-
cluding remarks. For completeness, Appendix A presents an
overview of the standard CORBA reference architecture [4].

2 Requirements and Alternative Solu-
tion Architectures

This section first describes the types of requirements that a
CORBA-compliant load balancing service should be designed
to address. Next, it presents an overview of several alternative
load balancing architectures suitable for CORBA-based appli-
cations.

2.1 Requirements for a CORBA Load Balanc-
ing Service

The OMG CORBA specification provides the core capabili-
ties needed to support load balancing. In particular, a CORBA
load balancing service can take full advantage of therequest

2The source code and documentation for TAO can be downloaded from
www.cs.wustl.edu/ �schmidt/TAO.html .
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forwarding mechanism3 mandated by the CORBA specifica-
tion [4]. A CORBA server application can use this mecha-
nism to forward client requests to other serverstransparently,
portably, andinteroperably.

The CORBA specification, however, does notstandardize
load balancing interfaces. Nor does it specify load balanc-
ing mechanisms, which are left as implementation decisions
for ORB providers. Below, therefore, we describe the key re-
quirements that CORBA load balancing services should be de-
signed to address.

Support an object-oriented load balancing model: In the
CORBA programming model objects are the unit of abstrac-
tion and system architects reason about objects in order to
manage their available resources. Thus, the granularity of
load balancing in CORBA should be based on objects, rather
than,e.g., processes or TCP/IP addresses. Moreover, a load
balancing service and ORB should coordinate the interactions
amongstmultipleobject replicas. Sets of multiple object repli-
cas are calledobject groupsor replica groups.

Client application transparency: Distributing work load
amongst multiple servers should require little or no modifi-
cations to the way in which CORBA applications are devel-
oped normally. In particular, a CORBA load balancing ser-
vice should be as transparent as possible to clients and servers.
Likewise, a general principle in CORBA is that client imple-
mentations should be as simple as possible. A CORBA load
balancing service that follows this principle should therefore
require no changes to clients whose requests it balances.

Server application transparency: Although load balancing
should ideally require few modifications to servers, this goal
is hard to achieve in practice. For example, load balancing
a stateful CORBA object requires the transfer of its state to
a new replica. The application implementation must either
perform the transfer itself or define hooks that allow the load
balancing framework to perform the state transfer as unobtru-
sively as possible [18].

The situation for stateless CORBA servers is different. In
this case, the implementation of an server object’sservant4

should require no changes to support load balancing. Yet
changes to the serverapplicationmay still be required under
certain conditions. For example, some applications may define
ad hocload metrics, such as number of active transactions or
user sessions. In practice, collecting these metrics may require
some modifications to server application code.

Dynamic client operation request patterns: Load balanc-
ing services can be based on various client request patterns.

3The standard CORBALOCATION FORWARD GIOP message used to fa-
cilitate this request forwarding mechanism is discussed in Section 3.3.1.

4The servant is a programming language entity that implements object
functionality in a server application.

For example, load balancers for certain types of systems as-
sume client requests occur at deterministic or stochastic rates
that execute for known or fixed durations of time. While these
assumptions may apply for certain types of applications, such
as continuous multimedia streaming [19], they do not apply in
complex Internet or military [20] environments where client
operation request patterns are dynamic and the duration of
each request may not be known in advance. In this paper,
therefore, we focus on load balancing techniques that do not
requirea priori scheduling information.

Maximize scalability and equalize dynamic load distribu-
tion: Although it is common practice to design lightweight
load distribution capabilities,e.g., based on extensions to nam-
ing services [21], these approaches do not balance dynamic
loads equitably, which limits their scalability. Thus, a CORBA
load balancing service must increase system scalability by
maximizing dynamic resource utilization in a group of servers
whose resources would not otherwise be used as efficiently.
By improving resource utilization via load balancing, the over-
all scalability of the server group should be enhanced signifi-
cantly.

Increase system dependability: Load balancing services
can also handle certain types of server failures. By using
administrative interfaces or automated policies, for example,
clients that access a crashed or failing server can be migrated
to other servers until the failure is resolved. Load balanc-
ing services need not provide full fault-tolerance capabilities,
however,i.e., it should not be the role of a load balancing ser-
vice to detect and mask failures [22, 23]. Instead, they should
provide mechanisms to handle those failures efficiently when
they are detected by administrators or other components in the
system.

Support administrative tasks: System administrators may
need to add new object replicas dynamically, without disrupt-
ing or suspending service for existing clients. A good CORBA
load balancing service should allow the dynamic addition of
new replicas and adjust to the new load conditions rapidly.
Likewise, the service should allow the removal of replicas for
upgrades, preemptive maintenance, or re-allocation of system
resources.

Minimal overhead: A CORBA load balancing service
should not introduce undue latency or networking overhead
since otherwise it can actually reduce–rather than enhance–
overall system performance. In particular, an implementation
that (1) increases the average number of messages per-request
or (2) uses a single server to process all requests may be in-
appropriate for high-performance and/or large-scale applica-
tions. Section 4 illustrates empirically how certain load bal-
ancing strategies can degrade overall performance due to ex-
cess overhead.
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Support application-defined load metrics and balancing
policies: Different types of applications have different no-
tions of load. Thus, a CORBA load balancing service should
allow applications to:

� Specify the semantics of metrics used to measure load
– For example, some applications may want to bal-
ance CPU load, whereas other applications may be more
concerned with balancing I/O resources, communication
bandwidth, or memory load.

� Set policies that determine the load balancing service’s
semantics– For example, some applications may want to
distribute load uniformly, others randomly, and still oth-
ers may want load distributed based on dynamic metrics,
such as current CPU load or current time.

Support for application-defined metrics and policies need not
affect client transparency because these policies can be admin-
istered solely for server replicas. Thus, clients can be shielded
from knowledge of load balancing metrics and policies.

CORBA interoperability and portability: Application de-
velopers rarely want to be restricted to a single provider’s
ORB. Therefore, a CORBA load balancing service should not
rely on extensions to GIOP/IIOP, which are standard protocols
that allow heterogeneous CORBA clients and servers to inter-
operate. Likewise, it is desirable to avoid implementing load
balanced objects by adding proprietary extensions to an ORB.

2.2 Overview of Alternative CORBA Load Bal-
ancing Strategies and Architectures

There are a variety of strategies and architectures for devising
CORBA load balancing services. Different alternatives pro-
vide different levels of support for the requirements outlined
in Section 2.1, as we describe below.

2.2.1 Load Balancing Strategies

There are various strategies for designing CORBA load bal-
ancing services. These strategies can be classified along the
following orthogonal dimensions:

Client binding granularity: A load balancerbindsa client
request to a replica each time a load balancing decision is
made. Specifically, a client’s requests are bound to the replica
selected by the load balancer. Client binding mechanisms in-
clude GIOPLOCATION FORWARD messages, modified stan-
dard CORBA services, orad hocproprietary interfaces. Re-
gardless of the mechanism, client binding can be classified ac-
cording to its granularity, as follows:

� Per-session– Client requests will continue to be for-
warded to the same replica for the duration of asession5,
which is usually defined by the lifetime of the client [24].

� Per-request– Each client request will be forwarded to a
potentially different replica,i.e., bound to a replica each
time a request is invoked.

� On-demand– Client requests can be re-bound to another
replica whenever deemed necessary by the load balancer.
This design forces a client to send its requests to a differ-
ent replica than the one it is sending requests to currently.

Balancing policy: When designing a load balancing service
it is important to select an appropriate algorithm that decides
which replica will process each incoming request. For exam-
ple, applications where all requests generate nearly identical
amounts of load can use a simple round-robin algorithm, while
applications where load generated by each request cannot be
predicted in advance may require more advanced algorithms.
In general, load balancing policies can be classified into the
following categories:

� Non-adaptive– A load balancer can use non-adaptive
policies, such as a simple round-robin algorithm or a ran-
domization algorithm, to select which replica will handle
a particular request.

� Adaptive– A load balancer can use adaptive policies
that utilize run-time information, such as the amount of
idle CPU available on each back-end server, to select the
replica that will handle a particular request.

2.2.2 Load Balancing Architectures

By combining the strategies described above in various ways,
it is possible to create the alternative load balancing architec-
tures described below. In the ensuing discussion, we refer back
to the requirements presented in Section 2.1 to evaluate the
pros and cons of these strategiesqualitatively. Section 4 then
evaluates these different strategiesquantitatively.

Non-adaptive per-session architectures: One way to de-
sign a CORBA load balancer is make to the load balancer
select the target replica when a client/server session is first
established,i.e., when a client obtains an object reference to
a CORBA object–namely the replica–and connects to that ob-
ject, as shown in Figure 2.

Note that the balancing policy in this architecture isnon-
adaptivesince the client interacts with the same server to
which it was directed originally, regardless of that server’s load
conditions. This architecture is suitable for load balancing

5In the context of CORBA, asessiondefines the period of time during
which a client is connected to a given server for the purpose of invoking re-
mote operations on objects in that server.
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: Client : Server Replica

: Load Balancer

1. s
end_request()

2. L
OCATIO

N_FORWARD()

3. send_request()

Figure 2: A Non-Adaptive Per-Session Architecture

policies that implement round-robin or randomized balancing
algorithms.

Different clients can be directed to different object replicas
by either using (1) a middleware activation daemon, such as a
CORBA Implementation Repository [25] or (2) a lookup ser-
vice, such as the CORBA Naming or Trading service. For ex-
ample, Orbix [26] provides an extension to the CORBA Nam-
ing Service that returns references to object replicas in either
a random or round-robin order.

