
1

Physical Assembly Mapper: A Model-driven Optimization Tool for
QoS-enabled Component Middleware

Krishnakumar Balasubramanian, Douglas C. Schmidt
Dept. of EECS, Vanderbilt University, Nashville
{kitty,schmidt}@dre.vanderbilt.edu

Abstract— Component middleware technologies are increas-
ingly used to assembly large-scale distributed real-time and
embedded (DRE) systems composed from many individual com-
ponents. While this approach allows DRE system developers to
avoid traditional stove-piped monolithic architectures and better
reuse portions of their systems, component middleware technolo-
gies can also impose space overhead in terms of static/dynamic
memory footprint. Without effective optimization techniques,
therefore, a large class of DRE systems with stringent footprint
requirements may not be able to use component middleware
effectively.

This paper provides four contributions to the study of opti-
mization techniques for component-based DRE systems. First, we
describe the challenges in designing component-based DRE sys-
tems and identify the sources of overhead in typical component-
based DRE systems. Second, we describe a class of optimization
techniques that are applicable during deployment of component-
based DRE systems. Third, we describe the Physical Assembly
Mapper (PAM), which is a model-driven optimization tool that
implements these techniques to reduce footprint at multiple levels,
local (deployment plan-specific) and global (application-wide).
Fourth, we evaluate the benefits of these optimization techniques
empirically and provide analysis of the results. Our results
indicate that the "deployment-time” optimization techniques in
PAM provides significant benefits, such as 45% improvement in
footprint, when compared to conventional component middleware
technologies.

I. INTRODUCTION

A. Overview and Challenges of Component Middleware for
DRE Systems

Component middleware technologies, such as the
Lightweight CORBA Component Model (CCM), Boeing’s
PRiSM, OpenCOM, nesC’s component model, and Timing
Definition Language extension to Giotto, have raised the
level of abstraction used to develop distributed, real-time
and embedded (DRE) systems, such as avionics mission
computing [1] and shipboard computing systems [2]. In
addition to elevating the level of abstraction, component
middleware also promotes the decomposition of monolithic
systems into collections of inter-connected components
(called a component assembly) that is composed of individual
components (called monolithic components). A component
assembly is thus a set of monolithic components inter-
connected using the ports of the components.

Although component middleware provides many benefits, a
number of challenges may restrict its use for a large class
of DRE systems with stringent footprint requirements. For
example, while functional decomposition of DRE systems
into component assemblies and monolithic components helps

promote reuse across entire product lines [3], it can also
increase the number of components in the system. These many
components, in turn, can significantly increase the memory
footprint of component-based DRE systems.

Enterprise systems can offset the increase in footprint via
hardware upgrades. In contrast, DRE system domains, such as
avionics mission computing and shipboard computing, often
cannot afford this luxury. This difference between enterprise
systems and DRE systems stems from operational QoS de-
mands and from the relatively long lifetime (about 15 to 20
years [4]) of DRE systems.

There are significant challenges in identifying and opti-
mizing component implementations in the absence of a well-
defined description of the systems that can be processed by
tools automatically. Performing such optimizations on com-
ponents is hard since the usage of any single component
tends to span multiple compositional hierarchies, i.e., a single
component could be connected to different sets of compo-
nents in different assemblies, in any complex system. Since
components are often reused across an entire product line,
an optimization that is applicable in one context may not be
applicable in another context.

It is therefore infeasible to perform these optimizations in
isolation. Instead, they should be performed based on the re-
quirements of every unique deployment. Without the ability to
augment the information available at the implementation level
with deployment information, it is not possible to optimize
component implementations by operating at the middleware
level alone. Finally, performing these optimizations manually
is in systems with many components that change due to system
evolution.

B. Solution Approach → Physical Assembly Optimizer

To address the challenges of large-scale component-based
DRE systems described above, we have developed model-
driven deployment-time optimization techniques that help re-
duce the overhead in DRE systems. Our optimization tech-
niques focus on reducing the footprint overhead in component
middleware by optimizing the assembly of components at
deployment-time, as opposed to design-time and/-or run-time.
By combining together multiple components to create physical
assemblies of components using a technique known as fusion,
our optimizations reduce the number of components required
to deploy a system.

