
The FORGE Project Page 1 of 13

FORGE: A Framework for Optimization of Distributed
Embedded Systems Software*

Radu Cornea1, Nikil Dutt1, Rajesh Gupta2, Ingolf Krueger2, Alex Nicolau1,Doug Schmidt3, Sandeep Shukla4

1Department of Computer Science, UC Irvine,

2Department of Computer Science and Engineering, UC San Diego,
3Department of Electrical Engineering and Computer Science, UC Irvine,

4Department of Electrical and Computer Engineering, Virginia Tech.

1 Introduction
New and planned commercial and military distributed, real-time, and embedded (DRE) sys-
tems take input from many remote sensors, and provide geographically-dispersed operators with
the ability to interact with the collected information and to control remote actuators. With the
continuing advances in the computational power, and reductions in the costs of high-performance
processing and memory elements, we are beginning to see proliferation of portable devices (e.g.,
intelligent sensors, actuators, and sensory prosthetics) with substantial processing capabilities.
These devices are useful in a range of DRE application domains such as avionics, biomedical de-
vices and telemedicine, remote sensing, space exploration and command and control. Examples
of domains that could benefit from microelectronic SOC advances include: automated transporta-
tion systems, distance learning, telemedicine, analysis for combat situations, video conferencing,
virtual reality simulation, and weather forecasting and analyses.

In circumstances where the presence of a human in the loop is either too expensive or too slow,
these systems must also respond autonomously and flexibly to unanticipated combinations of
events at run-time. Further, these systems are increasingly networked to form long-lived “sys-
tems of systems” that must run unobtrusively and autonomously, shielding operators from unnec-
essary details, while simultaneously communicating and responding to mission-critical informa-
tion at heretofore infeasible rates. As DRE applications grow more complex, so are the embedded
computing devices that have evolved at the rate of Moore’s law from the Von Neumann era of
sequential computing, to the era of supercomputers, to workstation clusters, to multi-processor
servers, all the way to multi-threaded multi-processor system on chip. Developing applications
for such complex DRE systems has grown more difficult as the software productivity gap, i.e.,
the gap between software development productivity and complex hardware availability, has in-
creased. Further, increasing communication and network capabilities are driving an unprece-
dented surge in heterogeneous platforms with multiple computers (some times in enormous num-
bers) connected via network (wireless or wireline), all connected in a web of embedded devices,
handheld, and otherwise.

Consider, for instance, network management [Udupa99] for a multi-layered
data/telecommunication network. Such a system consists of diverse network elements, such as
telecommunication switches, routers, network devices, control-center servers and clients, field
workers’ handheld computers etc. that must be managed together as a unified network. End-to-
end network fault management and performance management is crucial for these networks’ op-
eration and QoS (Quality of Service) guarantees. Currently such network management systems
are programmed at a low level of abstraction. This low abstraction in viewing such a complex

* This work was partially supported by NSF award ACI-0204028.

The FORGE Project Page 2 of 13

DRE system requires the application developers to think of each device and the services hosted
on them as separate service/software elements that communicate via middleware. A middleware
is a set of software layers that functionally bridge the gap between (1) application programs and
(2) lower-level underlying operating systems and network protocol stacks to provide services
whose qualities are critical to DRE systems [Schantz02].

An important design challenge for such complex DRE computing systems is to satisfy perform-
ance and reliability constraints while ensuring efficient exploration through a very large architec-
tural design space, and a very large implementation space for microelectronic system implemen-
tations. Current strategies in meeting these challenges has led to emergence of a new class of
modeling and implementation tools that enable composition of such systems for microelectronic
implementations and limited capabilities for retargeting existing compilers for new processors.
However, the application development process for DRE systems continues to be very manually
driven.

The reason why existing DRE development process is manually driven is not hard to find: the
software architecture for complex computing architectures with distributed and diverse computa-
tional capabilities is not yet developed. FORGE is an application development for DRE systems
that will enable an application developer to structure and design software for platforms that may
not exist or may be concurrently developed. The key to our approach is a systematic method to
model architectures and a fundamental rethinking of the division of static versus runtime delega-
tion of functionality. In this paper, we describe the architecture of FORGE and specific innova-
tions being pursued. This paper is organized as followed: after a brief overview of the FORGE
architecture in Section 2, we describe DRE system specification and modeling of both functional
as well as non-functional aspects (properties and constraints) in Section 3, followed by a discus-
sion of the middleware capabilities and their optimizations for specific DRE platforms in Section
4. We then consider the link to compiler techniques and component APIs using interface descrip-
tion languages (IDLs) in Section 5. We conclude by presenting a case study of an application.