Load balancing services based on a per-session client bind-
ing architecture can be implemented to support many require-
ments defined in Section 2.1. For example, per-session client
binding architectures generally satisfy requirements for appli-
cation transparency, increased system dependability, minimal
overhead, and CORBA interoperability. The primary bene-
fit of per-session client binding is that it incurs less run-time
overhead than the alternative architectures described below.

Non-adaptive per-session architectures do not, however, sat-
isfy the requirement to handledynamicclient operation re-
quest patterns adaptively. In particular, forwarding is per-
formed only when the client binds to the object,i.e., when
it invokes its first request. Overall system performance may
suffer, therefore, if multiple clients that impose high loads are
bound to the same server, even if other servers are less loaded.
Unfortunately, non-adaptive per-session architectures have no
provisions to reassign their clients to available servers.

Non-adaptive per-request architectures: A non-adaptive
per-request architecture shares many characteristics with the
non-adaptive per-session architecture. The primary difference
is that a client is bound to a replicaeach timea request is
invoked in the non-adaptive per-request architecture, rather
than just onceduring the initial request binding. This archi-
tecture has the disadvantage of degrading performance due to
increased communication overhead, as shown in Section 4.2.

Non-adaptive on-demand architectures: Non-adaptive
on-demand architectures have the same characteristics as
their per-session counterparts described above. However,
non-adaptive on-demand architectures allow re-shuffling of
client bindings at an arbitrary point in time. Note that run-time
information, such as CPU load, is not used to decide when to

rebind clients. Instead, clients could be re-bound at regular
time intervals, for example.

Adaptive per-session architecture: This architecture is
similar to the non-adaptive per-session approach. The pri-
mary difference is that an adaptive per-session can use run-
time load information to select the replica, thereby alleviat-
ing the need to bind new clients to heavily loaded replicas.
This strategy only represents a slight improvement, however,
since the load generated by clients can change after binding
decisions are made. In this situation, the adaptive on-demand
architecture offers a clear advantage since it can respond to
dynamic changes in client load.

Adaptive per-request architectures: A more adaptive re-
quest architecture for CORBA load balancing is shown in Fig-
ure 3. This design introduces a front-end server, which is a

: Client : Server Replica

: Load Balancer

1. send_request()

2. send_request()

load_advisory()

report_load()

The front-end
server proxy.

Figure 3: An Adaptive Per-request Architecture

proxy [27] that receives all client requests. In this case, the
“front-end server” is the load balancer. The load balancer
selects an appropriate back-end server replica in accordance
with its load balancing policy and forwards the request to that
replica. The front-end server proxy waits for the replica’s re-
ply to arrive and then returns it to the client. Informational
messages–calledload advisories–are sent from the load bal-
ancer to replicas when attempting to balance loads. These ad-
visories cause the replicas to either accept requests or redirect
them back to the load balancer.

The primary benefit of an adaptive request forwarding archi-
tecture is its potential for greater scalability and fairness. For
example, the front-end server proxy can examine the current
load on each replica before selecting the target of each request,
which may allow it to distribute load more equitably. Hence,
this forwarding architecture is suitable for use with adaptive
load balancing policies.

Unfortunately, this architecture can also introduce excessive
latency and network overhead because each request is pro-
cessed by a front-end server. Moreover, two new network mes-
sages are introduced:

1. The request from the front-end server to the replica; and
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2. The corresponding reply from the back-end server
(replica) to the front-end server.

In addition, to ensure that the system is scalable and depend-
able (e.g., no single point of failure), multiple intermediate
servers may be required. This configuration in turn requires
complex algorithms that propagate the current load informa-
tion to all front-end servers. It also requires a mechanism to
assign clients to the correct front-end server. In a sense, there-
fore, the load balancing problem must be solved both for back-
endand front-end servers, which complicates system design
and implementation.

Adaptive on-demand architecture: This architecture is the
primary focus of the remainder of this paper. As shown in Fig-
ure 4, clients receive an object reference to the load balancer

: Client : Server Replica

: Load Balancer

1. s
end_request()

2. L
OCATIO

N_FORWARD() load_advisory()

report_load()

3. send_request()

Figure 4: An Adaptive On-Demand Architecture

initially. Using CORBA’s standardLOCATION FORWARD

mechanism, the load balancer can redirect the initial client re-
quest to the appropriate target server replica. CORBA clients
will continue to use the new object reference obtained as part
of the LOCATION FORWARD message to communicate with
this replica directly until they are redirected again or finish
their conversation.

Unlike the non-adaptive architectures described earlier,
adaptive load balancers that forward requests on-demand can
monitor replica load continuously. Using this load information
and the policies specified by an application, a load balancer
can determine how equitably the load is distributed. When
load becomes unbalanced, the load balancer can communicate
with one or more replicas and request them to use the standard
CORBA LOCATION FORWARD mechanism to redirect subse-
quent clients back to the load balancer. The load balancer will
then redirect the client to a less loaded replica. Upon receipt
of aLOCATION FORWARDmessage, a standard CORBA client
ORB re-contacts the load balancer, which then redirects the
client transparently to a less heavily loaded replica.

Using this architecture, the overall distributed object com-
puting system can (1) recover from unequitable client/replica
bindings while (2) amortizing the additional network and pro-
cessing overhead over multiple requests. This strategy satisfies
most of the requirements outlined in Section 2.1. In particu-
lar, it requires minimal changes to the application initialization

code and no changes to the object implementations (servants)
themselves.

The primary drawback with adaptive on-demand architec-
tures is that server replicas must be prepared to receive mes-
sages from a load balancer and redirect clients to that load bal-
ancer. Although the required changes do not affect application
logic, application developers must modify a server’s initializa-
tion and activation components to respond to the load advisory
messages mentioned above. Advanced ways of overcoming
this drawback are discussed in Section 5.3.

It is possible to overcome some drawbacks of adaptive
on-demand load balancers, however, by applying standard
CORBA portable interceptors [28], as discussed in Sec-
tion 5.3. Likewise, implementations based on the patterns [29]
in the CORBA Component Model (CCM) [30] can implement
load balancing without requiring changes to application code.
In the CCM, acontainer is responsible for configuring the
portable object adapter (POA) [5] that manages a component.
Thus, TAO’s adaptive on-demand load balancer just requires
enhancing standard CCM containers so they support load bal-
ancing, without incurring other changes to application code.

3 The Design of the TAO CORBA
Load Balancing Service

This section describes the design of an adaptive load balancing
service in TAO [6], which is a CORBA-compliant ORB that
supports applications with stringent QoS requirements. TAO’s
load balancing service makes it easier to develop distributed
applications in heterogeneous environments by providing ap-
plication transparency, high flexibility, scalability, run-time
adaptability, and interoperability.

3.1 Component Structure in TAO’s Load Bal-
ancing Service

Figure 5 illustrates the components6 in the TAO’s load bal-
ancing service, which supports adaptive load balancing and
on-demand request forwarding. Each of these components is
outlined below:

Replica locator: This component identifies which replicas
will receive which requests. It is also the mechanism that
binds clients to the identified replicas. The replica locator can
be implemented portably using standard CORBA portable ob-
ject adapter (POA) mechanisms, such as servant locators [5],

6The termcomponentused throughout this paper refers to a “component”
in the general sense,i.e., an identifiable entity in a program, rather than in the
more specific sense of the CORBA Component Model [30].
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: Load Balancer

: Replica Locator

: Load Analyzer
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: Replica Proxyloads

: POArequests

: POA

requests

*

*

Figure 5: Components in the TAO Load Balancing Service

which implement the Interceptor pattern [29]. The Replica lo-
cator forwards each request it receives to the replica selected
by the load analyzer described below.

Load monitor: This component (1) monitors loads on a
given replica, (2) reports replica loads to a load balancer, and
(3) responds to load advisories sent by the load balancer. As
depicted in Figure 6, a load monitor can be configured with

: Load Balancer : Load Monitor : Server Replica

get_load()

: Load Balancer

: Load Monitor : Server Replica: Replica Proxy

report_load()

Pull Policy

Push Policy

Figure 6: Load Reporting Policies

either of two policies:

� Pull policy – In this mode, a load balancer can query a
given replica load on-demand,i.e., “pull” loads from the
load monitor.

� Push policy– In this mode, a load monitor can “push”
load reports to the load balancer.

A load monitor also processes load advisories sent by the load
balancer and informs replicas when they should accept re-
quests versus forward them back to the load balancer.

Load analyzer: This component decides which replica will
receive the next client request. The replica locator described
above obtains a reference to a replica from the load analyzer
and then forwards the request to that replica. The load analyzer
also allows a load balancing strategy to be selected explicitly
at run-time, while maintaining a simple and flexible design.
Since the load balancing strategy can be chosen at run-time,
replica selection can be tailored to fit the dynamics of a system
that is being load balanced.

Replica proxy: Each object managed by TAO’s load bal-
ancing service communicates with it via a unique proxy. The
load balancer uses these replica proxies to distinguish differ-
ent replicas to workaround CORBA’s so-called “weak” notion
of object identity [23], where two references to the same ob-
ject may have different values. Thus, it is only possible to
compare theequivalenceof two object references. Two ob-
ject references are equivalent if they refer to the same object.
Otherwise, they are not equivalent if they do not refer to the
same object or the ORB was unable to make this determina-
tion. It is the intentional ambiguity of the latter case that makes
CORBA object identity “weak.”7 Section 3.3.5 discusses the
replica proxy in more detail.

Load balancer: This component is a mediator that inte-
grates all the components described above. It provides an
interface through which load balancing can be administered,
without exposing clients to the intricate interactions between
the components it integrates.