Assemblies of components as defined by standard com-
ponent middleware, such as Lightweight CCM, are virtual,

2

i.e., the individual components that form the assembly can
be spread across multiple machines of the target domain.
Monolithic components of virtual assemblies are mapped onto
the target nodes of the domain as part of the deployment
process. The fusion of multiple components creates a phys-
ical assembly. In contrast to a virtual assembly, a physical
assembly is defined as the set of components created from the
monolithic components that are deployed onto a single process
of a physical node, as shown in Figure 1. A physical assembly

Node Application (Single Process) Node Application (Single Process)

Node Application (Single Process)

Physical

Assembly

Mapper (PAM)

Node Application (Single Process)

ComponentRequired Interface

Provided Interface Event Sink

Event Source

Physical Assembly

Fig. 1: Physical Assembly

is itself a full-fledged component, i.e., it has a component
interface as well as an implementation. The implementation
of the physical assembly, however, simply delegates to the
original implementations of the monolithic components from
which the physical assembly is created.

A key enabler in the creation of physical assemblies is the
presence of (1) application structure information, i.e., connec-
tions between components, (2) application QoS configuration
information, i.e. QoS configuration associated with each com-
ponent, and (3) application deployment information, i.e., the
mapping of components onto physical nodes(and processes
within nodes). The optimization techniques described and
evaluated in this paper obtain this information from models of
the application built using domain-specific modeling languages
(DSML)s. A DSML defines a type system that formalizes
the application structure, behavior, and requirements within
a particular domain, such as software defined radios, avionics
mission computing, online financial services, warehouse man-
agement, or even the domain of component middleware itself.
The use of DSMLs to capture information across the different
stages of DRE system development allows us to optimize
the application at “deployment-time” in an application-specific
fashion.

The novelty of our approach stems from identifying and
applying component assembly optimizations in an opportunis-
tic and automatic fashion from models of applications. This
approach eliminates the difficulties associated with applying
these optimizations manually. Such optimizations are infeasi-
ble to perform in a generalized manner at the middleware level
due to the context-dependent nature of these optimizations.

We have applied these optimization techniques in a model-
driven tool called the Physical Assembly Mapper (PAM) that
optimizes component-based DRE systems developed using
Lightweight CCM. PAM is built using the Generic Model-
ing Environment (GME) [5], which is a meta-programmable
environment for creating DSMLs. PAM utilizes both the
connectivity information between components modeled and
the QoS policies to create physical assemblies.

By operating at the high-level abstraction of models, PAM
allows optimizing virtual assemblies across two dimensions—
footprint and performance—and at multiple levels—local (de-
ployment plan-specific) and global (application-wide). Since
PAM’s optimizer operates at deployment-time no changes
are required to the monolithic component implementations,
functional decomposition, or structure of component-based
DRE systems.

C. Paper Organization

The remainder of this paper is organized as follows: Sec-
tion II motivates the need for PAM by surveying key sources
of overhead in component middleware; Section III describes
the deployment-time optimization techniques implemented by
PAM; Section IV analyzes the results from empirical evalu-
ation of DRE systems optimized using PAM on Lightweight
CCM; Section V compares our work on PAM with related
research; and Section VI presents concluding remarks and
lessons learned.

II. CHALLENGES IN LARGE-SCALE COMPONENT-BASED
DRE SYSTEMS

This section describes key features of component middle-
ware programming models and describes the cost of these
features with respect to memory footprint for DRE systems. To
make our discussion concrete, we use the Lightweight CORBA
Component Model (CCM) as an example of component model
for our discussion. The sources of overhead, however, are
generally applicable to any layered component middleware,
such as Enterprise Java Beans (EJB), Boeing’s PRiSM [1],
and OpenCOM [6].

The contribution to the memory footprint of a component
DRE system can be classified into two categories: static and
dynamic. Static footprint increases result from code generated
to integrate the implementation of a component with the mid-
dleware’s run-time environment; code generation is specific to
each unique component type in the system. Dynamic footprint
increases are due to the creation of run-time infrastructural
elements, such as component homes and component context
on a per-component basis. We discuss both types of memory
footprint overhead below.