2 DRE System Design using FORGE
The design of complex systems has often been extremely platform specific from the very early
stages of the design process. Combinations of functional and non-functional requirements consid-
ered at the early stages of design are very specific for the system that is being developed. This
makes the resulting system design inflexible (against changing requirements) and non-reusable
(in settings with different requirements). To overcome these challenges, we propose the following
three mechanisms for dealing with the specific challenges of DRE systems as outlined in the in-
troduction:
• Conceptualization and specification of DRE system requirements including those related to

its structure, behavior, and performance/QoS guarantees;
• Modeling the available design knowledge (including the elicited requirements and the target

platform) using flexible software architecture that are specified via architectural description
languages (ADLs);

• Targeting flexible and optimizing middleware solutions and operating systems as our imple-
mentation platform.

Overall our approach is to use a model-based approach to system specification that allows reason-
ing about functional and non-functional properties of the system from the properties of the con-
stituent components and the composition mechanism used; and to use a middleware infrastructure
that lends itself to platform specific optimization for performance and size. Specifically, we focus
on adaptive and reflective middleware services to meet the application requirements and to dy-
namically smooth the imbalances between demands and changing environments. While a full dis-

The FORGE Project Page 3 of 13

cuss on the nature of middleware is out of scope here, very briefly, adaptive middleware is soft-
ware whose functional and QoS-related properties can be modified either:

(a) Statically, for example, to reduce the memory footprint, exploit platform-specific capa-
bilities, functional subsetting, and minimize hardware/software infrastructure dependen-
cies; or

(b) Dynamically, for example, to optimize system responses to changing environments or re-
quirements, such as changing component interconnections, power-levels, CPU/network
bandwidth, latency/jitter; and dependability needs.

Reflective middleware [Wang01] goes a step further in providing the means for examining the
capabilities it offers while the system is running, thereby enabling automated adjustment for op-
timizing those capabilities. Thus, reflective middleware supports more advanced adaptive behav-
ior, i.e., the necessary adaptations can be performed autonomously based on conditions within the
system, in the system's environment, or in combat system doctrine defined by operators and ad-
ministrators.

Figure 1 illustrates the fundamental levels of adaptation and reflection that must be supported by
middleware services: (a) changes in the middleware, operating systems, and networks beneath
the applications to continue to meet the required service levels despite changes in resource avail-
ability, such as changes in network bandwidth or power levels, and (b) changes at the application
level to either react to currently available levels of service or request new ones under changed
circumstances, such as changing the transfer rate or resolution of information over a congested
network. In both instances, the middleware must determine if it needs to (or can) reallocate re-
sources or change strategies to achieve the desired QoS. DRE applications must be built in such
a way that they can change their QoS demands as the conditions under which they operate
change. Mechanisms for reconfiguration need to be put into place to implement new levels of
QoS as required, mindful of both the individual and the aggregate points of view, and the con-
flicts that they may represent.

Figure 1: Middleware services for DRE applications

A Model-based Approach to System Specification
Using a model for describing architectures – a model that treats different design-concerns inde-
pendently, but also combines these concerns into a coherent model – can also enhance reusability.
In our view, higher level conceptualization is more effectively carried out by reasoning through
the collaborative aspects (rather than compositional aspects, which is an implementation issue) of
the design. The methods to capture interactions between components have been explored earlier –
most prominently in the context of asynchronous component interaction by means of sequence
diagrams – these are not enough to capture dynamic control behavior and quality constraints.
Message Sequence Charts or MSCs can be used to not only capture component collaborations but

The FORGE Project Page 4 of 13

also timing constraints on such interactions [Krueger00]. We build upon these to capture both
functional and non-functional aspects. In the sequel, we use the term Semantic Object to indicate
a meta-model of components, interfaces and services that are needed in DRE systems. The se-
mantic objects are generated from a formal model, called streams, that is described later in Sec-
tion 3 below. The stream model can capture the collaborative aspect of services that a designer
may specify using suitable notational diagrams, charts or mathematical relations.

3 Collaborative Specifications and Semantic Objects
Recently advances in middleware technologies such as the ACE/TAO or real-time extensions to
CORBA, have significantly improved the decoupling of implementation components within
complex distributed, reactive systems. This decoupling helps building component-oriented appli-
cations that can be more flexibly composed, and are easier to configure. It facilitates integration
of off-the-shelf system parts, thus enabling better reuse of proven solutions. Furthermore, mainte-
nance of component-oriented systems is simplified, because individual components can be more
easily replaced than in tightly-coupled or monolithic system implementations.