3.2 Dynamic Interactions in TAO’s Load Bal-
ancing Service

As described in Section 2.2, selecting a target replica using
a non-adaptive balancing policy can yield non-uniform loads
across replicas. In contrast, selecting a replica adaptively for
each request can incur excessive overhead and latency. To
avoid either extreme, therefore, TAO’s load balancing service
provides a hybrid solution via one of its load balancing strate-
gies, whose interactions are shown in Figure 7. Each interac-
tion in Figure 7 is outlined below.

1. A client obtains an object reference to what appears to be
a replica and invokes an operation. In actuality, however,
the client transparently invokes the request on the load
balancer itself.

2. After the request is received from the client, the load bal-
ancer’s POA dispatches the request to its servant locator,
i.e., the replica locator component.

7See [31] for the rationale behind CORBA’s object identity semantics.
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Client Load Balancer

1. send_request()

3. get_replica()

4. LOCATION_FORWARD()

9. issue_control()

5. send_request()

6. get_load()
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8. load_advisory()

10. LOCATION_FORWARD()

Load Monitor and Replica
are at the same location.

2. send_request()

Replica Locator Load Analyzer Load Monitor Replica

Figure 7: TAO Load Balancer Interactions

3. Next, the replica locator queries its load analyzer for an
appropriate server replica.

4. The replica locator then transparently redirects the client
to the chosen replica.

5. Requests will continue to be sentdirectly to the cho-
sen replica until the load balancer detects a high load on
that replica. The additional indirection and overhead in-
curred by per-request load balancing architectures (see
Section 2.2.2) is eliminated since the client communi-
cates with the replica directly.

6. The load balancer monitors the replica’s load. Depending
on the load reporting policy (seeload monitordescription
in Section 3.1) that is configured, the load monitor will
either report the load to the balancer or the load balancer
will query the load monitor for the replica’s load.

7. As loads are collected by the load balancer, the load ana-
lyzer analyzes the load on the replica.

8. If a replica becomes overloaded the load balancer can
dynamically forward the client to another less loaded
replica. To achieve the transparency requirements out-
lined in Section 2.1, TAO’s load balancer does not com-
municate with the client application when forwarding it
to another replica. Instead, TAO’s load balancer issues a
load advisory to the replica’s load monitor.

9. The load monitor issues a control message to the replica.
Depending on the contents of the load advisory issued
by the load balancer, this control message will cause the
replica to either accept or redirect requests.

10. When instructed by the load monitor, the replica uses the
GIOPLOCATION FORWARDmessage to redirect the next
request sent by a client back to the load balancer.

11. At this point the load balancing cycle starts again.

3.3 Design Challenges and Their Solutions

The following design challenges were identified prior to and
during the development of TAO’s load balancing service:

1. Implementing portable load balancing

2. Enhancing feedback and control

3. Supporting modular load balancing strategies

4. Coping with adaptive load balancing hazards

5. Identifying objects uniquely

6. Integrating all the load balancing components effectively

These challenges and the solutions we applied to address them
are discussed below. The solutions to each design challenge
manifest themselves within the load balancing service compo-
nents described in Section 3.1. Readers who are not interested
in the design and rationale of TAO’s load balancing service
should skip to the performance results in Section 4.

3.3.1 Challenge 1: Implementing Portable Load Balanc-
ing

Context: A CORBA load balancing service is being imple-
mented in accordance with the requirements outlined in Sec-
tion 2.

Problem: Changing application code–particularly client
applications–to support load balancing can be tedious, error-
prone, and costly. Changing the middleware infrastructure
to support load balancing is also problematic since the same
middleware may be used in applications that do not require
load balancing, in which case extra overhead and footprint
may be unacceptable. Likewise, usingad hocor proprietary
interfaces to add load balancing to existing middleware can
increase maintenance effort and may be unattractive to appli-
cation developers who fear “vendor lock-in” from features that
are unavailable in other middleware.

So, how can we implement load balancing transparently
without changing applications, middleware or using propri-
etary features?

Solution ! the Interceptor pattern: The Interceptor pat-
tern [29] allows a framework to transparently add services that
are triggered automatically when certain events occur. This
pattern enhances extensibility by exposing a common inter-
face implemented by aconcrete interceptor. Methods in this
interface are invoked by adispatcher.

The Interceptor pattern can be implemented via standard
CORBA POA [4] features. For example, the role of the in-
terceptor is played by aservant locator8 and the role of the

8Servant locators are a meta-programming mechanism [32] that allows
CORBA server application developers to obtain custom object implementa-
tions dynamically, rather than using the POA’s active object map [16].
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dispatcher is played by aPOA. In particular, areplica locator
can implement the standard CORBAServantLocator [4]
interface provided by the POA.

Figure 8 illustrates how load can be balanced transparently
using standard CORBA features. Initially, clients are given

: Client : Replica

: Load Balancer

1. s
end_re

quest(
) 2. send_request()

: Client : Replica

: Load Balancer

1. s
end_re

quest(
)

    
2. L

OCATIO
N_FORW

ARD()

3. send_request()

(a)

(b)

Figure 8: Load Balancing Transparency in Applications: (a)
request forwarded by the client and (b) request forwarded on
behalf of the client.

an object reference to the load balancer, so they first issue re-
quests to the load balancer. The load balancer’s servant locator
intercepts those requests and forwards them transparently to
the appropriate replicas. Depending on the type of client bind-
ing granularity (see Section 2.2) selected by the application,
one of the following actions will occur:

� The client will forward requests to the appropriate
replica, as shown in Figure 8(a); or

� The load balancer will forward requests to the appropriate
replica on behalf of the client, as shown in Figure 8(b).

Applying the solution in TAO: In TAO, each replica regis-
ters itself with the load balancer. Each replica then becomes a
potential candidate to handle a request intercepted by the load
balancer. The interception is performed by a servant locator.

TAO’s load balancer implements its own servant locator,
which is registered with the load balancer’s POA. When a new
request arrives, the POA delegates the task of locating a suit-
able servant to the servant locator, rather than using the ser-
vant lookup mechanism in the POA’s active object map [16].
Thus, the load balancer can use the servant locator to forward

requests to the appropriate replica transparently,i.e., without
affecting server application code.

After receiving a request, the replica locator obtains a ref-
erence to the replica chosen by the load analyzer (see Sec-
tion 3.3.3) and throws aForwardRequest exception ini-
tialized with a copy of that reference. The server ORB catches
this exception and then returns aLOCATION FORWARD GIOP
message. When the client ORB receives this message, the
CORBA specification requires it to

1. Re-issue the request to the new location specified by the
object references embedded in theLOCATION FORWARD

response; and

2. To continue using that location until either the communi-
cation fails or the client is redirected again.

Thus, a server application and an ORB can forward client re-
quests to other serverstransparently, portably, andinteroper-
ably.

3.3.2 Challenge 2: Enhancing Feedback and Control

Context: An adaptive load balancing service must deter-
mine the current load conditions on replicas registered with
it. A load balancer should not need to know the type of load
metric beforehand, however. Moreover, a load balancer must
take steps to ensure that loads across its registered replicas are
balanced. These steps include (1) forcing the replica to redi-
rect the client back to the load balancer when its load is high
and (2) forcing the replica to once again accept client requests
when its load is nominal.

Problem: Sampling loads from replicas should be as trans-
parent as possible to the replicas. If load sampling was not
transparent, a load balancer would have to sample loads from
server replicas directly, which is undesirable since it would
require replicas to collect loads. If replicas collect loads, how-
ever, application developers must modify existing application
code to support load balancing. Such an obtrusive design does
not scale well from a deployment point of view, nor is it always
feasible to alter existing application code.

Moreover, a load balancer should not be tightly coupled to a
particular load metric. Only themagnitudeof the load should
be considered when making load balancing decisions, so that
a load balancer can support any type of load metric, rather
than just one type of metric. The same deployment scalability
issues encountered for load sampling transparency also apply
here. If a load balancer were load-metric specific it would be
costly to deploy load balancers for distributed applications that
require balancing based on several load metrics. For example,
a separate load balancer would be needed to balance replicas
based on various metrics, such as CPU, I/O, memory, network,
and battery power utilization.

10



In addition, a load balancer must react to various replica
load conditions to ensure that loads across replicas are bal-
anced. For example, when high load conditions occur, a
replica must be instructed to forward the client request back
to the load balancer so subsequent requests can be reassigned
to a less loaded replica.

So, how can we implement a flexible load balancing service
that can be extended to support new load metrics, as well as
different policies to collect such metrics?

Solution ! the Strategy and Mediator patterns: The
Strategy [17] design pattern allows the behavior of frameworks
and components to be selected and changed flexibly. For ex-
ample, the same interface can be used to obtain different types
of loads on a given set of resources. Only object implementa-
tions must change since load measuring techniques may differ
for each type of load. Each implementation is called a “strat-
egy” and can be embodied in an object called aload monitor.

A load monitor implements a strategy for monitoring loads
on a given resource. The interface for reporting loads to the
load balancer or to obtain loads from the load monitor re-
mains unchanged for each load monitoring strategy. Strategiz-
ing load monitoring makes it possible to use a load balancer
that is not specific to a particular type of load, such as CPU
load or battery power utilization. Thus, a load balancer need
not be specialized for a given type of load. This design sim-
plifies deployment of a load balanced distributed system since
one load balancer can balance many different types of load.

The Mediator [17] design pattern defines an object that en-
capsulates how objects will interact. In addition to playing the
role of a strategy, a load monitor acts as a mediator between the
load balancer and a given replica. This pattern ensures there
is a loose coupling between the load balancer and the server
replicas. Thus, the load balancer need not have any knowl-
edge of the interface exported by the replica.