3

Common Services

Operating System

Transaction Persistence

Events Security QoS

ComponentServer

Container

Component Assembly

CH
CH

CH

CH

CH

Required Interface

Provided Interface Event Sink

Event Source

Component Home

Component

Component

Component

Executor

Executors

Context

Fig. 2: Key Elements in the CORBA Component Model

A. Static Footprint Overhead

As shown in Figure 2, for every component type in a
DRE system, the CCM platform mapping requires generation
of code for various infrastructure elements, including the
following:
• Component context. A component context class is gener-
ated corresponding to each component interface to allow each
component to be reused in multiple execution contexts.
• Component base interfaces. Each component interface
derives from a number of base interfaces, e.g. SessionCom-
ponent and EntityComponent in CCM, which classify
the category of a particular component.
• Component home. A component home is generated corre-
sponding to each component interface. Each component home
provides not only factory operations that allow customization
of creating components but also provides finder operations that
clients use to locate a component managed by a component
home.
• Navigation operations. Each component also contains a
number of pre-defined navigation operations. The navigation
operations of a component interface allow clients of a compo-
nent to query and obtain references to the ports of a component
in a standardized fashion.

In addition to the interfaces and operations describe above,
each component implementation is typically split into multiple
shared libraries. For example, component implementations are
often split into three shared libraries: stub library, servant, and
executor. The stub library contains the automatically generated
client-side proxy code necessary for each component type
to connect to other component types, the servant contains
automatically generated code that registers a component with
an Object Request Broker (ORB), and the executor contains

the business logic of a component written by application
developers.

The drawbacks of designing DRE systems using multiple
shared libraries are well-known [7] and include increased code
size, increase in the number of dependencies between shared
libraries and number of relocations at load time, all of which
result in increased dynamic memory footprint. Developers are
thus forced to make a choice with respect to the granularity of
the component functionality and implementations. The design
trade-off is between (1) a single monolithic shared library,
which can increase the footprint of components that only
need to connect to it, compared to (2) a number of shared
libraries, which can increase the overall footprint and time
taken to load the libraries into memory. Section III-A describes
how our optimization techniques defer this design decision
until deployment-time, which is more flexible than making
it a design/development-time. Deferring the decision until
“deployment-time” allows for more opportunities to optimize
the system using the extra information available only at
deployment-time.

The overhead due to the static footprint increases with the
increase in the number of component types. This overhead can
be significant in complex applications and becomes apparent
in the presence of a large number of types or in resource con-
strained environments, which are common in DRE systems.

B. Dynamic Footprint Overhead

The code generated per component interface that allows
containers to host components adds to the static footprint
and creates a number of auxiliary middleware infrastructural
elements corresponding to each component instance at run-
time, including:
• Component home. Since a component home can manage
only one type of component, the CCM run-time infrastruc-
ture creates a separate component home instance for every
component type loaded into a system. This component home
is then used to create multiple component instances. Naïve
implementations could also create a component home instance
per component instance. CCM allows clients to create compo-
nents dynamically by obtaining a reference to its component
home. In many classes of DRE systems, these sophisticated
features of component homes are seldom used and impose ad-
ditional time/space overhead corresponding to each component
instance created at run-time.
• Component context. The run-time infrastructure creates a
component context corresponding to each component instance
that is deployed. The component context contributes to the
increase in the dynamic footprint corresponding to the increase
in the number of component instances.
• Component servant. Each component instance must also
be registered with the underlying middleware infrastructure to
communicate with other components. A component servant
is created at run-time corresponding to each instance of a
component and allows it to be registered with the middleware.
Although component servants are critical to the functioning of
a component, each component servant created contributes to
the increase in the dynamic footprint of the system.

4

Each component instance consumes a certain amount of
memory in the run-time environment. In the presence of a
large number of components, it is imperative to reduce the
number of component instances/types to reduce the memory
consumption of the system as a whole. To reduce the dynamic
memory footprint of the system due to auxiliary middleware
infrastructure elements, the designers are forced to make a
decision with respect to the number of components as well
as the granularity of the components during the creation of
assemblies, i.e., design/development-time. It is non-trivial to
keep track of redundant component instances during compo-
nent assembly creation, since each such component instance
can be spread across multiple assemblies, i.e., sub-systems.