At the heart of the decoupling of components in middleware infrastructures is a shift of focus
from purely control-flow- and state-oriented system execution towards message- and event-
oriented component interaction or collaboration. Event channels within the middleware, for in-
stance, provide mechanisms for signaling the occurrence of events, as well as for the subscription
to event notification. The behavior of the overall system emerges as the interplay of the compo-
nents collaborating to implement a certain task or service by exchanging messages or processing
events. Therefore, a crucial step in developing service-oriented systems is the capturing and mod-
eling, as well as the efficient and correct implementation of the interactions among the compo-
nents establishing and defining a service. The interactions in which a component is involved re-
flect the relationship between the component and its environment, and thus characterize the com-
ponent’s interface beyond static lists of method signatures.

MSCs and their relatives have been developed to complement the local view on system behavior
provided by state-based automaton specifications. MSCs allow the developer to describe patterns
of interaction among sets of components; these interaction patterns express how each individual
component behavior integrates into the overall system to establish the desired functionality. Typi-
cally, one such pattern covers the interaction behavior for (part of) one particular service of the
system.

A particular strength of MSCs is capturing component collaboration transparently; hence these
are ideal for representing the QoS constraints. Easiest examples are constraints related to timing
and rate of events and actions, but other constraints – such as at most a certain amount of mem-
ory be spent in processing the enclosed message sequence – are also possible. As an example,
consider the specification of a fictitious video streaming service as described in Figure 2. Here,
we have shown the collaboration between the Video Source, the Video Distributor, and Video
Display Hosts to transmit sequences of video frames in a simplified notation related to MSCs.

This diagram conveys information on both the distribution structure, and the coordination of the
components. The sequence diagram at the top shows how the three components interact to estab-
lish the service. The augmentation shows timing constraints which define quality constraints on
the participating components. The Video Distributor, for instance, needs to provide adequate
mechanisms for memory, thread pooling, message prioritization, and power consumption to meet
the QoS constraints specified in the diagram.

Our approach is to find automatic ways to identify and optimize needed middleware services. For
instance, the sequence diagram defines precisely which messages the components exchange, and

The FORGE Project Page 5 of 13

in which order they must occur; these are important functional aspects of the component inter-
faces.

Figure 2: MSCs can be used to capture functionality, coordination and timing aspects, (design adapted

from Karr, et al, in ACM Multimedia 2001.)

To meet the nonfunctional aspects – such as the global bound on transmission time of 10 minutes
stated in the diagram – configuration of the proper execution environments (regarding perform-
ance, channel throughput, scheduling etc.) depends on the capabilities of the underlying middle-
ware. By analyzing the performance requirements for an entire collaboration we could, for in-
stance, identify, synthesize, or configure automatically the adequate client and server environ-
ments in ACE/TAO, as well as corresponding runtime-validators, watchdogs, and similar mecha-
nisms. The functional and non-functional aspects thus collected can be weaved together to yield a
RT CORBA implementation meeting both classes of requirements.

Streams and Relations on streams have emerged as an extremely powerful specification mecha-
nism for distributed and interactive systems [Broy01, Broy98], suitable for providing the seman-
tic basis for MSCs and its hierarchical extensions. In this model, we view systems as consisting of
a set of components, objects, or processes, and a set of named channels. Each channel is directed
from its source to its destination component. Channels connect components that communicate
with one another; they also connect components with the environment. Communication proceeds
by message exchange over these channels.

The FORGE Project Page 6 of 13

Mathematically, a stream is a finite or infinite sequence of messages, occurring on a channel of
the system. In other words, streams represent the communication histories of system components.
Individual components can be understood as relations over their input/output histories. Intui-
tively, we describe a component by its reactions to the inputs it receives over time. This model
lends itself nicely to the capturing of collaborations and services: they emerge as projections of
the overall system behavior on certain components and their channels. Because in the stream
model we can reference entire histories of component interactions, we can describe and reason
about the global QoS properties mentioned above. Earlier, we have used this mathematical model
successfully to define a precise service notion, supporting simple QoS specifications
[Krueger02a, Krueger02b]. MSC specifications can be systematically transformed into state-
oriented component implementations. This is an important step for ensuring that the implementa-
tion meets the elicited interaction requirements, and reduces the amount of manual work needed
to achieve correct system designs.