In its capacity as a mediator, a load monitor responds to load
balancing requests sent by the load balancer. Depending on the
type of request the load balancer sends to the load monitor, the
replica will either continue accepting client requests or redirect
the client back to the load balancer. Note that the load balancer
never interacts with the replica directly – all interaction occurs
via the load monitor. Similarly, the replica never interacts with
the load balancer directly. Instead, it interacts with the load
balancer indirectly through the load monitor.

Applying the solution in TAO: When registering a replica
with TAO’s load balancer, its corresponding load monitor is
also registered. As shown in Figure 9, the load balancer
queries the load monitor for the load on the current replica, as-
suming that pull-based load monitoring is being used (see Sec-
tion 3.1). In other words, the load balancer receivesfeedback
from the load monitor. Load balancing control messages–
calledload advisories–are then sent to the load monitor from

: Load Balancer : Load Monitor : Replica

3. reject_requests()
1. get_load()

2. load_advisory()

Figure 9: Feedback and Control when Balancing Loads

the load balancer and set the state of the current replica load to
one of the following values:

� Nominal– When the load is nominal, the replica contin-
ues to accept requests.

� High – A high load advisory causes the replica to redi-
rect client requests by forwarding them back to the load
balancer, at which point the load balancer forwards the
request to a less loaded replica.

These two state values are the defaults provided by TAO. Users
can define their own customized load states, however, by cus-
tomizing the load analyzer and load monitor component im-
plementations.

TAO’s load balancer isadaptivedue to the bi-directional
feedback/control channel between the load monitor and the
load balancer, which allows TAO’s load balancer to admin-
ister control. Since the load monitor is decoupled from the
load balancer it is also possible to balance loads across repli-
cas based on various types of load metrics. For instance, one
type of load monitor could report CPU loads, whereas another
could report I/O resource load. The fact that the type of load
presented to the load balancer is opaque allows the same load
balancer–specifically the load analysis algorithm–to be reused
for any load metric.

3.3.3 Challenge 3: Supporting Modular Load Balancing
Strategies

Context: A distributed system employs a load balancing
service to improve overall throughput by ensuring that loads
across replicas are as uniform as possible. In some applica-
tions, loads may peak in a predictable fashion, such as at cer-
tain times of the day or days of the week. In other applications,
loads cannot be predicted easilya priori.

Problem: Since certain load analysis techniques are not suit-
able for all use-cases, it may be useful to analyze a set of
replica loads in different ways depending on the situation. For
example, to predict future replica loads it may be useful to an-
alyze the history of loads for a given object group, thereby an-
ticipating high load conditions. Conversely, this level of anal-
ysis may be too costly in other use-cases,e.g., if the duration
of the analysis exceeds the time required to complete client
request processing.
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In some applications it may even be necessary to change the
load analysis algorithm dynamically,e.g., to adapt to new ap-
plication workloads. Moreover, bringing the system down to
reconfigure the load balancing strategy may be unacceptable
for applications with stringent 24�7 availability requirements.
Likewise, application developers may be interested in evaluat-
ing several alternative load balancing policies, in which case
requiring a full recompilation or relink cycle would unduly in-
crease system development effort. A load balancing service
cannot simply implement all possible load balancing strate-
gies, however,e.g., application developers may wish to define
application-specific orad-hocload balancing algorithms dur-
ing testing or deployment.

So, how can we allow dynamic (re)configurations of the
load balancing service, such as the load monitor and load an-
alyzer, without requiring expensive system recompilations or
interruptions of service?

Solution ! the Component Configurator pattern: The
Component Configuratordesign pattern [29] allows applica-
tions to link and unlink components into and out of an applica-
tion at run-time. In TAO’s load balancing service this pattern
can be used to change the replica selection strategy dynami-
cally. Thus, a load balancer can use this pattern to adapt to
different load balancing use-cases, without being hard-coded
to handle just those use-cases.

At times it may be necessary to load balance only a few
replicas, in which case a simple load balancing strategy may
suffice. In other situations, such as during periods of peak ac-
tivity during the workday, a load balancing strategy may need
modifications to account for increased load. In such cases,
a more complex strategy may be necessary. The Component
Configurator pattern makes it easy to dynamically configure
load balancing algorithms appropriate for different use-cases
withoutstopping and restarting the load balancer.

Applying the solution in TAO: TAO’s load analyzer uses
the Component Configurator pattern to customize the load bal-
ancing algorithm used when making load balancing decisions,
as depicted in Figure 10. TAO’s load balancing service can be
configured dynamically to support the following strategies:

�Round-robin: This non-adaptive strategy is straightfor-
ward and does not take load into account. Instead, it simply
causes a request to be forwarded to the next replica in the ob-
ject group being load balanced [21].

� Minimum dispersion: This adaptive strategy is more
sophisticated than the round-robin algorithm described above.
The goal of this strategy is to ensure load differences fall
within a certain tolerance,i.e., it attempts to ensure that the
average difference in load between each replica is minimized.
The following steps are used in this on-demand adaptive strat-
egy:

: Load Balancer

: Component Configurator

references : object(idl)

Group 1 : Object Group

Round Robin : Balancing Strategy

Balancing Strategy

Minimum Dispersion : Balancing Strategy

Dynamically loaded
load balancing

strategies.

: Load Analyzer

Figure 10: Applying the Component Configurator Pattern to
TAO’s Load Balancing Service

1. The average load across all replicas within a given ob-
ject group is updated each time a load balancing decision
occurs.

2. The instantaneous load on each replica is then compared
to the average load.

3. If the difference between the average load and the instan-
taneous load is larger than the tolerance set by themini-
mum dispersionload balancing strategy, the load balancer
will attempt to decrease the difference so that they fall
within the tolerance.

Note that a set of replicas balanced via this strategy will not
necessarily have the same load on each of them, but over time
the loaddispersionbetween the replicas will be minimized.

A large amount of work on load balancing strategies [33]
has already been done. Many of those same strategies can
be integrated in to the CORBA-based load balancing service
via the Component Configurator pattern implementation de-
scribed above.

3.3.4 Challenge 4: Coping With Adaptive Load Balanc-
ing Hazards

Context: A customized adaptive load balancing strategy is
under development by a distributed application developer.
This load balancing strategy will be used to balance loads
across a group of replicas.

Problem: Adaptive load balancing has the potential to im-
prove system responsiveness. It is hard to ensure the stability
of loads across replicas when the overall state of distributed
systems changes quickly due to the following hazards:
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� Thundering herd: When a less loaded replica suddenly
becomes available, a “thundering herd” phenomenon may oc-
cur if the load balancer forwards all requests to that replica
immediately. If the rate at which the loads are reported and an-
alyzed is slower than the rate at which requests are forwarded
to the replica, it is possible that the load on that replica will
increase rapidly. Ideally, the rate at which requests are for-
warded to replicas should be less than or equal to the rate at
which loads are reported and analyzed. Satisfying this condi-
tion can eliminate the thundering herd phenomenon.

� Balancing paroxysms: The smaller the number of
replicas, the harder it can be to balance loads across them
effectively. For example, if only two replicas are available
then one replica may be more loaded than the other. A naive
load balancing strategy will attempt to shift the load to the less
loaded replica, at which point it will most likely become the
replica with the greater load. The entire process of shifting the
load may begin again, causing system instability.

So, how can we adapt to dynamic changes in load, but with-
out overreacting transient, short lived or sample errors in the
load metric?

Solution ! Dampening load sampling rates and request
redirection: The minimum dispersionload balancing strat-
egy described in Section 3.3.3 can be employed to alleviate the
thundering herd phenomenon and balancing paroxysms since
it will not attempt to shift loads the moment an imbalance oc-
curs. Specifically, by relaxing the criteria used to decide when
loads across a group of replicas is balanced, a load balancer
can adjust to large load discrepancies with less probability of
experiencing the hazards discussed above. The criteria for de-
ciding when to shift loads can also change dynamically as the
number of replicas increases.

Using control theory terminology, this behavior is called
dampening, where the system minimizes unpredictable be-
havior by reacting slowly to changes and waiting for definite
trends to minimize over-control decisions. TAO’s minimum
dispersion balancing strategy does not react to changes in load
immediately because its default load balancing strategy aver-
ages instantaneous load samples with older load values. The
empirical results presented in Section 4.3 illustrate the effects
of TAO’s dampening mechanisms.

3.3.5 Challenge 5: Identifying Objects Uniquely

Context: A load balancing service that manages multiple
objects is responsible for collecting and analyzing informa-
tion, such as the state, health, and environmental conditions,
throughout the lifetime of each object it manages. This in-
formation is obtained from the load monitor, as described in
Section 3.3.2. In some applications using apull modelto ac-
quire the load information may not scale well and can be hard

to optimize. In contrast,push modelscan resubmit load infor-
mation when it has changed beyond a pre-set threshold or after
a fixed period of time.

Problem: When receiving information about the load in one
replica the load balancing service should determine the source
of the load information efficiently and uniquely. This goal can
be achieved easily via pull models, but it is harder to imple-
ment via push models. CORBA does not provide a lightweight
mechanism to determine the source of a request.9 Moreover,
as described in Section 3.1, CORBA providesweak identityfor
objects, relying on the replica object reference to distinguish
them would not be portable.

So, how can we portably and efficiently determine the
source of the load information?

Solution! the Asynchronous Completion Token pattern:
This pattern is used to efficiently dispatch processing tasks that
result from responses to asynchronous operations invoked by
a client [29]. In the load balancing service, the replica proxy
plays the role of an asynchronous completion token (ACT).
Load monitors communicate load updates via their replica
proxy objects, as shown in Figure 11. The load balancing ser-

: Load Monitor A

: Load Monitor B

: Load Balancer

report_load()

Which load monitor
is the load report

coming from?