Forcing the designer to pay attention to issues like number
of component instances created and redundancy in component
instances, during component assembly design distracts the
designer from the high-level issues like functionality of the
assembly. The design trade-off here is between (1) fine-grained
decomposition of the system into a number of component
types/instances, which can increase memory footprint, com-
pared to (2) monolithic architectures that are strongly coupled,
brittle, and discourage reuse, but which reduces the mem-
ory consumption of the auxiliary middleware infrastructure
elements (by creating few of them). Section III-A describes
how the creation of physical assemblies reduces the number
of components in the system without requiring the use of
monolithic architectures at design/development-time.

Although static overhead of a component increases its lower
limit of the memory requirement, this type of overhead does
not grow as the number of components increases on a single
node. Dynamic overhead, in contrast, increases linearly as
the number of components grows. In a large-scale scenario
with thousands of components, reducing the dynamic overhead
is essential to reduce memory footprint requirements of an
integrated system. Section III-A describes how our optimiza-
tion techniques reduce the total number of components in the
system.

III. DEPLOYMENT-TIME OPTIMIZATION TECHNIQUES

As described in Section II, a key source of footprint
overhead is the number of peripheral infrastructure elements,
such as component home and component context, created for
each monolithic component. An approach that reduces the
number of components deployed should reduce the number of
peripheral infrastructure elements, thereby reducing the static
and dynamic footprint of the component-based DRE systems.

The approach presented in this paper uses deployment-time
optimization techniques. This section first describes the model-
driven optimization techniques that help reduce the time and
overhead in large-scale component-based DRE systems. It
then presents the structure and functionality of the Physical
Assembly Mapper (PAM), which is a tool that automates
deployment-time optimization techniques in the context of the
CORBA Component Model (CCM).

A. Deployment-time Optimization Algorithms
As shown in Figure 3, the central theme of our component

assembly optimizations is the notion of “fusion.” Fusion

Deployment-Time Fusion

Component

Required Interface Provided Interface Event SinkEvent Source

Physical Assembly

Collocation Group Application AssemblyDeployment Plan

Fig. 3: Workflow of Deployment-time Fusion

involves merging multiple elements into a semantically equiva-
lent element. Key differences between the various optimization
techniques described in this section include (1) the type
of elements fused, (2) the scope at which such fusion is
performed, and (3) the rules governing which elements are
fused.

The optimization technique described in Section III-A.4
fuses multiple components into a single physical assembly at
the level of a single deployment plan; the technique described
in Section III-A.5 also fuses components into a single phys-
ical assembly but the scope of such fusion spans an entire
application.

1) Assumptions and Challenges in Component Fusion: A
physical assembly is defined as the set of components created
from the monolithic components that are deployed onto a
single process of a physical node. Our optimization techniques
creates one or more physical assemblies by fusing monolithic
components deployed into the same process on each node
of the target domain. To ensure that our component fusion
technique for creating physical assemblies does not degenerate
to the static technique described in Section III, our approach
operates under the following assumptions:

1) Physical assembly creation should not require changes to
the existing implementations of monolithic components.

2) Physical assembly creation should not impact existing
clients of fused components.

At the core of the component fusion technique is the
capability to merge multiple components into a single physical
assembly. Components interact with the external world using
ports. Fusing multiple components into a single component

5

requires merging the ports of all the individual components.
There are, however, the following challenges in fusing multiple
components into a single physical assembly in a DRE system:
1. Ports of a component are identified using their names.
Each component interface defines a namespace; each kind
of port (e.g., facets, receptacles etc.) defines its own unique
namespace within a component. Port names are also used to
locate the services provided by each component and affect the
middleware glue code generated for each component. Since
ports are the externally visible points of interaction, port names
of a component must be unique within the corresponding port
kind namespace. Although this holds true for each individual
component, it need not be true when merging multiple compo-
nents into a single component. Section III-B.2 describes how
we address this challenge in PAM.
2. Each component relies on being supplied a component
context. This context is needed to connect the component
with the services of other components that it depends upon.
If multiple components are fused together, each component in
the fused physical assembly must be provided with a context
that is compatible with each monolithic component’s context.
Section III-B.3 describes how we address this challenge in
PAM.
3. Each component maintains its externally visible state
through its component attributes. When fusing multiple
components together, it is necessary to ensure that the states
of the individual components are maintained separately. It
is also necessary to allow modification to such state from
external clients. Section III-B.2 describes how we address this
challenge in PAM.
4. Each component must be identified uniquely. To obtain
the services of a component through its ports, external clients
must be able to locate the component via directory services,
such as the CORBA Naming Service, LDAP servers, and
Active Directories. If multiple components are fused into a
single component, the external clients should still be able to
look up the individual components using their original names.
Section III-B.2 describes how we address this challenge in
PAM.