Because collaboration specifications describe components together with the context they operate
in, these provide important design information required to provide optimized system implementa-
tions. In particular, in the context of FORGE, a collaboration specification for a particular service
will include information on what part of the middleware, and of other external components is re-
quired for implementing the service. An intelligent linker or runtime system can use this informa-
tion to reduce the memory footprint of the implementation.

Architecture Description Languages (ADL) have traditionally been employed by the compilers
for managing the micro-architectural resources of the CPU (registers, functional units). By speci-
fying machine abstractions that capture both a processor's structure and behavior at a high level,
the ADL can drive the automatic generation of compiler/simulator toolkits, allowing for early
"compiler-in-the loop" design space exploration. This simultaneous exploration of the applica-
tion, architecture and compiler allows early feedback to the designers on the behavior of the
match between the application needs, the architectural features, and the compiler optimizations.

In case of heterogeneous machines, comprising multiple processors/resources, the ADL alone is
not sufficient. A Resource Description Languages (RDL) is included for specifying attributes of
the available hardware, as well as communication structure, constraints and system requirements.
The RDL/ADL mechanisms expose both the architecture of the system and the resource con-
straints to the compiler, allowing for an effective match of the application to the underlying
hardware.

An example of an ADL language that supports fast retargetability and DSE is EXPRESSION
[Express]. The language consists of two main parts: behavior and structure specification. In the
behavior component the available operations and instructions are enumerated, as well as their
execution semantics; this drives both the code generation phase of the compiler and the functional
execution part of the simulator. The structure component describes the components of the proces-
sor, the connectivity (paths) between them and the memory subsystem; it is mainly used in the
compiler's optimization phases to generate code that best match a given architecture. Also, the
simulator accurately generates cycle by cycle statistics based on the same description.

4 Resource and Architecture Description in FORGE

Compiler technology has traditionally targeted mainly individual processors or controllers. How-
ever, designers of DRE applications increasingly must deal with large systems, containing multi-
ple processor cores, peripherals, memories, connected through different wireline and wireless
networks. FORGE extends the traditional notion of a compiler and ADL to include not only plat-

The FORGE Project Page 7 of 13

form specific architectural details but also capabilities of the middleware services needed for an
application. By viewing the system components, such as CPUs (e.g., data collection drones), dif-
ferent computing devices and peripherals as resources that are described in a high-level language,
it is possible to allow the compiler to generate service specifications in a more globally optimal
manner.

The compiler is not the only place where the higher-level information can prove useful. At run-
time, information can be passed between abstractions at different levels, making the decision
process more aware of the actual device and application, so that the power and resource utiliza-
tion are improved. The OS/hardware level resides closest to the actual hardware device and has
full knowledge of its capabilities and limits. By relaying some of this information to the higher
levels, it helps the middleware framework in making decisions of task migration and
node/network restructuring (better mapping between tasks with different demands and available
heterogeneous nodes):

• Computing power (expressed in MIPS): in general, nodes are heterogeneous; their hardware
processing capabilities may vary over a large range depending on the type and number of
processors, frequency at which they are running and other local factors. Similarly, tasks
(particularly in time-constrained applications) may be characterized for WCET as well as
response time requirements. Middleware can make use of this information when migrating
the tasks between nodes or duplicating tasks on a node in response to increases in the proc-
essing workload.

• Available total memory: memory availability may not only be different but also diverse
across different nodes in a DRE system. Memory availability can be matched to task mem-
ory footprints for improved resource utilization.

• Availability of specialized functional units (and resources)
• Power budget or efficient battery discharge profile: typically, the middleware level assume a

fixed energy available to each node and a linear discharge rate. In reality, the available en-
ergy depends heavily on the discharge curve. Discharges under a high current may weaken
the battery and shorten its life. Similarly, other nodes may be able to renew their energy lev-
els by using solar cells. In this case, the available energy profile on the node will have a pe-
riodic behavior, with high level during daytime and lower levels during nights, when the
only energy comes from the battery. A coordinated attempt to match desired energy con-
sumption profile through distribution and scheduling of tasks in a DRE system would be de-
sirable for efficient utilization of system resources.

