
Model-driven QoS Provisioning for Distributed
Real-time and Embedded Systems

Jaiganesh Balasubramanian†, Sumant Tambe†, Balakrishnan Dasarathy‡, Aniruddha Gokhale†,
Douglas C. Schmidt†, and Shrirang Gadgil‡

†Department of EECS, Vanderbilt University, Nashville, TN, USA
‡Telcordia Technologies, Piscataway, NJ, USA

Abstract— Distributed real-time and embedded (DRE)
systems are composed of applications with diverse CPU
utilization requirements. These applications participate in
many end-to-end application flows with diverse network
bandwidth requirements. Prior research has advanced the
state-of-the-art on (1) bin-packing algorithms, such as
first fit decreasing (FFD), to allocate per-application CPU
resources, and (2) network-layer quality-of-service (QoS)
mechanisms, such as differentiated services (DiffServ), to
manage per-flow network resources. Relatively little work,
however, has focused on how applications can be deployed
and configured to leverage such advances for addressing
their end-to-end QoS requirements.

This paper provides two contributions to the study
of middleware that supports QoS-aware deployment and
configuration of applications in DRE systems. First, we
describe how our NetQoPE model-driven component mid-
dleware framework shields applications from the complex-
ities of lower-level CPU and network QoS mechanisms
to simplify (1) the specification of per-application CPU
and per-flow network QoS requirements, (2) resource
allocation and validation decisions (such as admission
control), and (3) the enforcement of per-flow network
QoS at runtime. Second, we empirically evaluate how well
NetQoPE provides QoS assurance for applications in DRE
systems. Our results demonstrate that NetQoPE provides
flexible QoS configuration and provisioning capabilities by
leveraging CPU and network QoS mechanisms without
modifying application source code.

I. INTRODUCTION

Emerging trends. Component middleware, such
as CORBA Component Model (CCM), J2EE, and

This work is supported in part or whole by DARPA Adaptive and
Reflective Middleware Systems Program Contract NBCH-C-03-0132.
Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the Department of the Interior, National Business
Center, Acquisition Services Division, Southwest Branch or DARPA.
An earlier version of this paper appeared at the Proceedings of the
14th IEEE Real-time and Embedded Technology and Applications
Symposium (RTAS’2008) [1]

.NET, is increasingly being used to develop and
deploy next-generation distributed real-time and em-
bedded (DRE) systems, such as shipboard com-
puting environments [2], inventory tracking sys-
tems [3], avionics mission computing systems [4],
and intelligence, surveillance and reconnaissance
systems [5]. These systems consist of applications
that participate in different end-to-end application
flows and operate in dynamic environments with
varying levels of CPU, network connectivity, and
bandwidth availability. CPU and network resources
in such target environments must be configured so
that DRE applications can have their requirements
satisfied end-to-end.

Network quality of service (QoS) mechanisms,
such as integrated services (IntServ) [6] and dif-
ferentiated services (DiffServ) [7], support a range
of network service levels for applications in DRE
systems. To leverage the services of these QoS
mechanisms, however, applications have conven-
tionally used relatively low-level APIs provided by
the switching elements.

Moreover, to ensure end-to-end QoS, applications
must be deployed in appropriate end hosts so that
required CPU and network resources for the appli-
cation flow between those hosts are provided. To
configure required CPU resources for applications,
prior work has focused on resource allocation algo-
rithms [8], [9] that satisfy timing requirements of
applications in a DRE system. After the required
resources are provisioned and the networking ele-
ments are configured correctly, applications invoke
remote operations by adding a service level-specific
identifier (e.g., DiffServ codepoint (DSCP)) to the
IP packets. DiffServ-enabled network routers parse
the IP packets and provide the appropriate service
level-specific packet forwarding behavior.

2

Addressing limitations of current approaches.
Although the network and CPU QoS mechanisms
described above are powerful, it is tedious and error-
prone to develop applications that interact directly
with low-level QoS mechanism APIs written imper-
atively in third-generation languages, such as C++
or Java. For example, applications must make mul-
tiple invocations on network QoS mechanisms to
accomplish key network QoS activities, such as QoS
mapping, admission control, and packet marking.
To address part of this problem, middleware-based
network QoS provisioning solutions [10], [11], [12],
[13] have been developed that allow applications
to specify their coordinates (source and destination
IP and port addresses) and per-flow network QoS
requirements via higher-level frameworks. The mid-
dleware frameworks—rather than the applications—
are thus responsible for converting high-level spec-
ifications of QoS intent into low-level network QoS
mechanism APIs.

Although middleware frameworks alleviate many
accidental complexities of low-level network QoS
mechanism APIs, they can still be hard to evolve
and extend. In particular, application source code
changes may be necessary whenever changes oc-
cur to the deployment contexts (e.g., source and
destination nodes of applications), per-flow require-
ments, IP packet identifiers, or middleware APIs.
Moreover, applications must explicitly determine
the optimal source and destination nodes before they
can obtain network performance assurances via the
underlying network QoS mechanisms.

To address the limitations with current ap-
proaches described above, therefore, what is needed
are higher-level integrated CPU and network QoS
provisioning technologies that can completely de-
couple application source code from the variabil-
ities (e.g., different source and destination node
deployments, different QoS requirement specifica-
tions) associated with their QoS provisioning needs.
This decoupling enhances application reuse across
a wider range of deployment contexts (e.g., differ-
ent instance deployments each with different QoS
requirements), thereby increasing deployment flexi-
bility.

Solution approach → A model-driven de-
ployment and configuration middleware frame-
work called Network QoS Provisioning Engine
(NetQoPE) that integrates CPU and network QoS
provisioning via declarative domain-specific mod-

eling languages (DSML) [14] to raise the level
of abstraction of DRE system design higher than
using imperative third-generation programming lan-
guages. NetQoPE allows system engineers and soft-
ware developers to perform deployment-time anal-
ysis (such as schedulability analysis [15]) of non-
functional system properties (such as network QoS
assurances for end-to-end application flows). The
result is enhanced deployment-time assurance that
application QoS requirements will be satisfied.

NetQoPE deploys and configures component
middleware-based applications in DRE systems and
enforces their network and CPU QoS requirements
using the four-stage (i.e., design-, pre-deployment-
, deployment-, and run-time) approach shown in
Figure 1. The innovative elements of NetQoPE’s

1: NetQoPE’s Four-stage Architecture

four-stage architecture include the following:
• The Network QoS Specification Language

(NetQoS), which is a DSML that supports design-
time specification of per-application CPU resource
requirements, as well as per-flow network QoS
requirements, such as bandwidth and delay across a
flow. By allowing application developers to focus on
functionality—rather than the different deployment
contexts (e.g., different CPU, bandwidth, and delay
requirements) where they will be used—NetQoS
simplifies the deployment of applications in contexts
that have different CPU and network QoS needs,
e.g., different bandwidth requirements.
• The Network Resource Allocation Frame-

work (NetRAF), which is a middleware-based re-
source allocator framework that uses the network
QoS requirements captured by NetQoS as input at
pre-deployment time to help guide QoS provision-
ing requests on the underlying network QoS mecha-

3

nism at deployment time. By providing application-
transparent, per-flow resource allocation capabil-
ities at pre-deployment-time using a Bandwidth
Broker [16], NetRAF provides network bandwidth
guarantees for application flows.

• The Network QoS Configurator (NetCON),
which is a middleware-based network QoS con-
figurator that provides deployment-time configura-
tion of component middleware containers. NetCON
adds flow-specific identifiers (e.g., DSCPs) to IP
packets at runtime when applications invoke remote
operations. By providing container-mediated and
application-transparent capabilities to enforce run-
time network QoS, NetCON allows DRE systems
to leverage the QoS services of configured routers
without modifying application source code.

Figure 1 shows how the output of each stage in
NetQoPE serves as input for the next stage, which
helps automate the deployment and configuration of
DRE applications with network QoS support.

Paper organization. The remainder of the paper
is organized as follows: Section II describes a case
study that motivates common requirements associ-
ated with provisioning network QoS for DRE sys-
tems; Section III explains how NetQoPE addresses
those requirements via its model-driven component
middleware framework; Section IV evaluates the
capabilities provided by NetQoPE; Section V com-
pares our work on NetQoPE with related research;
and Section VI presents concluding remarks and
lessons learned.