2) Common Characteristics of Fusion Algorithms: Our
fusion algorithms perform a series of checks to evaluate
“fusion,” i.e., whether multiple elements such as components
can be merged into a single element. The property of fusion
of two elements is non-transitive, e.g., if component a can be
merged with component b, and component b can be merged
with component c, it doesn’t always hold true that component
a can be merged with component c. Every pair of elements
must be examined to determine if they can be merged together.

If n is the number of candidate elements for each algorithm,
e.g., set of components deployed in a single process, k is
the number of elements that result from merging components
together, then the number of elements will be reduced by n−k

n .
Of the elements that can be merged into a single element, our
goal is to find the largest set of elements because the larger
the number of elements that we can merge, the greater the
reduction in the number of elements. The best case is when
k = 1, i.e., the savings will be n−1

n .
Given an undirected graph G = (V,E), where V is the

set of candidate elements, and E is the set of edges such
that if two elements are connected then they can be merged
together, the problem of finding the largest set of elements
that can be merged together is equivalent to the problem of
finding a maximum clique in the undirected graph G. The
maximum clique determination problem is well-known to be
NP-complete [8].

A maximal clique (as opposed to maximum) is a clique that
cannot be extended to create a larger clique by adding vertices
to it; a maximum clique is also a maximal clique but the
converse is not always true. One can find a maximum clique by
enumerating all the maximal cliques and choosing the largest.
An efficient algorithm for enumerating the maximal cliques is
by Bron and Kerbosch [9]. The worst-case time complexity for
enumerating all maximal cliques has recently been proven [10]
to be O(3n/3), where n is the number of vertices in the graph.
Our component fusion algorithm, therefore, does not calculate
maximum clique by enumerating all maximal cliques and
choosing the largest.

For our first implementation, we chose to trade-off the
time savings by calculating just maximal cliques (as opposed
to a maximum clique) and using these to creating physical
assemblies, over the benefits of the footprint savings from
creating physical assemblies out of maximum cliques. We,
therefore, use a variation of the algorithm by Bron and
Kerbosch due to Koch [11] to calculate the maximal cliques.
This algorithm has the desirable property that it enumerates the
larger maximal cliques first. In our preliminary testing of the
algorithm with some representative DRE systems, as shown
in Section IV, we found that the maximal cliques chosen by
our current algorithm tend to also be maximum size cliques.
This, however, does not hold true for all systems. We intend
to make the choice between maximal and maximum clique as
an option to our tool that implements the algorithms.

3) Terminology: We now define some terms used in our
algorithms: a node is the physical machine on which one
or more components are deployed. A domain is the target
environment composed of independent nodes and their inter-
connections. A collocation group is defined as the set of
components that are deployed in a single process of a target
node. Each collocation group corresponds to a single OS
process and is always associated with one target node.

A deployment plan is a mapping of a configured system into
a target domain.A deployment plan serves as the blueprint
to be used by the middleware to deploy an application; an
application could be composed of one or more deployment
plans. The algorithms use several auxiliary functions described
in detail in [12] and are briefly described below:
• components(cg) Returns the set of components that
belong to the collocation group cg.
• types(I) Returns the set of types corresponding to the
component instances in I.
• collocationgroups(P) Returns the set of collocation

groups that are defined in the deployment plan P.
• nodes(P) Returns the set of nodes that are defined in

the deployment plan P.
• CreatePhysicalAssemblies(T, I) Creates physical assem-

6

blies from the set of components I whose types are
described in T .
• U pdateDeploymentPlan(IP,K) Updates the deploy-

ment plan IP by replacing all references to components
with references to physical assemblies in K.