Thus, the lower level (OS/hardware) can provide the middleware levels with a simplified view of
the current state of the actual device at any point in time (in terms of processing capabilities,
available power and memory). On the other end, the application/middleware levels controls how
the application is to be distributed and run on the available network of nodes. They have an ex-
tended view of the requirements of the system at any point of time and can provide valuable in-
formation to the OS/hardware (lower levels). When making scheduling decisions, the
OS/hardware makes no assumption about the current and future position of the node or upcoming
processing requirements. They have a limited local view, where the actual distributed system is
not visible. When useful, the middleware level can make parts of the global information which
are relevant available to the lower levels:

• at the OS level, a task is viewed as a black box, assuming the worst case execution time and
maximum power consumption. In reality, a task may be profiled a priori and a more realistic
execution time and power profile could help the OS to make better scheduling decisions.

The FORGE Project Page 8 of 13

• some tasks are not too important for the system at specific times and they may be run at the
lowest rate (even serialized). The OS level will make decisions to slow down the processing
greatly reducing the power consumption (either by DVS or DPM).

• if the middleware level has a better understanding of the application flow (for instance, the
processing starts slowly, and it is not very critical, but later the computation can increase
heavily, pending the activation of an observed sensor), it can instruct the lower levels to
save energy, i.e., if possible run the tasks at lower QoS (such as a lower frame rates for a
frame based stream processing), or serialize the computation.

Figure 3 shows our vision of the application development model for complex heterogeneous dis-
tributed computing platform. The Lowest layer shows an abstract picture of a heterogeneous
computing platform consisting of multiple devices connected over wire-line/wire-less communi-
cation links. The second layer shows the Architecture description of such a platform, and resource
constraint description of the application requirements (such as power budget, real-time constraints
etc.). The compiler (to be developed), takes the application functional specification, the ADL, and
RDL, generates the services, and middleware configuration shown in the second highest layer,
and their deployment information across the platform.

Figure 3: Application Development Model for Distributed Real-time Embedded Systems

Compiler-Runtime Interaction and the Role of RDL
Our approach towards integration of the compiler with the runtime system relies on user-level
creation and management of threads (parallelism), and a new application-OS kernel interface that
supports a simple communication protocol between the OS and the executing application. This
communication protocol between user and kernel does not require context switching and hence it
involves minimal overhead. In fact, the critical aspects of the user-kernel interface and commu-
nication protocol consist of posting and inspecting processor and thread counts from both the cli-
ent (application) and the server (OS), and resuming execution (suspended threads) from user-
space without the involvement (and hence the cost) of the OS kernel. Both of these interfaces can

Capture Platform architecture

Heterogeneous computing platform

DS µ-proc

DB

Xscale

ADL capturing the platform archi-
tecture

RDL describing resource con-
straints

Application Functional Specification (including timing, power and other constraints)

Service
objects

Compiler

Capture resource
constraints

Middleware

The FORGE Project Page 9 of 13

be implemented by inexpensive memory operations (loads/stores) to a shared region of the virtual
address space, which is pinned in physical memory. In the proposed approach, the OS decides
(according to policies that we have already developed), when and how many processors to give to
a process and for what duration. This information is communicated through the shared region of
memory (via an API). From the time of allocation, each processor is managed explicitly by user-
code, de-queuing and executing user-level threads while possibly queuing other threads.

Our approach eliminates the traditional manual partitioning of functionality of the application into
services/objects, and automates the generation of such partition and mapping. By definition, the
compiler has the most detailed information about applications, and coupled with target computing
platform description, it becomes the tool of choice for generating and inlining the runtime support
code into the application code. This can be done by partitioning the program into independent
threads exploiting user-specified or compiler extracted loop and task parallelism, and (using the
RDL target description) translating data and control dependencies into sequencing and communi-
cation code which, during execution, renders runtime support to the user application. In addition,
the compiler can also generate all the necessary data structures including scheduling queues and
designated space for user-level context save/restore operations. Since generation of the runtime
system is automated and inlined in user code, there is opportunity for compile-time optimization
of the runtime system code itself, which is impossible in traditional approaches.