II. MOTIVATING NETQOPE’S QOS
PROVISIONING CAPABILITIES

To demonstrate and evaluate NetQoPE’s model-
driven, middleware-guided network and CPU QoS
provisioning capabilities this section presents a case
study of a representative DRE system in an office
enterprise security and hazard sensing environment,
as which is shown in Figure 2. Enterprises of-
ten transport network traffic using an IP network
over high-speed Ethernet. Network traffic in an
enterprise can be grouped into several classes, in-
cluding (1) e-mail, videoconferencing, and normal
business traffic, and (2) sensory and imagery traf-
fic of the safety/security hardware (such as fire/-
smoke sensors) installed on office premises. Our
case study assumes that safety/security traffic is
more critical than other traffic, and thus focuses on

2: Network Configuration in an Enterprise Security
and Hazard Sensing Environment

how NetQoPE’s model-driven, middleware-guided
mechanisms help ensure the specified QoS for this
type of traffic in the presence of other traffic that
shares the same network.

Our case study uses software controllers to man-
age hardware devices, such as sensors and monitors,
shown in Figure 2. Each sensor/camera software
controller filters the sensory/imagery information
and relays them to the monitor software controllers
that display the information. Modern office enter-
prises deploy many sensors and monitors, which
may have different CPU utilization requirements.
Moreover, communication between sensors may
have various network QoS requirements, such as
different network bandwidth requirements, e.g., 20
Mbps vs 5 Mbps.

The software controllers in our case study were
developed using Lightweight CCM (LwCCM) [17],
which is described in Sidebar 1. Moreover, the traf-
fic between these software controllers uses a Band-
width Broker [16] to manage network resources
using DiffServ network QoS mechanisms. Although
the case study in this paper focuses on LwCCM
and DiffServ, NetQoPE is designed for use with
other network QoS mechanisms (e.g., IntServ) and
component middleware technologies (e.g., J2EE).Component-based applications in our case study
use Bandwidth Broker services via the following
middleware-guided steps: (1) network QoS require-
ments are specified on each application flow, along
with information on the source/destination IP/port
addresses that were determined by bin packing al-
gorithms, (2) the Bandwidth Broker is invoked to re-
serve network resources along the network paths for
each application flow, configure the corresponding

4

Sidebar 1: Overview of Lightweight
CORBA Component Model

Our case study is based on Lightweight CCM
(LwCCM). Application functionality in LwCCM is pro-
vided through components that collaborate with other
components via ports to create component assemblies.
There are four types of CCM ports: facet, receptacle,
event source, and event sink. CCM components provide
services to other components by either synchronous
communication in the form of operations on facet/-
receptable ports or asynchronous communication in the
form of eventtypes exchanged between event source/sink
ports.

Assemblies in LwCCM are described using XML
descriptors (mainly the deployment plan descriptor) de-
fined by the OMG D&C [18] specification. The de-
ployment plan includes details about the components,
their implementations, and their connections with other
components. The deployment plan also has a placeholder
configProperty that is associated with elements (e.g.,
components, connections) to specify their properties
(e.g., priorities) and resource requirements. Components
are hosted in containers that provide the runtime op-
erating environment (e.g., load balancing, security, and
event notification) for components to invoke remote
operations.

network routers, and obtain per-flow DSCP values
to help enforce network QoS, and (3) remote op-
erations are invoked with appropriate DSCP values
added to the IP packets so that configured routers
can provide per-flow differentiated performance.
Section III describes the challenges we encountered
when implementing these steps in the context of
our case study and shows how NetQoPE’s four-
stage architecture in Figure 1 helps resolve these
challenges.

III. NETQOPE’S MULTISTAGE NETWORK QOS
PROVISIONING ARCHITECTURE

As discussed in Section I, conventional tech-
niques for CPU allocation and providing network
QoS to applications incur several limitations, includ-
ing modifying application source code to specify
deployment context-specific network QoS require-
ments and integrate functionality from network QoS
mechanisms at runtime. This section describes how
NetQoPE addresses these limitations via its model-
driven, middleware-guided network QoS provision-
ing architecture.

A. Challenge 1: Alleviating Complexities in CPU
and Network QoS Requirements Specification

Context.: Every component’s CPU utilization
requirements guide the selection of the physical
node to which it is deployed. After identifying the
nodes on which to deploy the components, each
application flow in a DRE system can specify a
required level of service (e.g., high priority vs.
low priority), the source and destination IP and
port addresses, and ingress and egress bandwidth
requirements. NetQoPE uses this information to
configure network resources between two endpoint
nodes to provide the required QoS.
Problem. Multiple feasible CPU allocations are
possible with a given set of component CPU re-
quirements. For example, a component could be
deployed on any node that has the capacity available
to satisfy the component’s CPU utilization require-
ment. Depending on the node chosen to deploy the
component, the deployment of other components in
the system can also change. Manually enumerating
all these possible CPU allocation permutations is
hard.

Network QoS requirements can affect CPU al-
locations. For example, a deployment plan for a
component with multiple CPU allocations (e.g.,
component A could be deployed on either node X or
node Y) must ensure the deployment also satisfies
network QoS requirements. Source and destination
IP address are therefore needed to specify network
QoS requirements properly.

Network QoS requirements can also change de-
pending on the deployed context. For example,
in our case study from Section II, multiple fire
sensors are deployed at different importance levels
and each sensor sends its sensory information to its
corresponding monitors. Fire sensors deployed in
the parking lot have a lower importance than those
in the server room. The sensor to monitor flows
thus have different network QoS requirements, even
though the reusable software controllers managing
the fire sensor and the monitor have the same
functionality.

Conventional techniques, such as hard-coded API
approaches [13], require application source code
modifications for each context. Writing this code
manually to specify both CPU and network QoS re-
quirements is tedious, error-prone, and non-scalable.
In particular, it is hard to envision at development

5

time all the contexts in which source code will be
deployed.
Solution approach → Model-driven declarative
CPU and network requirements specification.
NetQoPE provides a DSML called the Network QoS
Specification Language (NetQoS), which is built
using Generic Modeling Environment (GME) [19]
and the Platform Independent Component Modeling
Language (PICML) [20]. DRE system developers
can use NetQoS to (1) model application elements,
such as interfaces, components, connections, and
component assemblies, (2) specify CPU utilization
of components, and (3) specify the network QoS
classes, such as HIGH PRIORITY (HP), HIGH RELI-
ABILITY (HR), MULTIMEDIA (MM), and BEST EF-
FORT (BE), bi-directional bandwidth requirements
on the modeled application elements. NetQoS’s
network QoS classes correspond to the DiffServ
levels of service provided by our Bandwidth Bro-
ker [21].1 For example, the HP class represents the
highest importance and lowest latency traffic (e.g.,
fire detection reporting in the server room) whereas
the HR class represents traffic with low drop rate
(e.g., surveillance data).

In LwCCM, components communicate using
ports (described in Sidebar 1) that provide
application-level communication endpoints. NetQoS
provides capabilities to annotate communication
ports with the network QoS requirement capabilities
described above. In certain application flows (e.g.,
a monitor requesting location coordinates from a
fire sensor in our case study) clients control the
network priorities at which requests/replies are sent.
In other application flows (e.g., a temperature sensor
sends temperature sensory information to monitors),
servers control the reception and processing of client
requests. To support both models of communication
(i.e., whether clients vs. servers control network
QoS for a flow), NetQoS supports annotating each
bi-directional flow using either:

• The CLIENT_PROPAGATED network priority
model, which allows clients to request real-
time network QoS assurance even in the pres-
ence of network congestion or

• The SERVER_DECLARED network priority
model, which allows servers to dictate the ser-
vice that they wish to provide to the clients to

1NetQoS’s DSML capabilities can also be extended to provide
requirements specification conforming to other network QoS mech-
anisms, such as IntServ.

prevent clients from wasting network resources
on non-critical communication.

Defining network QoS specifications in source
code or through NetQoS is a human-intensive pro-
cess. Errors in these specifications may remain
undetected until later stages of development, such as
deployment and runtime, when they are much more
costly to identify and fix. To identify common errors
in network QoS requirement specification early in
the development phase, NetQoS uses built-in con-
straints specified via the OMG Object Constraint
Language (OCL) that check the application model
annotated with network priority models.