: Load Monitor A

: Load Monitor B

: Load Balancer

report_load()

The load balancer
assigns a replica

proxy to each load
monitor.

: Replica Proxy A

: Replica Proxy B

Figure 11: Identifying the Source of a Message Uniquely

vice creates a unique replica proxy for each monitor. When
the replica proxy implementation creates and caches the iden-
tity of the replica ACT and load monitor that will later use
the replica proxy. This design allows the replica proxy to de-
termine the identity of the remote replica efficiently whenever
new load information is received.

9The CORBA Security Service [34] can authenticate client requests, but
this is a much more expensive mechanism than required for many applications.
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Applying the solution in TAO: TAO uses a CORBA
Object to play the role of an asynchronous completion to-
ken. The load balancing service creates a different CORBA
Object –called aReplicaProxy –for each replica. This
proxy is created when the replica registers itself with the load
balancing service initially. All future communication with the
load balancing service is performed through the proxy. The
Asynchronous Completion Token pattern allows the load bal-
ancing service to process the requests from each replica effi-
ciently and unambiguously.

As each load is reported to theReplicaProxy , the load
analyzer is notified that a new load is available for analysis.
Since theReplicaProxy caches the object reference of its
corresponding replica, the load balancer can redirect the client
to a nominally loaded replica using the cached replica object
reference.

3.3.6 Challenge 6: Integrating All the Load Balancing
Components Effectively

Context: As illustrated above, a load balanced distributed
system has many components that interact with each other.
For example, clients issue requests to replicas. Load moni-
tors measure loads on replicas continuously and control client
access to the replicas. Load analyzers decide if loads on repli-
cas are nominal or high. Finally, replica locators bind clients
to replicas.

Problem: All the components mentioned above must col-
laborate effectively to ensure that a distributed system is load
balanced. Direct interaction between some of those compo-
nents may complicate the implementation of distributed appli-
cations, however, since certain functionality may be exposed
to a given component unnecessarily.

So, how can we integrate the functionality of all the load
balancing components without unduly coupling all of them?

Solution ! the Mediator pattern: The Mediator pattern
provides a means to coordinate and simplify interactions be-
tween associated objects. This pattern shields the objects from
relationships and interactions that are not needed for their ef-
fective operation.

A load balancercomponent can be used to tie together all
the components listed above. It coordinates all interactions
between other components,i.e., it is a mediator. For example,
it shields the client from the component interactions necessary
to conduct load balancing. Thus, clients can remain unaware
of the interactions mediated by the load balancer, which helps
to satisfy application transparency requirements.

Applying the solution in TAO: As shown in Figure 5, the
load balancer in TAO mediates the following types of compo-
nent interactions:

� Client binding interactions: Rather than binding itself
to a specific replica that may be highly loaded, TAO’s load
balancer binds the client to a suitable replica. The load bal-
ancer creates an object reference that corresponds to a group
of replicas–called anobject group–being load balanced. In-
stead of using an object reference that directly refers to a given
replica, the client uses the object reference created by the load
balancer that represents the appropriate object group. This de-
sign causes the client to invoke a request on the load balancer
initially, at which point the client is re-bound to a replica cho-
sen by the load balancer.

It is important to note that the CORBA object model was
intentionally designed to decouple the object implementation
from the object references that clients use to access the im-
plementations. In TAO’s load balancing service we exploit
this feature of CORBA to hide the particular location, num-
ber, and characteristics of the replicas behind an object refer-
ence that points clients to the load balancing service. Clients
applications are shielded by this extra level of indirection by
their ORBs, and use a load balanced object just like any other
CORBA object, unaware of the situation except perhaps for
the difference in performance.

The load balancer also rebinds the client to another replica
by using other components, such as the load monitor. In that
case, a client is forwarded back to the load balancer so that the
client binding process can be begin again. Thus, load balanc-
ing remains completely transparent to client applications.

� Load monitor and load analyzer interactions: The
load balancer allows the load analyzer to be completely decou-
pled from load monitors. Load monitors are registered with
the load balancer. This design allows the load balancer to re-
ceive load reports from each registered load monitor. These
load reports are then delegated to the load analyzer for analy-
sis. The means by which these loads were obtained is hidden
from the load analyzer.

4 Performance Results

For load balancing to improve the overall performance of
CORBA-based systems significantly, the load balancing ser-
vice must incur minimal overhead. A key contribution of
TAO’s load balancing service is that it increases overall system
throughput by distributing requests across multiple back-end
servers (replicas) without increasing round-trip latency and jit-
ter significantly.

This section describes the design and results of several ex-
periments we performed to measure the benefits of TAO’s load
balancing strategy empirically, as well as to demonstrate the
limitations with the alternative load balancing strategies out-
lined in Section 2.2. The first set of experiments in Section 4.2
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show the amount of overhead incurred by the request forward-
ing architectures described in this paper. The second set of
experiments in Section 4.3 demonstrate how TAO’s load bal-
ancer can maintain balanced loads dynamicallyandefficiently,
whereas alternative load balancing strategies cannot.

4.1 Hardware/Software Benchmarking Plat-
form

Benchmarks performed for this paper were run using three 733
MHz dual CPU Intel Pentium III workstations, and one 400
MHz quad CPU Intel Pentium II Xeon workstation, all running
Debian GNU/Linux “potato” (GLIBC 2.1), with Linux kernel
version 2.2.16. GNU/Linux is an open-source operating sys-
tem that supports kernel-level multi-tasking, multi-threading,
and symmetric multiprocessing. All workstations are con-
nected through a 100 Mbps ethernet switch. This testbed is
depicted in Figure 12. All benchmarks were run in the POSIX

Dual CPU
Replica Host

Dual CPU
Load Balancer

HostQuad CPU
Client Host

Dual CPU
Replica Host

100 MBps
Network Switch

Figure 12: Load Balancing Experiment Testbed

real-time thread scheduling class [35]. This scheduling class
enhances the integrity of our results by ensuring the threads
created during the experiment were not preempted arbitrarily
during their execution.

The core CORBA benchmarking software is based on the
“Latency ” performance test distributed with the TAO open-
source software release.10 Figure 1 illustrates the basic design
of this performance test. All benchmarks use one of the fol-
lowing variations of theLatency test:

10See$TAOROOT/performance-tests/Latency/ in the TAO re-
lease for the source code of this benchmark.

1. Classic Latency test: In this benchmark, we use high-
resolution OS timers to measure the throughput, latency, and
jitter of requests made on an instance of a CORBA object that
verifies a given integer is prime. Prime number factorization
provides a suitable workload for our load balancing tests since
each operation runs for a relatively long time. In addition, it
is a stateless service that shields the results from transitional
effects that would otherwise occur when transferring state be-
tween load balanced stateful replicas.

2. Latency test with non-adaptive per-request load balanc-
ing strategy: This variant ofLatency test was designed to
demonstrate the performance and scalability ofoptimal load
balancing using per-request forwarding as the underlying re-
quest forwarding architecture. This variant added a special-
ized “forwarding server” to the test, whose sole purpose was
to forward requests to a target server at the fastest possible
rate. No changes were made to the client.

3. Latency test with TAO’s adaptive on-demand load bal-
ancing strategy: This variant of theLatency test added
support for TAO’s adaptive on-demand load balancer to the
classicLatency test. TheLatency test client code re-
mained unchanged, thereby preserving client transparency.
This variant quantified the performance and scalability impact
of TAO’s adaptive on-demand load balancer.

4.2 Benchmarking the Overhead of Load Bal-
ancing Mechanisms

These benchmarks measure the degree of end-to-end overhead
incurred by adding load balancing to CORBA applications.

Overhead measurement technique: The overhead experi-
ments presented in this paper compute the throughput, latency,
and jitter incurred to communicate between a single-threaded
client and a single-threaded server (i.e., one replica) using the
following four request forwarding architectures:

1. No load balancing: To establish a performance base-
line without load balancing, theLatency performance test
was first run between a single-threaded client and a single-
threaded server (one replica) residing on separate worksta-
tions. These results reflect the baseline performance of a TAO
client/server application.

2. A non-adaptive per-session client binding architec-
ture: We then configured TAO’s load balancer to use the
non-adaptive per-session load balancing strategy when balanc-
ing loads on aLatency test server. We did this by simply
adding the registration code to theLatency test server imple-
mentation, which causes the replica to register itself with the
load balancer so that it can be load balanced. No changes to
the coreLatency test implementation were made. Since the
replica sends no feedback to the load balancer, this benchmark
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establishes a baseline for the best performance achievable by
a load balancer that utilizes a per-session client binding gran-
ularity.

3. A non-adaptive per-request client binding architec-
ture: Next, we added a specialized non-adaptive per-request
“forwarding server” to the originalLatency test. This server
just forwards client requests to an unmodified backend server.
The forwarding server resided on a different machine than ei-
ther the client or backend server, which themselves each ran
on separate workstations. Since the forwarding server is es-
sentially a lightweight load balancer, this benchmark provides
a baseline for the best performance achievable by a load bal-
ancer using a per-request client binding granularity.

4. An adaptive on-demand client binding architecture:
Finally, TAO’s adaptive on-demand client binding granularity
was included in the experiment by adding theload monitor
described in Section 3.3.2 to theLatency test server. This
enhancement allowed TAO’s load balancer to react to the cur-
rent load on theLatency test server. TAO’s load balancer,
the client, and the server each ran on separate workstations,
i.e., three workstations were involved in this benchmark. No
changes were made to the client portion of theLatency test,
nor were any substantial changes made to the core servant im-
plementation.