Another important advantage of this approach is the ability to match the amount of parallelism
(number of threads) generated by the application at runtime with the number of computing re-
sources available to the application at each step during execution. We can achieve his by relying
on the Hierarchical Task Graph (HTG) [Girkar92], an intermediate parallel program representa-
tion which encapsulates minimal data and control dependences, and which can be used for the
extraction and exploitation of functional or task-level parallelism. The hierarchical nature of the
HTG facilitates efficient task-granularity control, and thus applicability to a variety of parallel
architectures. The HTG captures the explicit hierarchy of the underlying computation so that
nested loops, for example, are represented by compound nodes at different levels of the represen-
tation. The actual number of threads allocated to each loop nest is determined at runtime as con-
trol reaches that loop. A simple inspection of the allocated number of processors through the OS
API can therefore guide the runtime system in making the most appropriate decision w.r.t. the
exploitable degree of parallelism at each level of the computation. In this manner, the compiler
produces scalable code – application code that is compiled once but can execute on different
node architectures and generate different numbers of parallel threads matching the available re-
sources in each case. Besides the obvious benefits of such a capability on the performance of
individual applications, such scalable codes allow a seamless integration of multiprogramming,
time-sharing and real-time processing on one hand, and parallel processing on the other; or
equivalently, a cooperative fusion of time- and space-sharing on shared and distributed memory
systems.

5 A Case Study
While the project is in very early stages, we outline here an application from automatic target
recognition (ATR) code to demonstrate our approach to DRE software. The ATR application
consists of two main components: target detection and target recognition. Going down one level,
the main application processing part can be divided into four main tasks, which operate inde-
pendently on groups of frames: TARG (target detection), FFT (filters), IFFT (filters), DIST
(compute distance) shown in Figure 4.

The FORGE Project Page 10 of 13

This division allows OS scheduler to parallelize the tasks into a pipelined version; from here, dif-
ferent decisions can be made based on the constraints imposed by the application (e.g.: processing
one frame through the pipeline should not take more than 16 ms). Each task has its own power
requirements and completion time. By running the hardware under different operating modes or
by the use of dynamic voltage scaling, the task scheduler in FORGE can minimize the power
consumption while still meeting timing constraints [Chou02]. Another scenario is scheduling the
tasks so that the power consumption follows an available power profile (and meets the timing
constraints) [Azevedo02].

By taking this simple application one level up, into a distributed world, we can imagine an envi-
ronment in which there are hundred of nodes performing target recognition, geographically
spread over a large area and running on a heterogeneous network of hardware devices. The de-
vices may be small drones, capable of moving on flat terrain, small unmanned planes, or even
miniature sensors that are dropped from airplanes over a large hard reachable area. Most of these
nodes communicate wirelessly; the small ones have limited range of communication and require a
proxy node in order to relay the information to control nodes. Proxies could be dedicated, or,
when needed, any node with sufficient processing power can act as a proxy for neighbors within
communication range that are not capable of it.

The target recognition is based on images coming from light sensors. Part of the nodes has sen-
sors operating on visible spectra, while others operate in infrared and are able to continue the
tracking even during night. The terrain is predominantly flat, with some dispersed hills where
only airborne sensors can follow. The application’s main task it to track the targets over the ob-
served area. Operating such a complex distributed application is not trivial and it requires coop-
eration between many components and different layers in our simplified abstraction view. Be-
cause of the extremely heterogeneous operating environment, there are many decisions to be
made in order to preserve the functionality of the application and to meet the QoS requirements at
the same time.

Target Detection

FFT

Filter/IFFT

Compute Distance

(Application ATR
 (Contains TARG FFT IFFT
DIST)
 (Paths
 (TARG FFT)
 (FFT IFFT)
 (IFFT DIST)
)
 (Deadline 16ms)
 ...
 (Task TARG
 (FloatingPoint NO)
 (Scalable YES)
 (Memory 1Mb)
 ...
)
 (Task FFT
 (FloatingPoint YES)
 (Scalable YES)
 (Memory 1Mb)
 ...
)
 ...

(a) (b)

Figure 4: Specification of ATR Application Structure

The FORGE Project Page 11 of 13

At the middleware/application layers, we seek to enable adaptation of components and services to
demands and changing environments using reflective middleware services []. Very briefly, reflec-
tion is the capability to automatically reconfigure structure of the distributed computation by mi-
grating components from one node to others, reshaping the topology of the network or replicat-
ing/dereplicating nodes. In this context, we are using CompOSE|Q reflective distributed middle-
ware infrastructure [Nalini01]. Based on a two level meta-architecture, it supports all the required
base services for replication, dereplication, migration and other higher level services. The core
runtime resides on every node; it implements meta-level services, manages system resources and
controls the runtime behavior of application (base) level services. If necessary, part of the appli-
cation level components can be migrated (offloaded) between nodes, to free up constrained nodes
and allow for more efficient operation. This requires efficient exchange of key pieces of informa-
tion from lower levels. Figure 5 shows the information captured within FORGE specification.