For example, NetQoS detects and flags specifi-
cation errors, such as negative or zero bandwidth.
It also enforces the semantics of network priority
models via syntactic constraints in its DSML. For
example, the CLIENT_PROPAGATED model can be
associated with ports in the client role only (e.g., re-
quired interfaces), whereas the SERVER_DECLARED

model can be associated with ports in the server
role only (e.g., provided interfaces). Figure 3 shows
other examples of network priority models supports
by NetQoS.

3: Network QoS Models Supported by NetQoS
A server using the SERVER_DECLARED network

priority model can also dictate that the total ingress
bandwidth from all communicating clients cannot
exceed a designated network bandwidth (e.g., 30
Mbps). NetQoS checks the aggregation of egress
bandwidth requested using all clients that commu-
nicate with the server and raise an error if the total
exceeds the preferred total bandwidth. Without this
capability, applications could fail at runtime where
clients invoke remote operations on servers after
reserving more network bandwidth than the server’s
reply will use, which wastes available network
bandwidth that could be used by other application
flows. NetQoS provides this capability so applica-
tion deployers can provision the underlying network

6

QoS mechanisms efficiently and flexibly.
After a model has been created and checked for

type violations using built-in constraints, network
resources must be allocated, which requires iden-
tifying component source and destination nodes.
NetQoS allows the specification of CPU utilization
requirements of each component and also the tar-
get environment where components are deployed.
NetQoS’s model interpreter traverses CPU require-
ments of each application component and generates
a set of feasible deployment plans (described in
Sidebar 1) using CPU allocation algorithms, such
as first fit, best fit, and worst fit, as well as max and
decreasing variants of these algorithms. NetQoS can
be used to choose the desired CPU allocation algo-
rithm and to generate the appropriate deployment
plans automatically, thereby shielding developers
from tedious and error-prone manual component-
to-node placements.

To perform network resource allocations (de-
scribed in Section III-B), NetQoS’s model inter-
preter captures the details about the components,
their deployment locations (determined by the CPU
allocation algorithms), and the network QoS re-
quirements for each application flow they are part
of the deployment plan configProperty tags (see
Sidebar 1). Section III-B describes how a later
stage in NetQoPE allocates network resources based
on requirements specified in the deployment plan
descriptor.
Application to the case study. Figure 4 shows
a NetQoS model that highlights many of the ca-
pabilities described above. In this model, multiple

4: Applying NetQoS Capabilities to the Case Study
instances of the same reusable application compo-
nents (e.g., FireSensorParking and FireSensorServer
components) are annotated with different QoS at-
tributes using an intuitive drag and drop technique.

Specifying QoS requirements via NetQoS is much
simpler than modifying application code for each
deployment context, as shown in Section IV-C.

Our case study also has scores of application
flows with different client- and server-dictated net-
work QoS specifications, which are modeled using
CLIENT_PROPAGATED and SERVER_DECLARED

network priority models, respectively. The well-
formedness of these specifications are checked using
NetQoS’s built-in constraints. In addition, the same
QoS attribute (e.g., HR_1000 in Figure 4) can be
reused across multiple connections, which increases
the scalability of expressing requirements for the
number of connections prevalent in large-scale DRE
systems, such as our enterprise office environment
case study.

B. Challenge 2: Alleviating Complexities in Net-
work Resource Allocation and Configuration

Context. After deciding where to deploy compo-
nents on source and destination nodes, DRE systems
must communicate with a network QoS mechanism
API (e.g., Bandwidth Broker for DiffServ networks)
to allocate and configure network resources based
on the network QoS requirements specified on the
application flows.
Problem. It is often undesirable to tightly couple
application components (e.g., the temperature sensor
software controller code in our case study) with a
network QoS mechanism API. This coupling com-
plicates deploying the same application component
in a different context (e.g., the temperate sensor
software controllers for sensing the temperature at
the server room and the conference room) with
different network QoS requirements. Manually pro-
gram application components to handle all possible
combinations of network resources is tedious and
error-prone.

Moreover, network QoS mechanism APIs that
allocate network resources require IP addresses for
hosts where the resources are allocated. Compo-
nents that require network QoS must therefore know
the placement of the components with which they
communicate. This component deployment infor-
mation may unknown at development time since
deployments are often not finalized until CPU place-
ment algorithms decide them. Maintaining such
deployment information at the source code level
or querying it at runtime is unnecessarily complex.

7

Ideally, network resources should be allocated with-
out modifying application source code and should
handle difficulties associated with specifying appli-
cation source and destination nodes, which could
vary depending on the deployment context.
Solution approach → Middleware-based Re-
source Allocator Framework. NetQoPE’s Net-
work Resource Allocator Framework (NetRAF) is
a resource allocator engine that allocates network
resources for DRE systems using DiffServ network
QoS mechanisms. As shown in Figure 5, input to
NetRAF is the set of feasible deployment plans
generated by NetQoS model interpreter, which also
embeds per-flow network QoS requirements.

5: NetRAF’s Network Resource Allocation Capa-
bilities

The modeled deployment context could have
many instances of the same reusable source code,
e.g., the temperature sensor software controller
could be instantiated two times: one for the server
room and one for the conference room. When using
NetQoS, however, application developers annotate
only the connection between the instance at the
server room and the monitor software controller.
Since NetRAF operates on the deployment plan
that captures this modeling effort, network QoS
mechanisms are used only for the connection on
which QoS attributes are added. NetRAF thus im-
proves conventional approaches [11] that modify
application source code to work with network QoS
mechanisms, which become complex when source
code is reused in a wide range of deployment
contexts.

NetRAF’s Network Resource Allocator Manager
accepts application QoS requests at pre-deployment-
time. It processes these requests in conjunction
with a DiffServ Allocator, using deployment specific
information (e.g., source and destination nodes) of
components and per-flow network QoS require-
ments embedded in the deployment plan created by

NetQoS. This capability shields applications from
interacting directly with complex APIs of network
QoS mechanisms, thereby enhancing the flexibil-
ity NetQoPE for range of deployment contexts.
Moreover, since NetRAF provides the capability
to request network resource allocations on behalf
of components, developers need not write source
code to request network resource allocations for
all applications flows, which simplifies the creation
and evolution of application logic, as shown in
Section IV-C.

While interacting with network QoS mechanism
specific allocators (e.g., a Bandwidth Broker), Ne-
tRAF’s Network Resource Allocator Manager may
need to handle exceptional conditions, such as fail-
ures in resource allocation. Failures during alloca-
tion may occur due to insufficient network resources
between the source and destination nodes hosting
the components. Although NetQoS checks the well-
formedness of network requirement specifications at
application level, it cannot identify every situation
that may lead to failures during actual resource
allocation.

To handle failure scenarios gracefullly, NetRAF
provides hints to regenerate CPU placements for
components using the CPU allocation algorithm
selected by application developers using NetQoS.
For example, if network resource allocations fails
for a pair of components deployed in a particu-
lar source and destination node, NetRAF requests
revised CPU placements by adding a constraint to
not deploy the components in the same source and
destination nodes. After the revised CPU placements
are computed, NetRAF will (re)attempt to allocate
network resources for the components.

NetRAF automates the network resource alloca-
tion process by iterating over the set of deployment
plans until a deployment plan is found that satisfies
both types of requirements (i.e., both the CPU and
network resource requirements), thereby simplifying
system deployment via the following two-phase
protocol:

1) It first invokes the API of QoS mechanism-
specific allocator, providing it one flow at
a time without actually reserving network
resources.

2) It then commits the network resources if and
only if the first phase is completely successful
and resources for all the flows can be success-
fully reserved.

8

This protocol prevents the delay that would other-
wise be incurred if resources allocated for a subset
of flows must be released due to failures occurring at
a later allocation stage. If no deployment plan yields
a successful resource allocation, the network QoS
requirements of component flows must be reduced
using NetQoS.
Application to the case study. Since our case study
is based on DiffServ, NetRAF uses the DiffServ
Allocator to allocate network resources, which in
turn invokes the Bandwidth Broker’s admission con-
trol capabilities [21] by feeding it one application
flow at a time. If all flows cannot be admitted, Ne-
tRAF provides developers with an option to modify
the deployment context since applications have not
yet been deployed. Example modifications include
changing component implementations to consume
fewer resources or change the source/destination
nodes. As shown in Section IV-C, this capability
helps NetRAF incur lower overhead than conven-
tional approaches [10], [11] that perform validation
decisions when applications are deployed and oper-
ated at runtime.