4) Local Component Fusion Algorithm: We developed two
versions of the component fusion algorithm, both of which
operate under the assumption that all high-level deployment
planning (e.g., resource allocation) has been completed and the
set of associations of components to nodes is finalized. The
two algorithms differ in the scope at which they are applied.
Algorithm 1 is called Local Component Fusion, where “local”
refers to the fact that this version of the algorithm operates at
the level of a single deployment plan. Algorithm 2 is called
Global Component Fusion, where “global” refers to the fact
that this algorithm operates at the level of an entire application.

Algorithm 1: Local Component Fusion
Input: DeploymentPlan IP
Result: DeploymentPlan OP
begin

CollocationGroup cg;
Component c; set of Component I;
ComponentType t; set of ComponentType T ;
set of set of Component K;
foreach cg ∈ collocationgroups(IP) do

I←{c | c ∈ components(cg)}
T ←{t | t ∈ types(I)}
K← K∪ CreatePhysicalAssemblies (T , I)

end
OP← UpdateDeploymentPlan (IP,K)

end

Smaller DRE systems might use a single deployment plan
to deploy the whole application, whereas large-scale DRE
systems are usually deployed using multiple deployment plans.
The local fusion algorithm initially collects the list of compo-
nents that are deployed onto the different collocation groups
(possibly on multiple nodes) and creates physical assemblies
from the set of components that are local to that deployment
plan.

Algorithm 1 uses a domain-specific heuristic to construct
the set of components which are used to create physical
assemblies.Instead of creating a clique directly out of the
all component instances belonging to a collocation group,
we create a set of component instances that occur the same
number of times. Thus, the heuristic will result in selecting
components that occur only once for the first invocation, ,
components that occur twice for the second invocation, and
so on.

As a result of our heuristic, either all instances of a
single component type are merged into one or more physical
assemblies, or it is left alone. The algorithm never creates a
component type that appears both in some physical assembly
and stand-alone. Without this heuristic, the static footprint of
the process will be significantly worse compared to the original
footprint. The reason for this overhead is because we will load
both the original implementation libraries of the component

Algorithm 2: Global Component Fusion
Input: set of DeploymentPlan IP
Result: DeploymentPlan OP
begin

Node n; set of Node N; DeploymentPlan p;
CollocationGroup cg;
set of CollocationGroup cgs;
set of set of Component K;
Component c; set of Component I;
ComponentType t; set of ComponentType T ;
foreach p ∈ IP do

N←{n | n ∈ nodes(p)}
end
foreach n ∈ N do

cgs←{cg | cg ∈ collocationgroups(n)}
foreach cg ∈ cgs do

I←{c | c ∈ components(cg)}
T ←{t | t ∈ types(I)}
K← K∪ CreatePhysicalAssemblies (T , I)

end
end
foreach p ∈ IP do

OP← OP∪ UpdateDeploymentPlan (p, K)
end

end

as well as the new physical assembly into the same process;
components which end up being stand alone, as well as part of
a physical assembly will contribute to the static footprint twice
(or more if they are part of multiple physical assemblies).

5) Global Component Fusion Algorithm: The second ver-
sion of the component fusion algorithm is called “Global
Component Fusion” and is shown in Algorithm 2. “Global”
refers to the fact that this version of the algorithm uses system-
wide deployment information and is not constrained to a single
deployment plan. The benefits of applying the algorithm at the
global scope is measured and analyzed in Section IV.

The global fusion algorithm is similar to the local except
that it operates across a set of deployment plans. The global
algorithm can find more opportunities for creating physical
assemblies. As shown in Figure 4, global fusion is different
from local fusion since it merges all deployment plans of a
DRE system, instead of updating the individual plans like the
local algorithm.

B. Design and Functionality of the Physical Assembly Mapper

The algorithms described in Section III-A are sufficiently
complicated that attempting to perform them manually will not
scale for large-scale DRE systems. We can effectively rule out
any manual attempt to perform these optimizations for large-
scale DRE systems. The automation of the algorithms using
existing methodologies like writing ad hoc scripts tools, results
in a very brittle tool-chain. The main reason for the brittleness
is that the vocabulary used to describe information such as the
interface definition files of the components, the various de-
ployment metadata like deployment plans, QoS configuration
files necessary to perform these optimizations are disparate.