Overhead benchmark results: The results illustrated in
Figure 13 quantify the latency imposed by adding load
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Figure 13: Load Balancing Latency Overhead

balancing–specifically request forwarding–to theLatency
performance test. All overhead benchmarks were run with
200,000 iterations. As shown in this figure, a non-adaptive
per-session approach imposes essentially no latency overhead
to the classicLatency test. In contrast, the non-adaptive
per-request approach more than doubles the average latency.
TAO’s adaptive on-demand approach adds little latency. The

slight increase in latency incurred by TAO’s approach is
caused by

� The additional processing resources the load monitor
needs to perform load monitoring; and

� The resources used when sending periodic load reports to
the load balancer,i.e., “push-based” load monitoring.

These results clearly show that it is possible to minimize la-
tency overhead, yet still provide adaptive load balancing. As
shown in Figure 13, the jitter did not change appreciably be-
tween each of the test cases, which illustrates that load bal-
ancing hardly affects the time required for client requests to
complete.

Figure 14 shows how the average throughput differs be-
tween each load balancing strategy. Again, only one client and
one server were used for this experiment. Not surprisingly, the

Throughput Comparison

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Classic
Latency

Performance
Test

Latency Test
w/Per-Session
Load Balancer

Latency Test
w/Per-Request
Load Balancer

Latency Test
w/TAO On-

Demand Load
Balancer

T
hr

ou
gh

pu
t (

ev
en

ts
 p

er
 s

ec
on

d)

Figure 14: Load Balancing Throughput Overhead

throughput remained basically unchanged for the non-adaptive
per-session approach since only one out of 200,000 requests
was forwarded. The remaining requests were all sent to di-
rectly to the server,i.e., all requests were running at their max-
imum speed.

Figure 14 illustrates that throughput decreases dramatically
in the per-request strategy due to the fact that it (1) forwards re-
quests on behalf of the client and (2) forwards replies received
from the replica to the client, thereby doubling the commu-
nication required to complete a request. This architecture is
clearly not suitable for throughput-sensitive applications.

In contrast, the throughput in TAO’s load balancing ap-
proach only decreased slightly with respect to the case where
no load balancing was performed. The slight decrease in
throughput can be attributed to the same factors that caused
the slight in increase in latency described above,i.e., (1) addi-
tional resources used by the load monitor and (2) the commu-
nication between the load balancer and the load monitor.
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4.3 Load Balancing Strategy Effectiveness

The following set of benchmarks quantify how effective each
load balancing strategy is at maintaining balanced load across
a given set of replicas. First, the effectiveness of the non-
adaptive per-session load balancing strategy is shown. Next,
the effectiveness of the adaptive on-demand strategy employed
by TAO is illustrated. In all cases, we used theLatency test
from the overhead benchmarks in Section 4.2 for the experi-
ments.

Effectiveness measurement technique:The goal of this
benchmark was to overload certain replicas in a group and then
measure how different load balancing strategies handled the
imbalanced loads. We hypothesized that loads across repli-
cas should remain imbalanced when using non-adaptive per-
session load balancing strategies. Conversely, when using
adaptive load balancing strategies, such as TAO’s adaptive
load balancing strategy, loads across replicas should be bal-
anced shortly after imbalances are detected.

To create this situation, fourLatency test server replicas–
each with a dedicated CPU–were registered with TAO’s
load balancer during each effectiveness experiment. Eight
Latency test clients were then launched. Half the clients
issued requests at a higher rate than the other half. For ex-
ample, the first client issued requests at a rate of ten requests
per-second, the second client issued requests at a rate of five
requests per-second, the third at ten requests per-second, etc.
The actual load was not important for this set of experiments.
Instead, it was therelativeload on each replica that was impor-
tant,i.e., a well balanced set of replicas should have relatively
similar loads, regardless of the actual values of the load.

Effectiveness benchmark results: The results of the effec-
tiveness tests are described below.

� Non-adaptive per-session load balancing effectiveness:
For this experiment, TAO’s load balancer was configured to
use itsround-robinload balancing strategy. This strategy does
not perform any analysis on reported loads, but simply for-
wards client requests to a given replica. The client then con-
tinues to issue requests to the same replica over the lifetime of
that replica. The load balancer thus applies thenon-adaptive
per-sessionstrategy,i.e., it is only involved during the initial
client request.

Figure 15 illustrates the loads incurred on each of the
Latency server replicas using non-adaptive per-session load
balancing. The results quantify the degree to which loads
across replicas become unbalanced by using this strategy.
Since there is no feedback loop between the replicas and the
load balancer, it is not possible to shift load from highly loaded
replicas to less heavily loaded replicas.

Note that two of the replicas (3 and 4) had the same load.
The line representing the load on replica 3 is obscured by

Loads Under Non-Adaptive Per-Session 
Strategy

0

5

10

15

20

25

1 40 79 11
8

15
7

19
6

23
5

27
4

31
3

35
2

39
1

43
0

Elapsed Time (seconds)

Lo
ad

 (
re

qu
es

ts
/s

ec
on

d)

Replica 1
Replica 2
Replica 3
Replica 4

Figure 15: Effectiveness of Non-Adaptive Per-Session Load
Balancing

the line representing the load on replica 4. In addition, note
that the same number of iterations were issued by each client.
Since some clients issued requests at a faster rate (10 Hz),
however, those clients completed their execution before the
clients with the lower request rates (5 Hz). This difference
in request rate accounts for the sudden drop in load half way
before the slower (i.e., low load) clients completed their exe-
cution.

� TAO’s adaptive load balancing strategy effectiveness:
This test demonstrated the benefits of an adaptive load balanc-
ing strategy. Therefore, we increased the load imposed by each
client and increased the number of iterations from 200,000 to
750,000. Four clients running at 100 Hz and another four run-
ning at 50 Hz were started and ended simultaneously.

Client request rates were increased to exaggerate load im-
balance and to make the load balancing more obvious as it
progresses. It was necessary to increase the number of iter-
ations in this experiment because of the higher client request
rates. If the number of iterations were capped at the 200,000
used in the overhead experiments in Section 4.2 this experi-
ment could have ended before loads across the replicas were
balanced.

As Figure 16 illustrates, the loads across all four replicas
fluctuated for a short period of time until an equilibrium load
of 150 Hz was reached.11 The initial load fluctuations result
from the load balancer periodically rebinding clients to less
loaded replicas. By the time a given rebind completed, the
replica load had become imbalanced, at which point the client

11The 150 Hz equilibrium load corresponds to one 100 Hz client and one
50 Hz client on each of the four replicas.
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Figure 16: Effectiveness of Adaptive On-Demand Load Bal-
ancing

was rebound to another replica. These initial fluctuations are
typical of the adaptive load balancing hazards discussed in
Section 3.3.4.

The load balancer required several iterations to balance the
loads across the replicas,i.e., to stabilize. Had it not been
for the dampening (see Section 3.3.4) built into TAO’s adap-
tive on-demand load balancing strategy, it is likely that replica
loads would have oscillated for the duration of the experiment.
Dampening prevents the load balancer from basing its deci-
sions on instantaneous replica loads, and to use average loads
instead.

It is instructive to compare the results in Figure 16 to the
non-adaptive per-session load balancing architecture results in
Figure 15. Loads in the non-adaptive approach remained im-
balanced. Using the adaptive on-demand approach, the over-
head is minimizedandloads remain balanced.

After it was obvious that the loads were balanced,i.e., equi-
librium was reached, the experiment was terminated. This ac-
counts for the uniform drops in load depicted in Figure 16.
Contrast this to the non-uniform drops in load that occured in
the overhead experiments in Section 4.2, where clients were
allowed to complete all iterations. In both cases, the number
of iterations is less important than the fact that the iterations
were executed to (1) illustrate the effects of load balancing and
(2) ensure that the overall results were not subject to transient
effects, such as periodic execution of operating system tasks.

The actual time required to reach the equilibrium load de-
pends greatly on the load balancing strategy. The example
above was based on the minimum dispersion strategy de-
scribed in Section 3.3.3. A more sophisticated adaptive load
balancing strategy could have been employed to improve the
time to reach equilibrium. Regardless of the complexity of

the adaptive load balancing strategy, these results show that
adaptive load balancing strategies can maintain balanced loads
across a given set of replicas.

5 Related and Future Work

This section outlines related research on load balancing and
describes how it compares and contrasts to our work on TAO’s
load balancing service. We first compare our middleware-
based load balancing strategies with work at other levels of
abstraction. Next, we describe how our work compares with
other research on CORBA-based load balancing. We finish
by outlining our future research plans to enhance TAO’s load
balancing service.

5.1 Related Research on Load Balancing

As discussed in Section 1, load balancing mechanisms have
been implemented at various levels, such as in the network,
OS, and middleware. Some implementations, such as the Con-
dor [36] and Beowulf [37] clustering systems, combine as-
pects from multiple levels. This paper focuses primarily on
middleware-based load balancing, but many concepts and pat-
terns used in middleware-based load balancing also apply to
network-based and OS-based load balancing, as described be-
low.

Network-based load balancing: Network-based load bal-
ancing implementations often make decisions based on the fre-
quency with which a given location is accessed. The decision
of where to service a request can be made at various stages
along the path to its destination. For example, a router [38] or
DNS server could decide where to send a request.