NetRAF’s DiffServ Allocator instructs the Band-
width Broker to reserve bi-directional resources in
the specified network QoS classes, as described in
Section III-A. The Bandwidth Broker determines
the bi-directional DSCPs and NetRAF encodes
those values as connection attributes in the deploy-
ment plan. In addition, the Bandwidth Broker uses
its Flow Provisioner [16] to configure the routers
to provide appropriate per-hop behavior when they
receive IP packets with the specified DSCP values.
Section III-C describes how component containers
are auto-configured to add these DSCPs when ap-
plications invoke remote operations.

C. Challenge 3: Alleviating Complexities in Net-
work QoS Settings Configuration

Context.: After network resources are allo-
cated and network routers are configured, applica-
tions in DRE systems need to invoke remote oper-
ations using the chosen network QoS settings (e.g.,
DSCP markings) so the network can differentiate
application traffic and provision appropriate QoS to
each flow.
Problem. Application developers have historically
written code that instructs the middleware to provide
the appropriate runtime services, e.g., DSCP mark-
ings in IP packets [12]. For example, fire sensors in

our case study from Section II can be deployed in
different QoS contexts that are managed by reusable
software controllers. Modifying application code to
instruct the middleware to add network QoS settings
is tedious, error-prone, and non-scalable because (1)
the same application code could be used in different
contexts requiring different network QoS settings
and (2) application developers might not (and ide-
ally should not) know the different QoS contexts in
which the applications are used during the develop-
ment process. Application-transparent mechanisms
are therefore needed to configure the middleware to
add these network QoS settings depending on the
application deployment context.
Solution approach → Deployment and run-
time component middleware mechanisms. Side-
bar 1 describes how LwCCM containers provide a
runtime environment for components.2 NetQoPE’s
Network QoS Configurator (NetCON) can auto-
configure these containers by adding DSCPs to IP
packets when applications invoke remote operations.
NetRAF performs network resource allocations, de-
termines the bi-directional DSCP values to use for
each application flow and encodes those DSCP
values in the deployment plan, as shown in Figure 6.

6: NetCON’s Container Auto-configurations

During deployment, NetCON parses the deploy-
ment plan and its connection tags to determine (1)
source and destination components, (2) the network
priority model to use for their communication, (3)
the bi-directional DSCP values, and (4) the target
nodes on which the components are deployed. Net-
CON deploys the components on their respective
containers and creates the associated object refer-
ences for use by clients in a remote invocation.
When a component invokes a remote operation in

2Other component middleware provides similar capabilities via
containers, e.g., EJB applications interact with containers to obtain
the right runtime operating environment.

9

LwCCM, its container’s context information pro-
vides the object reference of the destination com-
ponent.

NetCON’s container programming model can
transparently add DSCPs and enforce the network
priority models described in Section III-A. To
support the SERVER_DECLARED network priority
model, NetCON encodes a SERVER_DECLARED

policy and the associated request/reply DSCPs on
the server’s object reference. When a client invokes
a remote operation with this object reference, the
client-side middleware checks the policy on the
object reference, decodes the request DSCP, and
includes it in the request IP packets. Before sending
the reply, the server-side middleware checks the
policy again and the reply DSCP is added to the
associated IP packets.

To support the CLIENT_PROPAGATED network
priority model, NetCON configures the containers
to apply a CLIENT_PROPAGATED policy at the
point of binding an object reference with the client.
In contrast to the SERVER_DECLARED policy, the
CLIENT_PROPAGATED policy can be changed at
runtime and different clients can access the servers
with different network priorities. When the source
component invokes a remote operation using the
policy-applied object reference, NetCON adds the
associated forward and reverse DSCP markings on
the IP packets, thereby providing network QoS to
the application flow. A NetQoPE-enabled container
can therefore transparently add both forward and re-
verse DSCP values when components invoke remote
operations using the container services.
Application to the case study. In our case study
shown in Figure 4, the FireSensor software con-
troller component is deployed in two different in-
stances to control the operation of the fire sensors
in the parking lot and the server room. There
is a single MonitorController software component
(MonitorController3 in Figure 4) that communicates
with the deployed FireSensor components. Due to
differences in importance of the FireSensor com-
ponents deployed, however, the MonitorController
software component the uses CLIENT_PROPAGATED

network priority model to communicate with the
FireSensor components with different network QoS
requirements.

After software components are modeled us-
ing NetQoS—and the required network resources
are allocated using NetRAF—NetCON config-

ures the container hosting the MonitorController3
component with the CLIENT_PROPAGATED policy,
which corresponds to the CLIENT_PROPAGATED

network priority model defined on the component
by NetQoS. This capability is provided automati-
cally by containers to ensure that the appropriate
DSCP values are added to both forward and re-
verse communication paths when the MonitorCon-
troller3 component communicates with either the
FireSensorParking or FireSensorServer component
at runtime. Communication between the Monitor-
Controller3 and the FireSensorParking or FireSen-
sorServer components thus receives the required
network QoS since NetRAF configures the routers
between the MonitorController3 and FireSensor-
Parking components with the source IP address,
destination IP address, and DSCP tuple.

NetCON therefore allows DRE system developers
to focus on their application component logic (e.g.,
the MonitorController component in the case study),
rather than wrestling with low-level mechanisms
for provisioning network QoS. Moreover, NetCON
provides these capabilities without modifying appli-
cation code, thereby simplifying development and
minimizing runtime overhead, as shown in Sec-
tion IV-C.1.

IV. EVALUATING NETQOPE

This section empirically evaluates the flexibility
and overhead of using NetQoPE to provide CPU and
network QoS assurance to end-to-end application
flows. We first validate that NetQoPE’s automated
model-driven approach can provide differentiated
network performance for a variety of applications
in DRE systems, such as our case study. We then
demonstrate how NetQoPE’s network QoS provi-
sioning capabilities can significantly reduce applica-
tion development effort compared with conventional
approaches.

A. Evaluation Scenario

Our empirical evaluation of NetQoPE was con-
ducted at ISISlab (www.dre.vanderbilt.edu/
ISISlab), which consists of (1) 56 dual-CPU blades
running 2.8 Gz XEONs with 1 GB memory, 40
GB disks, and 4 NICs per blade, and (2) 6 Cisco
3750G switches with 24 10/100/1000 MPS ports per
switch. As shown in Figure 7, our experiments were
conducted on 15 of dual CPU blades in ISISlab,

10

where (1) 7 blades (A, B, D, E, F, G, and H) hosted
our modern office enterprise case study software
components (e.g., a fire sensor software controller)
and (2) 8 other blades (P, Q, R, S, T, U, V, and W)
hosted Linux router software.

7: Experimental Setup

The software controller components were devel-
oped using the CIAO middleware, which is an open-
source LwCCM implementation developed atop the
TAO real-time CORBA object request broker [22].
Our evaluations used DiffServ QoS and the asso-
ciated Bandwidth Broker [21] software was hosted
on blade C. All blades ran Fedora Core 4 Linux
distribution configured using the real-time schedul-
ing class. The blades were connected over a 1 Gbps
LAN via virtual 100 Mbps links.

In our evaluation scenario, a number of sensory
and imagery software controllers sent their mon-
itored information to monitor controllers so that
appropriate control actions could be performed by
enterprise supervisors monitoring abnormal events.
For example, Figure 7 shows two fire sensor con-
troller components deployed on hosts A and B.
These components sent their monitored information
to monitor controller components deployed on hosts
D and F. Communication between these software
controllers used one of the traffic classes (e.g., HIGH

PRIORITY (HP)) defined in Section III-A with the
following capacities on all links: HP = 20 Mbps, HR

= 30 Mbps, and MM = 30 Mbps. The BE class used
the remaining available bandwidth in the network.

To emulate the network behavior of the soft-
ware controllers when different network QoS
requirements are provisioned, we created the
TestNetQoPE performance benchmark suite.3 We

3TestNetQoPE can be downloaded as part of the CIAO open-
source middleware available at (www.dre.vanderbilt.edu/CIAO).

used TestNetQoPE to evaluate the flexibility, over-
head, and performance of using NetQoPE to provide
network QoS assurance to end-to-end application
flows. In particular, we used TestNetQoPE to spec-
ify and measure diverse CPU and network QoS
requirements of the different software components
that were deployed via NetQoPE, such as the appli-
cation flow between the fire sensor controller com-
ponent on host A and the monitor controller com-
ponent on host D. These tests create a session for
component-to-component communication with con-
figurable bandwidth consumption. High-resolution
timer probes were used to measure roundtrip latency
accurately for each client invocation.