(Node MOBILE1
 (Processor 400MIPS)
 (Memory 32Mb)
 (DPMCapable NO)
 (DVSCapable YES)
 (DVSModes
 (m0 600Mhz 2.2V)
 (m1 500Mhz 1.8V)
 (m2 400Mhz 1.5V)
 (m3 300Mhz 1.1V)
)
 (PowerSource
 (Battery 50Wh)
 (SolarCell 5Wh
 (Period 24h)
 (Duration 9h)
)
)
)

(TaskProfile
 (Task TARG
 (m0 0.66ms 7W)
 (m1 0.79ms 4W)
 (m2 0.99ms 2W)
 (m3 1.32ms 0.9W)
)
 (Task FFT
 (m0 0.29ms 6W)
 (m1 0.34ms 3.5W)
 (m2 0.43ms 1.8W)
 (m4 0.57ms 0.75W)
)
 ...
)
 (Sensors
 (Video
 (Spectra Visible)
)
)
 ...
)

(Node MAIN1
 (Processor 800MIPS
800MIPS)
 (Memory 1000Mb)
 (DPMCapable NO)
 (DVSCapable NO)
 (PowerSource
 (Line NOLIMIT)
)
 (TaskProfile
 ...
)

Figure 5: Node information captured in FORGE

There are two parts to the specification: (a) the application part shown in Figure 4(b) describes
the task decomposition and system level constraints. For instance, the ATR application is com-
posed of four main tasks (TARG, FFT, IFFT, DIST), connected in series (the 'Paths' section). In
this simplified case, there is only a global deadline: for processing one data input element
(frame). Each task is characterized next, including special units (floating point) and memory re-
quirements, scalability (capability of running multiple instances in parallel, to increase workload)
and other information relevant at this level. (b) The node description abstracts node-level capa-
bilities including (as applicable) task profiles for different operating modes for both time and
power consumption. For instance, in Figure 5, the first node, MOBILE1, has a dynamic voltage
scaling capable processor, that can operate in four modes (m0 to m3), each at different frequency
and voltage. The node has a processing power of 400MIPS, 32Mb available total memory and
two power sources: battery and solar cell. For each task timing and power profiles when running
on the current node in different power modes are included. The second node is a mainframe with
two processors and 1Gb of main memory. It has unlimited power budget (i.e. power line con-
nected) and is not capable of DPM or DVS. While greatly abstracted, this information can still
allow a range of middleware optimizations such as:

The FORGE Project Page 12 of 13

• the ATR application consists of two main parts: target detection and target recognition. Tar-
get detection is integer based, while target recognition makes use of floating point while ap-
plying FFT and IFFT filters. When deciding to offload parts of the computation to a proxy
node, the middleware layer may decide between two or more available proxy nodes depend-
ing on their floating-point computation capabilities.

• while in observing mode, most of the nodes (drones) operate in a saving power state (low
QoS). Once a target is being identified by any of the active drones, the nodes in the surround-
ing area are immediately notified by the control layer and the local OS decides on switching
to the normal operating mode, at full voltage and frequency. If a node has multiple sensors or
higher processing capabilities, the middleware layer may decide on using them as proxy for
the small nodes by offloading some computation or middleware components.

• nodes may be able to perform under different power modes; others may allow dynamic volt-
age scaling. When the night comes, the controlling layer may decide to migrate some of the
processing to DVS capable drones and shut down the ones operating on visible light in order
to save power.

• if the tracked target is moving onto rough or high terrain, where the mobile drones cannot
follow, the nodes operating from planes are notified and the whole network is restructured to
allow uninterrupted tracking. If the area is already covered with small sensor nodes, which
were dropped from planes, are not capable of motion and have limited communication range,
the blocked mobile nodes which are close by may act as proxy nodes for the middleware
communication.

• many drones have a limited power budget which is made available by the hardware level to
the middleware control level. Based on this, the middleware knows at any point what is the
distribution of the available power with respect to the nodes in the network and may instruct a
reconfiguration of the network so that a good coverage of the area is obtained and the nodes
will be able to perform the tracking even if some of them will run out of energy.

• in time, some drones may experience malfunctions of internal subsystems (e.g. the light sen-
sor may stop functioning, or the motion engine may fail due to bad road conditions). The
hardware level will then inform the middleware of the situation, and a decision can be made:
the sensor less node may act in the future as a processing only node (or proxy), by situating
itself among active drones and the stuck drone can act as a fix sensor.