Network-based load balancing has the disadvantage that
load balancing decisions are based solely on the request tar-
get, which hampers flexibility significantly. However, recent
developments in network-based load balancing do take advan-
tage of request content. These hybrid implementations [1]
provide finer-grained load analysis, which can improve load
balancing decisions. Nevertheless, the metric used in load bal-
ancing decisions is still restricted to the frequency with which
a given target is accessed.

Unfortunately, frequency alone is not always an adequate
load metric since some requests may incur large loads on
the target host,e.g., when Web servers process CGI requests.
When combined with load balancing decisions based solely on
target access frequency, the increased loads from such requests
can degrade overall system performance. It is possible to an-
alyze the content of each request to determine if it is a “high
load” request, but this requiresa priori knowledge of request
behavior, which is infeasible in many distributed computing
systems.
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OS-based load balancing: Some distributed operating sys-
tems, such as Chorus [39], can distribute processes transpar-
ently across remote OS endsystem nodes. Other tools, such
as GNU Queue [40], allow users to execute remote processes
as if they were run on the local machine. Load balancing per-
formed at this level has the advantage that it can be imple-
mented transparently to applications. When loads are too high
at their current location, running applications can be migrated
to other nodes relatively transparently. As with the network-
based architecture, however, load balancing at this level makes
it hard to choose which metric to use when deciding where
to move processes since application-level metrics and policies
are not available at this level.

Middleware-based load balancing: Middleware-based
load balancing implementations reside between the applica-
tion and the OS/network. Middleware shields the application
from tedious and error-prone low-level OS complexities,
while also providing an interface to make load balancing at
this level as transparent as possible. Moreover, middleware
can be implemented with sufficient flexibility to overcome the
disadvantages in network-based and OS-based load balancing
architectures outlined above.

CORBA is an example of middleware that provides the fol-
lowing capabilities needed to implement an effective load bal-
ancing service:

� Application developers can customize how their system
is load balanced without being restricted by the limited–
and often hard-coded–metrics available in network-based
and OS-based load balancing.

� Applications can select at run-time the metric(s) used it
to guide load balancing decisions.

� New metrics can also be defined with relative ease by
separating interface from implementation,i.e., expos-
ing a consistent interface for each implementation. Sec-
tion 3.3.2 describes how a load monitoring component
can be implemented for a specific load metric, yet keep
the load balancing service load metric agnostic.

Moreover, a middleware-based load balancing service can
be used in conjunction with network- and OS-based load bal-
ancing facilities, which supports some interesting load balanc-
ing combinations. For example, if an application just balances
load based on request frequency, a middleware-based load bal-
ancer can delegate load balancing tasks to the network or OS
layers. Conversely, the middleware-based load balancer itself
could be load balanced at the network or OS level, thereby pro-
viding additional network/host resources for use by the mid-
dleware and other applications.

Other examples of middleware-based load balancing in-
clude some Web server implementations. Web servers can

forward HTTP requests [41] to a number of hosts that repli-
cate the target web page. Overall throughput can be increased
using any of the load balancing approaches presented in this
paper. The key is that the Web server performs the HTTP re-
quest load balancing.

The CORBA-based load balancing concepts detailed in this
paper are generally applicable to other middleware imple-
mentations, such as COM+ [42]. In fact, a middleware-
based load balancing service calledComponent Load Balanc-
ing (CLB) [43] is available from Microsoft for COM+ appli-
cations.

5.2 Related Research on CORBA-based Load
Balancing

CORBA load balancing can be implemented at several levels
in the OMG reference architecture, such as the following:

ORB-level: Load balancing can be implemented inside the
ORB itself. For example, a load balancing implementation can
take direct advantage of request invocation information avail-
able within the POA when it makes load balancing decisions.
Moreover, middleware resources used by each object can also
be monitored directly via this design, as described in [44]. For
example, Inprise’s VisiBroker implements a similar strategy,
where Visibroker’s object adapter [45] creates object refer-
ences that point to Visibroker’s Implementation Repository,
called the OSAgent, that plays both the role of an activation
daemon and a load balancer.

ORB-level techniques have the advantage that the amount
of indirection involved when balancing loads can be reduced
because load balancing mechanisms are closely coupled with
the ORBe.g., the length of communication paths is shortened.
However, ORB-level load balancing has the disadvantage that
it requires modifications to the ORB itself. Unless or un-
til such modifications are adopted by the OMG, they will be
proprietary, which reduces their portability and interoperabil-
ity. Therefore, TAO’s load balancing service does not rely on
ORB-level extensions or non-standard features.

TAO’s load balancing service does not require any modifi-
cations to the ORB core or object adapter. Instead, it takes
advantage of standard mechanisms in CORBA 2.X to imple-
ment adaptive load balancing. Like the Visibroker implemen-
tation and the strategies described in [44], TAO’s approach
is transparent to clients. Unlike the ORB-based approaches,
however, our implementation only uses standard CORBA fea-
tures. Thus, it can be ported to any C++ CORBA ORB that
implements the CORBA 2.2 or newer specification.

Service-level: Load balancing can also be implemented as a
CORBA service. For example, the research reported in [46]
extends the CORBA Event Service to support both load bal-
ancing and fault tolerance. Their system builds a hierarchy of
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event channelsthat fan out from event sourcesuppliersto the
event sinkconsumers. Each event consumer is assigned to a
different leaf in the event channel hierarchy, and both fixed and
adaptive load balancing is performed to distribute consumers
evenly. In contrast, TAO’s load balancing service can be used
for application defined objects, as well as event services.

Various commercial CORBA implementations also provide
service-level load balancing. For example, IONA’s Orbix [21]
can perform load balancing using the CORBA Naming Ser-
vice. Different replicas are returned to different clients when
they resolve an object. This design represents a typical non-
adaptive per-session load balancer, which suffers from the dis-
advantages described in Section 2.2. BEA’s WebLogic [47]
uses a per-request load balancing strategy, also described in
Section 2.2. In contrast, TAO’s load balancing service does
not incur the per-request network overhead of the BEA strat-
egy, yet can still adapt to dynamic changes in the load, unlike
Orbix’s load balancing service.

5.3 Future Work

This paper addresses an important part of the load balancing
service design space. In particular, we focus on client trans-
parency, centralized load balancing, stateless replicas, and
“best-effort” adaptive balancing policies. However, additional
steps can be taken to enhance TAO’s load balancing service.
For example, a complete solution should also provide other
capabilities, such as supporting:

� Transparent load balancing to server object replicas;

� Decentralized load balancing models;

� Distributed systems whose servers retain state;

� Enhanced server side scalability;

� Fault tolerant load balancing;

� Better quality of service; and

� Advanced replica management.

Below, we outline future work that we are conducting to ad-
dress these topics.

Server transparency: It is non-trivial to achieve transparent
server load balancing since obtaining feedback from a given
replica and controlling it without altering server application
code is hard. Fortunately, CORBA-based distributed systems
can achieve server transparency by taking advantage of the fol-
lowing recently standardized CORBA features:

� Portable Interceptors: Portable interceptors [28, 32]
can capture client requests transparently before they are dis-
patched to an object replica. For example, aserver request
interceptorcould be added to the ORB where a given replica

runs. Since interceptors reside within the ORB no modifica-
tion to server application code is necessary, other than regis-
tering the interceptor with the ORB when it starts running.

� CORBA Component Model (CCM): The CCM [30]
introduces containers to decouple application component
logic from the configuration, initialization, and administra-
tion of servers. In the CCM, a container creates the POA
and interceptors required to activate and control a component.
These are the same CORBA mechanisms used to implement
the server components in TAO’s load balancing service. The
standard CCM containers can be extended to implement auto-
matic load balancinggenericallywithout changing application
component behavior.

Decentralized load balancing models: The CORBA-based
load balancing architecture described in this paper is based on
a centralizedload balancing model. Specifically, it assumes
that one load balancer performs all load balancing tasks for a
particular distributed system. This model simplifies the design
and implementation of the load balancer, but introduces a sin-
gle point of failure, which can impede system reliability and
scalability.

One solution is to implement acooperativeload balancing
service. In this model, load balancing is facilitated through a
distributed set of load balancers that collectively form a single
logical load balancing service. This model has the advantage
that a single point of failure does not exist, and that no single
bottleneck point exists either. Load balancing decisions would
be made cooperatively,i.e., each load balancer could commu-
nicate with other balancers to decide how best to balance loads
across a given group of replicas.

Stateful replicas: Another issue we will address in future
work involves load balancing of stateful replicas. To load bal-
ance replicas that retain state, some means of maintaining state
consistency between replicas is necessary. Techniques used to
achieve this consistency include (1) using reliable multicast to
share the current state efficiently between multiple replicas, (2)
providing hooks within a replica that allow a load balancer to
perform state transfers explicitly to another less loaded replica
so that request servicing can continue there, or (3) a combi-
nation of both (1) and (2). Efficient load balancing of stateful
replicas is non-trivial, however, due to the additional load in-
curred by ensuring state consistency between replicas.

Load monitoring granularity: A server can have multiple
objects running in it. If there are a many objects in the server
then instantiating a load monitor (see Section 3.3.2) for each
object may not scale. For example, load monitor resources,
such as memory, CPU, and network bandwidth, can starve ob-
jects or processes running on the same server.

To improve the scalability of the load balancing system, we
plan to support a more scalable load monitoring granularity.
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Rather than instantiating a load monitor for each object on the
server, a single load monitor could be associated with a group
of objects that share a common load metric. For example, de-
spite the fact that objects may implement different interfaces,
all are load balanced based on CPU utilization.