B. Experimental Results and Analysis

We now describe the experiments performed us-
ing the ISISlab configuration described in Sec-
tion IV-A and analyze the results.

C. Evaluating NetQoPE’s Model-driven QoS Pro-
visioning Capabilities

Rationale. As discussed in Section III, NetQoPE is
designed to provision application CPU and network
QoS mechanisms in an extensible manner. This ex-
periment evaluates the effort application developers
spend using NetQoPE to (re)deploy applications and
provision QoS and compares this effort against the
effort needed to provision QoS for applications via
conventional approaches.
Methodology. We first identified four flows from
Figure 7 whose network QoS requirements are
described as follows:

• A fire sensor controller component on host A
uses the high reliability (HR) class to send
potential fire alarms in the parking lot to the
monitor controller component on host D.

• A fire sensor controller component on host
B uses the high priority (HP) class to send
potential fire alarms in the server room to the
monitor controller component on host F.

• A camera controller component on host E uses
the multimedia (MM) class and sends imagery
information from the break room to the monitor
controller component on host G.

• A temperature sensor controller component on
host A uses the best effort (BE) class and sends
temperature readings to the monitor controller
component on host F.

11

The clients dictated the network priority for requests
and replies in all flows except for the tempera-
ture sensor and monitor controller component flow,
where the server dictated the priority. TCP was used
as the transport protocol and 20 Mbps of forward
and reverse bandwidth was requested for each type
of network QoS traffic.

We also define a taxonomy for evaluating tech-
nologies that provide network QoS assurances
to end-to-end DRE application flows to com-
pare NetQoPE’s methodology of provisioning net-
work QoS for these flows with conventional ap-
proaches, including (1) object-oriented [23], [11],
[10], [12], (2) aspect-oriented [24], and (3) compo-
nent middleware-based [13], [5] approaches. Below
we describe how each approach provides the follow-
ing functionality needed to leverage network QoS
mechanism capabilities:

• QoS Requirements specification. In conven-
tional approaches applications use (1) middleware-
based APIs [23], [10], (2) contract definition lan-
guages [11], [12], (3) runtime aspects [24], or (4)
specialized component middleware container inter-
faces [13] to specify network QoS requirements.
These approaches do not, however, provide capabil-
ities to specify both CPU and network requirements
and assume that physical node placement for all
components are decided before the network resource
allocations are requested.

Moreover, application source code must change
whenever the deployment context (e.g., different
physical node placements, component deployment
for a different usecase) and the associated QoS
requirements (e.g., CPU or network resource re-
quirements) changes, which limits reusability. In
contrast, NetQoS provides domain-specific, declar-
ative techniques that increase reusability across dif-
ferent deployment contexts and alleviate the need
to specify QoS requirements programmatically, as
described in Section III-A.

• Network resource allocation. Conventional
approaches require application deployment before
their per-flow network resource requirements can
be provisioned by network QoS mechanisms. If
the required resources cannot be allocated for these
applications, however, the following steps occur:

1) They must be stopped
2) Their source code must be modified to specify

new resource requirements (e.g., either source
and destination nodes of the components can

be changed or for the same pair of source
and destination nodes the network resource
requirements could be changed) and

3) The resource reservation process must be
restarted.

This approach is tedious since applications may
be deployed and re-deployed multiple times, po-
tentially on different nodes. In contrast, NetRAF
handles deployment changes via NetQoS models
(see Section III-B) at pre-deployment, i.e., before
applications have been deployed, thereby reducing
the effort needed to change deployment topology or
application QoS requirements.
• Network QoS enforcement. Conventional ap-

proaches modify application source code [12] or
programming model [13] to instruct the middleware
to enforce runtime QoS for their remote invocations.
Applications must therefore be designed to handle
two different usecases—to enforce QoS and when
no QoS is required—thereby limiting application
reusability. In contrast, NetCON uses a container
programming model that transparently enforces run-
time QoS for applications without changing their
source code or programming model, as described in
Section III-C.

We now compare the effort required to provision
network QoS to the 4 end-to-end application flows
described above using conventional manual ap-
proaches vs. the NetQoPE model-driven approach.
We decompose this effort across the following gen-
eral steps: (1) implementation, where software de-
velopers write code, (2) deployment, where system
deployers map (or stop) application components on
their target nodes, and (3) modeling tool use, where
application developers use NetQoPE to model a
DRE application structure and specify per-flow QoS
requirements. In our evaluation, a complete QoS
provisioning lifecycle consists of specifying require-
ments, allocating resources, deploying applications,
and stopping applications when they are finished.

To compare NetQoPE with manual efforts, we
devised a realistic scenario for the 4 end-to-end
application flows described above. In this scenario,
three sets of experiments were conducted with the
following deployment variants:
• Baseline deployment. This variant configured

all 4 end-to-end application flows with the network
QoS requirements as described above. The manual
effort required using conventional approaches for
the first deployment involved 10 steps: (1) modify

12

source code for each of the 8 components to specify
their QoS requirements (8 implementation steps),
(2) deploy all components (1 deployment step),
and (3) shutdown all components (1 deployment
step). In contrast, the effort required using NetQoPE
involved the following 4 steps: (1) model the DRE
application structure of all 4 end-to-end application
flows using NetQoS (1 modeling step), (2) annotate
QoS specifications on each end-to-end application
flow (1 modeling step), (3) deploy all components (1
deployment step), and (4) shutdown all components
(1 deployment step).

• QoS modification deployment. This variant
demonstrated the effect of changes in QoS re-
quirements on manual efforts by modifying the
bandwidth requirements from 20 Mbps to 12 Mbps
for each end-to-end flow. As with baseline vari-
ant above, the effort required using a conventional
approach for the second deployment was 10 steps
since source code modifications were needed as
the deployment contexts changed (in this case, the
bandwidth requirements changed across 4 different
deployment contexts). In contrast, the effort required
using NetQoPE involved 3 steps: (1) annotate QoS
specifications on each end-to-end application flow
(1 modeling step), (2) deploy all components (1
deployment step), and (3) shutdown all components
(1 deployment step). Application developers also
reused NetQoS’s application structure model created
for the initial deployment, which helped reduce the
required efforts by a step.

• Resource (re)reservation deployment. This
variant demonstrated the effect of changes in QoS
requirements and resource (re)reservations taken
together on manual efforts. We modified bandwidth
requirements of all flows from 12 Mbps to 16
Mbps. We also changed temperature sensor con-
troller component to use the high reliability (HR)
class instead of the best effort BE class. Finally, we
increased the background HR class traffic across the
hosts so that the resource reservation request for the
flow between temperature sensor and monitor con-
troller components fails. In response, deployment
contexts (e.g., bandwidth requirements, source and
destination nodes) were changed and resource re-
reservation was performed.

The effort required using a conventional approach
for the third deployment involved 13 steps: (1)
modify source code for each of the 8 components to
specify their QoS requirements (8 implementation

steps), (2) deploy all components (1 deployment
step), (3) shutdown the temperature sensor com-
ponent (1 deployment step – resource allocation
failed for the component), (4) modify source code
of temperature sensor component back to use BE

network QoS class (deployment context change) (1
implementation step), (5) redeploy the temperature
sensor component (1 deployment step), and (6)
shutdown all components (1 deployment step).

In contrast, the effort required using NetQoPE for
the third deployment involved 4 steps: (1) annotate
QoS specifications on each end-to-end application
flow (1 modeling step), (2) begin deployment of
all components, though NetRAF’s pre-deployment-
time allocation capabilities determined the resource
allocation failure and prompted the NetQoPE appli-
cation developer to change the QoS requirements
(1 pre-deployment step), (3) re-annotate QoS re-
quirements for the temperature sensor component
flow (1 modeling step) (4) deploy all components (1
deployment step), and (5) shutdown all components
(1 deployment step).