• depending on the tradeoff between node capabilities and uplink power demand, the higher
control level may require from a drone to upload the data directly from the sensor, without
preprocessing. When many drones are closed by over a small area, because inter-node com-
munication can be done with less power, most of the computation can be done locally by dis-
tributing the work and only one upstream of data will be necessary, potentially saving power.

This example shows us that a global view of the system at all levels of abstractions, with informa-
tion flowing between different levels is beneficial for setting up and managing an application a
distributed environment. The high-level system specification can drive the compiler to automati-
cally generate not only the different components of the applications, but also the required mid-
dleware level services and interface that together glue the system components and help towards
performing the overall functionality. Dynamically, the run-time system can base its decisions on
the high-level specification and make better tradeoffs when confronted with changes in the envi-
ronment that requires a redistribution of computation or network reconfiguration.

6 Summary
FORGE brings together a number of advances in architectural modeling, software architecture
and distributed/real-time systems to build a platform that provides two fundamental capabilities
for DRE system development: (a) conceptualization and coding of the design knowledge through

The FORGE Project Page 13 of 13

collaborative specifications that are inherently matched to distributed solutions; and (b) exploita-
tion of the design knowledge across all development phases for the DRE systems. Our proof-of-
concept FORGE prototype is built upon collaborative specifications captured by extensions to the
message sequence charts (MSCs) that drive the customization of CompOSE|Q middleware ser-
vices and generate node-architecture specific code through descriptions of the architecture and
resources captured using ADL and RDL respectively.

References
[Udupa99] Divakara K. Udupa “TMN: Telecommunications Management Network”, McGraw-
Hill Professional Publishing, January 1999.

[Schantz02] Richard E. Schantz and Douglas C. Schmidt, “Middleware for Distributed Systems:
Evolving the Common Structure for Network-centric Applications,” Encyclopedia of Software
Engineering, Wiley and Sons, 2002.

[Wang01] Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and Michael Kircher,
“Towards a Reflective Middleware Framework for QoS-enabled CORBA Component Model Ap-
plications,” IEEE Distributed Systems Online special issue on Reflective Middleware, 2001.

[Krueger00] I. H. Krüger, “Distributed System Design with Message Sequence Charts”, Disserta-
tion, Technical University of Munich, 2000, online at: http://tumb1.biblio.tu-
muenchen.de/publ/diss/in/2000/krueger.html

[Broy01] M. Broy, K. Stølen, “Specification and Development of Interactive Systems”. Focus on
Streams, Interfaces, and Refinement. Springer, 2001

[Broy98] M. Broy, I. Krüger, “Interaction Interfaces - Towards a scientific foundation of a meth-
odological usage of Message Sequence Charts”, in: J. Staples, M. G. Hinchey, Shaoying Liu
(eds.): Formal

[Krueger02a] I. Krüger, “Specifying Services with UML and UML-RT”, Electronic Notes in
Theoretical Computer Science, Vol. 65 (7), 2002

[Krueger02b] I. Krüger, “Towards Precise Service Specification with UML and UML-RT”, in:
Critical Systems Development with UML (CSDUML). Workshop at «UML» 2002, 2002

[Express] Expression Project Webpage, http://www.cecs.uci.edu/~aces/projMain.html#expression

[Chou02] P. H. Chou, J. Liu, D. Li, and N. Bagherzadeh, "IMPACCT: Methodology and tools for
power aware embedded systems", Design Automation for Embedded Systems, Kluwer Interna-
tional Journal, Special Issue on Design Methodologies and Tools for Real-Time Embedded Sys-
tems, 2002.

[Azevedo02] Ana Azevedo, Ilya Issenin, Radu Cornea Rajesh Gupta, Nikil Dutt, Alex Vei-
denbaum, Alex Nicolau, "Profile-based Dynamic Voltage Scheduling using Program Check-
points in the COPPER Framework", Design Automation and Test in Europe, March 2002.

[Nalini01] Nalini Venkatasubramanian, Mayur Deshpande, Shivajit Mohapatra, Sebastian
Gutierrez-Nolasco and Jehan Wickramasuriya, "Design & Implementation of a Composable Re-
flective Middleware Framework ", IEEE International Conference on Distributed Computer Sys-
tems (ICDCS-21), April 2001.

[Girkar92] Milind Girkar, Constantine D. Polychronopoulos, “Automatic Extraction of Func-
tional Parallelism from Ordinary Programs”, IEEE Transactions on Parallel and Distributed Sys-
tems 3(2): 166-178, 1992.