We believe this design can significantly reduce the amount
of resources imposed by adding server load balancing support,
i.e., load monitors for a large number of objects residing in the
same server. However, it also introduces some complexities
to the load monitor implementation. For example, suppose a
load balancer detects a high load and issues a load advisory
to the shared load monitor. The load monitor must now decide
which objects sharing that load monitor should shed their load,
e.g., by forcing the client to contact the load balancer so that it
can be re-bound to another replica.

Other problems can occur when multiple object groups re-
side on a single server. Load balancing decisions for one ob-
ject group may actually interfere with load balancing decisions
for another object group. Suppose both object groups are bal-
anced based on CPU load. The load balancer detects low load
conditions for the first object group, causing requests to be sent
to that object group, which causes the CPU load to increase on
the given server. Since the second object group is load bal-
anced based on CPU load, the load balancer will detect a high
load on the server due to the increased load caused by the re-
quests sent to the first object group. At this point, the load
balancer will cause the second object group to reject requests.
Thus, the second object group is starved by the first object
group. In this scenario, the two object groups must be load
balanced collectively, which implies a common load monitor
must be used for both object groups.

Fault tolerant load balancing: By using the adaptive
CORBA-based load balancing architecture described in this
paper, clients that have not been forwarded to replicas can still
be denied service. Some form of fault tolerance is therefore
needed to prevent this situation. Fortunately, CORBA defines
a standardFault Tolerance[23] service to address these types
of failures.

Making a load balancing service fault tolerant by means of
Fault Tolerant CORBA can alleviate one of the inherent prob-
lems with centralized load balancing: its single point of fail-
ure. It can also ensure that state within replicas is consistent, in
the case of stateful replicas. This capability can simplify a load
balancer implementation since the load balancer can delegate
the task of ensuring state consistency between replicas to the
Fault Tolerance service. One implementation of the CORBA
Fault Tolerance service is DOORS [13, 48]. Since DOORS
itself is a CORBA service implemented using TAO integrating
it with TAO’s load balancer should be straightforward.

Improved quality of service support: As mentioned in
Section 3.3.4, it is hard to ensure that loads across replicas stay

balanced evenly when the overall state of distributed systems
changes rapidly. For example, several new replicas may be
added to an object group dynamically, which cannot be pre-
dicted by a load balancer. Likewise, a poorly designed load
balancing strategy cannot handle degenerate load balancing
conditions, such as unstable replica loads.

Some approaches that can be used to improve the effective-
ness of a given load balancing strategy are:

� Take into account past load trends in an effort to antici-
pate future load conditions.

� Take advantage of sophisticated algorithms based on con-
trol theory that are designed specifically to restore system
equilibrium when it is perturbed by external forces. In
the case of load balancing, external forces could be addi-
tional client requests or transient loads generated by other
applications running over the network and end-systems.

These approaches can improve the stability of adaptive load
balancing strategies so that they perform better under heavy
loads or loads that change rapidly.

Advanced replica management: It is common practice to
design a service that balances loads across a group of repli-
cas supplied to it by applications explicitly. In particular,
TAO’s load balancing service described in this paper makes
no attempt to control replica lifetime. More advanced solu-
tions, however, can determine how replicas are created and
destroyed.

For example, suppose there are only two replicas in a replica
group and that their loads are high. Without additional repli-
cas, it may be hard to maintain balanced loads. A load balanc-
ing service with the ability to create and destroy replicas on-
demand may provide more flexible load balancing strategizes,
e.g., a load balancer could create a replica at a third location in
an effort to decrease the workload on the two initial replicas.

Those familiar with fault tolerance services may recognize
a similarity between their replica management strategies and
those of load balancing services. Both types of services can
control replica lifetimes,e.g., by creating replicas on-demand.
A fault tolerance service requires sufficient replicas to provide
fault recovery, while a load balancing service requires enough
replicas to provide balanced loads. Although the underlying
functionality for each type of service is different, the interface
exposed by each service can be similar. Therefore, the IDL in-
terfaces exposed by TAO’s next-generation load balancing ser-
vice under development currently is based largely on the IDL
interfaces standardized by the Fault Tolerant CORBA specifi-
cation [23].
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6 Concluding Remarks

As network-centric computing becomes more pervasive and
applications become more distributed, the demand for greater
scalability and dependability is increasing. Distributed system
scalability can degrade significantly, however, when servers
become overloaded by the volume of client requests. To al-
leviate such bottlenecks, load balancing mechanisms can be
used to distribute system load across object replicas residing
on multiple servers.

Load can be balanced at several levels, including the net-
work, OS, and middleware. Network-based and OS-based
load balancing architectures suffer from several limitations:

� The lack of flexibility arises from the inability to sup-
port application-definedmetrics at run-time when mak-
ing load balancing decisions.

� The lack of adaptability occurs due to the absence of
load-related feedback from a given set of replicas, as well
as the inability to control if and when a given replica
should accept additional requests.

Thus, middleware-based load balancing architectures–
particularly those based on standard CORBA–have been
devised to overcome the limitations with network-based and
OS-based load balancing mechanisms outlined above.

This paper describes the design and performance of adap-
tive middleware-based load balancing mechanisms developed
using the standard CORBA features provided by the TAO
ORB [6]. Though CORBA provides solutions for many dis-
tributed system challenges, such as predictability, security,
transactions, and fault tolerance, it still lacks standard solu-
tions to tackle other important challenges faced by distributed
systems architects and developers. Chief among those missing
facilities are load balancing, state caching, and state replica-
tion.

The CORBA-based load balancing service provided by
TAO fills part of this gap by allowing distributed applications
to be load balanced adaptively and efficiently. This service
increases overall system throughput by distributing requests
across multiple back-end server replicas without increasing
round-trip latency substantially or assuming predictable, or
homogeneous loads. As a result, developers can concentrate
on their core application behavior, rather than wrestling with
complex infrastructure mechanisms needed to make their ap-
plication distributed, scalable, and dependable.

TAO’s load balancing service implementation is based en-
tirely on standard features in CORBA, which demonstrates
that CORBA technology has matured to the point where many
higher-level services can be implemented efficiently without
requiring extensions to the ORB or its communication proto-
cols. Exploiting the rich set of primitives available in CORBA

still requires specialized skills, however, along with the use of
somewhat poorly documented features. We believe that fur-
ther research and documentation of the effective architectures
and design patterns used in the implementation of higher-level
CORBA services is required to advance the state of the prac-
tice and to allow application developers to make better deci-
sions when designing their systems.

TAO and TAO’s load balancing service have been applied
to a wide range of distributed applications, including many
telecommunication systems, aerospace/military systems,
online trading systems, medical systems, and manufacturing
process control systems. All the source code, examples,
and documentation for TAO, its load balancing service,
and its other CORBA services is freely available from URL
http://www.cs.wustl.edu/ �schmidt/TAO.html .
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A Overview of the CORBA Reference
Architecture

CORBA Object Request Brokers (ORBs) allow clients to in-
voke operations on distributed objects without concern for ob-
ject location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware [5]. Fig-
ure 17 illustrates the key components in the CORBA reference
model [49] that collaborate to provide this degree of portabil-
ity, interoperability, and transparency.12 Each component in

ORB  CORE

OBJECT

ADAPTER

GIOP/IIOP

IDL
STUBS

operation()
in  argsin  args

out  args + return  valueout  args + return  value

CLIENTCLIENT
OBJECTOBJECT
((SERVANTSERVANT))

OBJOBJ

REFREF

STANDARD  INTERFACESTANDARD  INTERFACE STANDARD  LANGUAGE  MAPPINGSTANDARD  LANGUAGE  MAPPING

ORB-ORB-SPECIFIC  INTERFACESPECIFIC  INTERFACE STANDARD  PROTOCOLSTANDARD  PROTOCOL

IDLIDL
SKELETONSKELETON

IDL
COMPILER

IDL
COMPILER

Figure 17: Key Components in the CORBA 2.x Reference
Model

the CORBA reference model is outlined below:

Client: A client is a role that obtains references to objects
and invokes operations on them to perform application tasks.
Objects can be remote or collocated relative to the client. Ide-
ally, a client can access a remote object just like a local object,
i.e., object !operation(args) . Figure 17 shows how
the underlying ORB components described below transmit re-
mote operation requests transparently from client to object.

Object: In CORBA, an object is an instance of an OMG
Interface Definition Language (IDL) interface. Each object
is identified by anobject reference, which associates one or
more paths through which a client can access an object on a
server. Anobject ID associates an object with its implemen-
tation, called a servant, and is unique within the scope of an
Object Adapter. Over its lifetime, an object has one or more
servants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but
always through objects identified by object references.

12This overview only focuses on the CORBA components relevant to this
paper. For a complete synopsis of CORBA’s components see [49].

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
An ORB Core is implemented as a run-time library linked
into client and server applications. For objects executing re-
motely, a CORBA-compliant ORB Core communicates via a
version of the General Inter-ORB Protocol (GIOP), such as
the Internet Inter-ORB Protocol (IIOP) that runs atop the TCP
transport protocol. In addition, custom Environment-Specific
Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs implement theProxy pattern [17] and
provide a strongly-typed,static invocation interface(SII) that
marshals application parameters into a common message-level
representation. Conversely, skeletons implement theAdapter
pattern [17] and demarshal the message-level representation
back into typed parameters that are meaningful to an applica-
tion.

IDL Compiler: An IDL compiler transforms OMG IDL
definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [50].

Object Adapter: An Object Adapter is a composite compo-
nent that associates servants with objects, creates object refer-
ences, demultiplexes incoming requests to servants, and col-
laborates with the IDL skeleton to dispatch the appropriate
operation upcall on a servant. Object Adapters enable ORBs
to support various types of servants that possess similar re-
quirements. This design results in a smaller and simpler ORB
that can support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties.
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