Table I summarizes the step-by-step analysis de-
scribed above. These results show that conventional

Approaches # Steps in Experiment Variants
First Second Third

NetQoPE 4 3 5
Conventional 10 10 13

I: Comparison of Manual Efforts Incurred in Con-
ventional and NetQoPE Approaches
approaches incurred roughly an order of magnitude
more effort than NetQoPE to provide network QoS
assurance for end-to-end application flows. Closer
examination shows that in conventional approaches,
application developers spend substantially more ef-
fort developing software that can work across dif-
ferent deployment contexts. Moreover, this process
must be repeated when deployment contexts and
their associated QoS requirements change. In ad-
dition, conventional implementations are complex
since the requirements are specified directly using
middleware [10] and/or network QoS mechanism
APIs [6].

Application (re)deployments are also required
whenever reservation requests fail. In this experi-
ment, only 1 flow required re-reservation and that
incurred additional effort of 3 steps. If there are
large number of flows—and enterprise DRE systems
like our case study often have scores of flows—
conventional approaches require significantly more

13

effort.
In contrast, NetQoPE’s ability to “write once,

deploy multiple times for different QoS require-
ments” increases deployment flexibility and exten-
sibility in environments that deploy many reusable
software components. To provide this flexibility,
NetQoS generates XML-based deployment descrip-
tors that capture context-specific QoS requirements
of applications. For our experiment, communication
between fire sensor and monitor controllers was
deployed in multiple deployment contexts, i.e., with
bandwidth reservations of 20 Mbps, 12 Mbps, and
16 Mbps. In DRE systems like our case study,
however, the same communication patterns between
components could occur in many deployment con-
texts.

For example, the same communication patterns
could use any of the four network QoS classes (HP,
HR, MM, and BE). The communication patterns that
use the same network QoS class could make dif-
ferent forward and reverse bandwidth reservations
(e.g., 4, 8, or 10 Mbps). As shown in Table II,
NetQoS auto-generates over 1,300 lines of XML
code for these scenarios, which would otherwise
be handcrafted by application developers. These

Deployment contextsNumber of communications
2 5 10 20

1 23 50 95 185
5 47 110 215 425

10 77 185 365 725
20 137 335 665 1325

II: Generated Lines of XML Code

results demonstrate that NetQoPE’s model-driven
network QoS provisioning capabilities significantly
reduce application development effort compared
with conventional approaches. Moreover, NetQoPE
also provides increased flexibility when deploying
and provisioning multiple application end-to-end
flows in multiple deployment and network QoS
contexts.

1) Evaluating the Overhead of NetQoPE for
Normal Operations: Rationale. NetQoPE provides
network QoS to applications via the four-stage ar-
chitecture shown in Figure 1. This experiment eval-
uates the runtime performance overhead overhead
of using NetQoPE to enforce network QoS.
Methodology. DRE system developers can use
NetQoPE at design time to specify network QoS re-
quirements on the application flows, as described in
Section III-A. Based on the specified network QoS

requirements, NetRAF interacts with the Bandwidth
Broker to allocate per-flow network resources at
pre-deployment time. By providing design- and pre-
deployment-time capabilities, NetQoS and NetRAF
thus incur no runtime overhead. In contrast, Net-
CON configures component middleware containers
at post-deployment-time by adding DSCP markings
to IP packets when applications invoke remote op-
erations (see Section III-C). NetCON may therefore
incur runtime overhead, e.g., when containers apply
a network policy models to provide the source ap-
plication with an object reference to the destination
application.

To measure NetCON’s overhead, we conducted
an experiment to determine the runtime overhead
of the container when it performs extra work to
apply the policies that add DSCPs to IP packets.
This experiment had the following variants: (1)
the client container was not configured by Net-
CON (no network QoS required), (2) the client
container was configured by NetCON to apply the
CLIENT_PROPAGATED network policy, and (3) the
client container was configured by NetCON to apply
the SERVER_DECLARED network policy. This ex-
periment had no background network load to isolate
the effects of each variant.

Our experiment had no network congestion, so
QoS support was thus not needed. The network pri-
ority models were therefore configured with DSCP
values of 0 for both the forward and reverse direc-
tion flows. TestNetQoPE was configured to make
200,000 invocations that generated a load of 6
Mbps and average roundtrip latency was calculated
for each experiment variant. The routers were not
configured to perform DiffServ processing (provide
routing behavior based on the DSCP markings), so
no edge router processing overhead was incurred.
We configured the experiment to pinpoint only the
overhead of the container no other entities in the
path of client remote communications.
Analysis of results. Figure 8 shows the average
roundtrip latencies experienced by clients in the
three experiment variants (in this figure CP is the
CLIENT_PROPAGATED network priority model and
SD is the SERVER_DECLARED model). To honor the
network policy models, the NetQoPE middleware
added the request/reply DSCPs to the IP packets.
The latency results shown in Figure 8 are all similar,
which shows that NetCON is efficient and adds neg-
ligible overhead to applications. If another variant

14

99 percent
Mean
Max

 16

 18

 20

 22

 24

SDCPNo−QoS

L
at

en
cy

 (
m

ili
se

co
nd

s)

8: Overhead of NetQoPE’s Policy Framework

of the experiment was run with background network
loads, network resources will be allocated and the
appropriate DSCP values used for those application
flows. The NetCON runtime overhead will remain
the same, however, since the same middleware
infrastructure is used, only with different DSCP
values.

2) Evaluating NetQoPE’s QoS Customization
Capabilities: Rationale. NetQoPE’s model-driven
approach enhances flexibility by enabling the reuse
of application source code in different deployment
contexts. It can also address the QoS needs of a
wide variety of applications by supporting multiple
DiffServ classes and network priority models. This
experiment evaluates the benefits of these capabili-
ties empirically.
Methodology. We identified four flows from Fig-
ure 7 and modeled them using NetQoS as follows:

• A fire sensor controller component on blade
A uses the high reliability (HR) class to send
potential fire alarms in the parking lot to the
monitor controller component on blade D.

• A fire sensor controller component on blade
B uses the high priority (HP) class to send
potential fire alarms in the server room to the
monitor controller component on blade F.

• A camera controller component on blade E
uses the multimedia (MM) class and sends
imagery information of the break room to the
monitor controller component on blade G.

• A temperature sensor controller component on
blade A uses the best effort (BE) class and
sends temperature readings to the monitor con-
troller component on blade F.

The CLIENT_PROPAGATED network policy was
used for all flows, except for the temperature sensor
and monitor controller component flow, which used
the SERVER_DECLARED network policy.

We performed two variants of this experiment.
The first variant used TCP as the transport protocol
and requested 20 Mbps of forward and reverse band-

width for each type of QoS traffic. TestNetQoPE
configured each application flow to generate a load
of 20 Mbps and the average roundtrip latency
over 200,000 iterations was calculated. The second
variant used UDP as the transport protocol and
TestNetQoPE was configured to make oneway in-
vocations with a payload of 500 bytes for 100,000
iterations. We used high-resolution timer probes to
measure the network delay for each invocation on
the receiver side of the communication.

At the end of the second experiment we recorded
100,000 network delay values (in ms) for each
network QoS class. Those network delay values
were then sorted in increasing order and every
value was subtracted from the minimum value in
the whole sample, i.e., they were normalized with
respect to the respective class minimum latency. The
samples were divided into fourteen buckets based
on their resulting values. For example, the 1 ms
bucket contained only samples that are <= to 1 ms
in their resultant value, the 2 ms bucket contained
only samples whose resultant values were <= 2 ms
but > 1 ms, etc.

To evaluate application performance in the pres-
ence of background network loads, several other
applications were run in both experiments, as de-
scribed in Table III (in this table TS stands for “tem-
perature sensor controller,” MS stands for “monitor
controller”, FS stands for “fire sensor controller,”
and CS stands for “camera controller”). NetRAF

Background Traffic in MbpsTraffic Type
BE HP HR MM

BE (TS - MS) 85 to 100
HP (FS - MS) 30 to 40 28 to 33 28 to 33
HR (FS - MS) 30 to 40 12 to 20 14 to 15 30 to 31
MM (CS - MS) 30 to 40 12 to 20 14 to 15 30 to 31

III: Application Background Traffic
allocated the network resources for each flow and
determined which DSCP values to use. After de-
ploying the applications, NetCON configured the
containers to use the appropriate network priority
models to add DSCP values to IP packets when
applications invoked remote operations.
Analysis of results. Figure 9a shows the results of
experiments when the deployed applications were
configured with different network QoS classes and
sent TCP traffic. This figure shows that irrespective
of the heavy background traffic, the average latency
experienced by the fire sensor controller component
using the HP network QoS class is lower than the

15

 0

 50,000

 100,000

 150,000

 200,000

BEMMHRHP

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Network QoS classes

88,939 97,300

132,644

187,805

(a) Average Latency under Different Network QoS Classes (b) Jitter Distribution under Different Network QoS Classes

9: Performance of NetQoPE

average latency experienced by all other compo-
nents. In contrast, the traffic from the BE class is not
differentiated from the competing background traffic
and thus incurs a high latency (i.e., throughput is
very low). Moreover, the latency increases while
using the HR and MM classes when compared to
the HP class.

Figure 9b shows the (1) cardinality of the network
delay groupings for different network QoS classes
under different ms buckets and (2) losses incurred
by each network QoS class. These results show
that the jitter values experienced by the application
using the BE class are spread across all the buckets,
i.e., are highly unpredictable. When combined with
packet or invocation losses, this property is undesir-
able in DRE systems. In contrast, the predictability
and loss-ratio improves when using the HP class, as
evidenced by the spread of network delays across
just two buckets. The application’s jitter is almost
constant and is not affected by heavy background
traffic.

The results in Figure 9b also show that the
application using the MM class experienced more
predictable latency than applications using BE and
HR class. Approximately 94% of the MM class
invocations had their normalized delays within 1
ms. This result occurs because the queue size at the
routers is smaller for the MM class than the queue
size for the HR class, so UDP packets sent by the
invocations do not experience as much queueing
delay in the core routers as packets belonging to
the HR class. The HR class provides better loss-
ratio, however, because the queue sizes at the routers
are large enough to hold more packets when the
network is congested.

These results demonstrate that NetQoPE’s au-
tomated model-driven middleware-guided mecha-
nisms (1) support the needs of a wide variety of
applications by simplifying the modeling of QoS

requirements via various DiffServ network QoS
classes and (2) provide those modeled applications
with differentiated network performance validating
the automated network resource allocation and con-
figuration process. By using NetQoPE, therefore,
applications can leverage the capabiltiies of network
QoS mechanisms with minimal effort, as described
in Section IV-C.

These results also demonstrate the following QoS
customization possibilities for a set of application
communications (e.g., fire sensor and monitor con-
troller component):

• Different network QoS performance, e.g., HP

communication between blades A and D, and
HR communication between blades B and F.

• Different transport protocols for communica-
tion, e.g., TCP and UDP.

• Different network access models, e.g., monitor
controller components were accessed using the
CLIENT_PROPAGATED network priority model
and the SERVER_DECLARED network priority
model.

These results show how NetQoPE’s ability to “write
once, deploy multiple times for different QoS re-
quirements” increased deployment flexibility and
extensibility for environments where many reusable
software components are deployed. To provide this
flexibility, NetQoS generates XML-based deploy-
ment descriptors that capture context-specific QoS
requirements of applications. For our experiment,
communication between fire sensor and monitor
controllers was deployed in multiple deployment
contexts, i.e., HR and HP QoS requirements.

V. RELATED WORK

This section compares our R&D activities on
NetQoPE with related work on middleware-based
QoS management and model-based design tools.

16

Network QoS management in middleware.
Prior work on integrating network QoS mechanisms
with middleware [10], [11], [12], [23] focused on
providing middleware APIs to shield applications
from directly interacting with complex network QoS
mechanism APIs. Middleware frameworks trans-
parently converted the specified application QoS
requirements into lower-level network QoS mech-
anism APIs and provided network QoS assurances.
These approaches, however, modified applications
to dictate QoS behavior for the various flows.
NetQoPE differs from these approaches by provid-
ing application-transparent and automated solutions
to leverage network QoS mechanisms, thereby sig-
nificantly reducing manual design and development
effort to obtain network QoS.

QoS management in middleware. Prior research
has focused on adding various types of QoS capa-
bilities to middleware. For example, [25] describes
J2EE container resource management mechanisms
that provide CPU availability assurances to appli-
cations. Likewise, 2K [26] provides QoS to appli-
cations from varied domains using a component-
based runtime middleware. In addition, [13] ex-
tends EJB containers to integrate QoS features by
providing negotiation interfaces which the appli-
cation developers need to implement to receive
desired QoS support. Synergy [27] describes a
distributed stream processing middleware that pro-
vides QoS to data streams in real time by effi-
cient reuse of data streams and processing com-
ponents. These approaches are restricted to CPU
QoS assurances or application-level adaptations to
resource-constrained scenarios. NetQoPE differs by
providing network QoS assurances in a application-
agnostic fashion.

Deployment-time resource allocation. Prior
work has focused on deploying applications at ap-
propriate nodes so that their QoS requirements can
be met. For example, prior work [28], [29] has
studied and analyzed application communication
and access patterns to determine collocated place-
ments of heavily communicating components. Other
research [8], [9] has focused on intelligent compo-
nent placement algorithms that maps components
to nodes while satisfying their CPU requirements.
NetQoPE differs from these approaches by leverag-
ing network QoS mechanisms to allocate network
resources at pre-deployment-time and enforcing net-
work QoS at runtime.

Model-based design tools. Prior work has been
done on model-based design tools. PICML [14] en-
ables DRE system developers to define component
interfaces, their implementations, and assemblies,
facilitating deployment of LwCCM-based applica-
tions. VEST [30] and AIRES [15] analyze domain-
specific models of embedded real-time systems to
perform schedulability analysis and provides au-
tomated allocation of components to processors.
SysWeaver [31] supports design-time timing behav-
ior verification of real-time systems and automatic
code generation and weaving for multiple target
platforms. In contrast, NetQoPE provides model-
driven capabilities to specify network QoS require-
ments on DRE system application flows, and subse-
quently allocate network resources automatically us-
ing network QoS mechanisms. NetQoPE thus helps
assure that application network QoS requirements
are met at deployment-time, rather than design-time
or runtime.

VI. CONCLUDING REMARKS

This paper describes the design and evaluation
of NetQoPE, which is a model-driven component
middleware framework that manages CPU and net-
work QoS for applications in distributed real-time
and embedded (DRE) systems. The lessons we
learned developing NetQoPE and applying it to
a representative DRE system case study thus far
include:
• NetQoPE’s domain-specific modeling lan-

guages (e.g., NetQoS) help capture per-deployment
QoS requirements of applications so that CPU and
network resources can be allocated appropriately.
Application business logic consequently need not
be modified to specify deployment-specific QoS
requirements, thereby increasing software reuse and
flexibility across a range of deployment contexts, as
shown in Section III-A.
• Programming network QoS mechanisms di-

rectly in application code requires the deployment
and execution of applications before they can deter-
mine if the required network resources are available
to meet QoS needs. Conversely, providing these ca-
pabilities via NetQoPE’s model-driven, middleware
framework helps guide resource allocation strategies
before application deployment, thereby simplifying
validation and adaptation decisions, as shown in
Section III-B.

17

• NetQoPE’s model-driven deployment and con-
figuration tools help configure the underlying com-
ponent middleware transparently on behalf of ap-
plications to add context-specific network QoS set-
tings. These settings can be enforced by NetQoPE’s
runtime middleware framework without modifying
the programming model used by applications. Ap-
plications therefore need not change how they com-
municate at runtime since network QoS settings can
be added transparently, as shown in Section III-C.

• NetQoPE’s strategy of allocating network re-
sources to applications before deployment may be
too limiting for certain types of DRE systems. In
particular, applications in open DRE systems [32]
might not consume all their resource allotment at
runtime, in which case NetQoPE may underuti-
lize system resources. Our future work is there-
fore extending NetQoPE to overprovision resources
for applications on the assumption that not all
applications will use their allotment. If runtime
resource contentions occur, we are also integrating
dynamic resource management algorithms [33] with
NetQoPE to provide predictable network perfor-
mance for applications in open DRE systems.

All of NetQoPE’s model-driven middleware plat-
forms and tools—except the Bandwidth Broker—
described in this paper and used in the ex-
periments are available in open-source format
from www.dre.vanderbilt.edu/cosmic and in
the CIAO component middleware available at www.
dre.vanderbilt.edu.

REFERENCES

[1] J. Balasubramanian, S. Tambe, B. Dasarathy, S. Gadgil,
F. Porter, A. Gokhale, and D. C. Schmidt, “NetQoPE: A
Model-Driven Network QoS Provisioning Engine for Enterprise
Distributed Real-time and Embedded Systems,” in Proceedings
of the 14th IEEE Real-time and Embedded Technology and
Applications Symposium, St. Louis, MO, USA, Apr. 2008.

[2] D. C. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp, and
L. DiPalma, “Towards Adaptive and Reflective Middleware for
Network-Centric Combat Systems,” CrossTalk - The Journal of
Defense Software Engineering, Nov. 2001.

[3] A. Nechypurenko, D. C. Schmidt, T. Lu, G. Deng, A. Gokhale,
and E. Turkay, “Concern-based Composition and Reuse of
Distributed Systems,” in Proceedings of the 8th International
Conference on Software Reuse. Madrid, Spain: ACM/IEEE,
July 2004.

[4] D. C. Sharp and W. C. Roll, “Model-Based Integration of
Reusable Component-Based Avionics System,” in Proceedings
of the Workshop on Model-Driven Embedded Systems in RTAS
2003. Washington, DC: IEEE Computer Society, May 2003.

[5] P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro, and
G. Duzan, “Component-Based Dynamic QoS Adaptations in
Distributed Real-time and Embedded Systems,” in Proceedings
of the International Symposium on Distributed Objects and
Applications (DOA), Agia Napa, Cyprus, Oct. 2004.

[6] L. Zhang and S. Berson and S. Herzog and S. Jamin, “Resource
ReSerVation Protocol (RSVP) Version 1 Functional Specifica-
tion,” Network Working Group RFC 2205, pp. 1–112, Sept.
1997.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An Architecture for Differentiated Services,” In-
ternet Society, Network Working Group RFC 2475, pp. 1–36,
Dec. 1998.

[8] D. de Niz and R. Rajkumar, “Partitioning Bin-Packing Algo-
rithms for Distributed Real-time Systems,” International Jour-
nal of Embedded Systems, vol. 2, no. 3, pp. 196–208, 2006.

[9] S. Gopalakrishnan and M. Caccamo, “Task Partitioning with
Replication upon Heterogeneous Multiprocessor Systems,” in
RTAS ’06, San Jose, CA, USA, 2006, pp. 199–207.

[10] P. Wang, Y. Yemini, D. Florissi, and J. Zinky, “A Distributed
Resource Controller for QoS Applications,” in Proceedings of
the Network Operations and Management Symposium (NOMS
2000). IEEE/IFIP, Apr. 2000.

[11] R. Schantz, J. Zinky, D. Karr, D. Bakken, J. Megquier, and
J. Loyall, “An Object-level Gateway Supporting Integrated-
Property Quality of Service,” ISORC, vol. 00, p. 223, 1999.

[12] R. Schantz and J. Loyall and D. Schmidt and C. Rodrigues
and Y. Krishnamurthy and I. Pyarali, “Flexible and Adaptive
QoS Control for Distributed Real-time and Embedded Middle-
ware,” in Proc. of Middleware’03. Rio de Janeiro, Brazil:
IFIP/ACM/USENIX, June 2003.

[13] M. A. de Miguel, “Integration of QoS Facilities into Com-
ponent Container Architectures,” in Proceedings of the Fifth
IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2002), 2002.

[14] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt, “A Platform-Independent
Component Modeling Language for Distributed Real-time and
Embedded Systems,” Journal of Computer Systems Science,
vol. 73, no. 2, pp. 171–185, 2007.

[15] Z. Gu, S. Kodase, S. Wang, and K. G. Shin, “A Model-Based
Approach to System-Level Dependency and Real-time Analysis
of Embedded Software,” in RTAS’03. Washington, DC: IEEE,
May 2003, pp. 78–85.

[16] B. Dasarathy, S. Gadgil, R. Vaidyanathan, A. Neidhardt,
B. Coan, K. Parameswaran, A. McIntosh, and F. Porter, “Adap-
tive network qos in layer-3/layer-2 networks for mission-critical
applications as a middleware service,” Journal of Systems and
Software: special issue on Dynamic Resource Management in
Distributed Real-time Systems, 2006.

[17] Light Weight CORBA Component Model Revised Submission,
OMG Document realtime/03-05-05 ed., Object Management
Group, May 2003.

[18] Deployment and Configuration of Component-based Dis-
tributed Applications, v4.0, Document formal/2006-04-02 ed.,
OMG, Apr. 2006.

[19] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai, “Composing Domain-Specific De-
sign Environments,” IEEE Computer, pp. 44–51, November
2001.

[20] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt, “A Platform-Independent
Component Modeling Language for Distributed Real-Time and
Embedded Systems,” in RTAS ’05: Proceedings of the 11th

18

IEEE Real Time on Embedded Technology and Applications
Symposium, Los Alamitos, CA, USA, 2005, pp. 190–199.

[21] B. Dasarathy, S. Gadgil, R. Vaidhyanathan, K. Parmeswaran,
B. Coan, M. Conarty, and V. Bhanot, “Network QoS Assurance
in a Multi-Layer Adaptive Resource Management Scheme for
Mission-Critical Applications using the CORBA Middleware
Framework,” in RTAS 2005. San Francisco, CA: IEEE, Mar.
2005.

[22] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and C. Gill,
“TAO: A Pattern-Oriented Object Request Broker for Dis-
tributed Real-time and Embedded Systems,” IEEE Distributed
Systems Online, vol. 3, no. 2, Feb. 2002.

[23] M. A. El-Gendy, A. Bose, S.-T. Park, and K. G. Shin, “Paving
the First Mile for QoS-dependent Applications and Appliances,”
in Proc. of IWQOS’04, Montreal, Canada, June 2004.

[24] G. Duzan, J. Loyall, R. Schantz, R. Shapiro, and J. Zinky,
“Building Adaptive Distributed Applications with Middleware
and Aspects,” in Proc. of AOSD ’04, New York, NY, USA,
2004, pp. 66–73.

[25] M. Jordan, G. Czajkowski, K. Kouklinski, and G. Skinner,
“Extending a J2EE Server with Dynamic and Flexible Resource
Management,” in Proceedings of the ACM/IFIP/USENIX Inter-
national Middleware Conference, Toronto, Canada, 2004.

[26] D. Wichadakul, K. Nahrstedt, X. Gu, and D. Xu, “2K: An
Integrated Approach of QoS Compilation and Reconfigurable,
Component-Based Run-Time Middleware for the Unified QoS
Management Framework,” in Proc. of Middleware’01, 2001.

[27] T. Repantis, X. Gu, and V. Kalogeraki, “Synergy: Sharing-
Aware Component Composition for Distributed Stream Process-
ing Systems,” in Proc. of Middleware 2006.

[28] D. Llambiri, A. Totok, and V. Karamcheti, “Efficiently Dis-
tributing Component-Based Applications Across Wide-Area
Environments,” in Proc. of ICDCS’03, 2003.

[29] C. Stewart and K. Shen, “Performance Modeling and System
Management for Multi-component Online Services,” in Proc.
of NSDI’05, Boston, MA, May 2005, pp. 71–84.

[30] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,
M. Humphrey, and B. Ellis, “Vest: An aspect-based composition
tool for real-time systems,” in Proc. of RTAS’03, Washington,
DC, USA, 2003, p. 58.

[31] D. de Niz, G. Bhatia, and R. Rajkumar, “Model-Based Devel-
opment of Embedded Systems: The SysWeaver Approach,” in
Proc. of RTAS’06, Washington, DC, USA, August 2006, pp.
231–242.

[32] X. Wang, D. Jia, C. Lu, and X. Koutsoukos, “DEUCON:
Decentralized End-to-End Utilization Control for Distributed
Real-Time Systems,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 18, no. 7, pp. 996–1009, 2007.

[33] P. Lardieri, J. Balasubramanian, D. C. Schmidt, G. Thaker,
A. Gokhale, and T. Damiano, “A Multi-layered Resource
Management Framework for Dynamic Resource Management
in Enterprise DRE Systems,” Journal of Systems and Software:
Special Issue on Dynamic Resource Management in Distributed
Real-time Systems, vol. 80, no. 7, pp. 984–996, July 2007.