7

Global Component Fusion

Component

Required Interface Provided Interface Event SinkEvent Source

Physical Assembly

Collocation Group Application AssemblyDeployment Plan

Fig. 4: Workflow of Global Fusion

There is a need for a higher-level abstraction that allows
dealing with these disparate sources of information in a unified
fashion. Model-Driven Engineeringis a promising approach to
providing this much sought after high-level abstraction.

1) Implementation of Fusion Algorithms in Physical As-
sembly Mapper: To demonstrate our optimization techniques,
we developed a prototype optimizer called Physical Assem-
bly Mapper(PAM), which builds upon our previous work
on both Platform-Independent Component Modeling Lan-
guage (PICML) and Component QoS Modeling Language
(CQML) [13] to implement the fusion algorithms described
in Section III-A. PAM is implemented as a model interpreter,
a DSML-specific tool written using C++ for use with GME.
Figure 5 presents an overview of the optimization process
performed by PAM. Optimization using PAM consists of three
phases: a model transformation phase described in Section III-
B.2, a glue code generation phase described in Section III-
B.3 and a configuration files generation phase described in
Section III-B.4. Along with each phase, we also describe how
the phase solves the challenges described in Section III-A.1.

2) Model Transformation in PAM: The input to PAM is the
input model that captures the application structure and the QoS
configuration options. The input model of the DRE system
contains information about the individual component interface
definitions, their corresponding monolithic implementations,
collections of components connected together in a system-
specific fashion to form virtual assemblies, associations of
components with QoS configuration options.

PAM implements Algorithm 1, the local component fusion
and Algorithm 2, the global component fusion, to rewrite the
input model into a functionally equivalent model. As part of
this model transformation, PAM creates physical assemblies

PICML/CQML

Model

CH CH

CH
CH

Physical

Assembly

Mapper

Deployment

Plan

Configuration

Files

CH

Required Interface

Provided Interface

Event Sink

Event Source
Component Home

Component Assembly

Component

C
H

C
H

C
H

C
H

C
H

C
H

C
H

C
H

CH CH

CH
CH

Fig. 5: Workflow of the Physical Assembly Mapper (PAM)

including interface definitions for the physical assemblies.
Since the algorithms perform a series of checks before decid-
ing to merge components together, the issues with ensuring
unique port names described in challenge 1of Section III-A.1
are non-existent when using PAM.

For each such physical assembly created, PAM replaces
the original set of component instances with an instance of
the newly created physical assembly. This writing replaces all
the connections to/from the original components with connec-
tions to/from the physical assembly. PAM also creates new
attributes corresponding to each attribute of all the individual
components ensuring that there is no clash in the attribute
names within the physical assembly namespace. Thus, PAM
solves the problem with maintaining the state of the individual
components separately described in challenge 3 of Section III-
A.1.

To facilitate the lookup of the original components by
external clients using mechanisms such as CORBA Naming
Service, LDAP and Active Directory servers, PAM creates
configuration properties in the model associated with each
physical assembly. These configuration properties create mul-
tiple entries, one corresponding to each unique name used by
the original components in lookup services, and ensures that
all these names point to the physical assembly. Thus, PAM
solves challenge 4 described in Section III-A.1.

3) Generation of Glue-code in PAM: Once the model has
been rewritten into a functionally equivalent optimized model,
PAM utilizes a number of model interpreters to generate
various artifacts related to the middleware glue code. This
middleware glue code is necessary to use the physical as-
semblies created in the model with the existing monolithic
implementations of the components. The glue code generated

8

by PAM creates a composite context by inheriting from
the individual contexts of the components that make up the
physical assembly. This derived context is compatible (due
to inheritance) with each monolithic component’s context and
can be supplied to the individual component implementations
at run-time by the container.

The glue code generated for the physical assemblies can
be compiled and deployed with the implementations of the
other components in the system. Thus, PAM solves challenge
2 of Section III-A.1 associated with providing a compatible
context to the original component implementations. Since
PAM performs the generation without requiring modifications
to individual component implementations, our original goal of
not imposing a burden on the component developer by requir-
ing changes to the original implementation is also achieved.

4) Generation of Configuration Files in PAM: In addition
to the middleware glue code, PAM also generates modified
metadata such as deployment plans and QoS policy config-
uration files. When Algorithm 1 is applied, PAM generates
deployment plans in which the components that have been
merged to form physical assemblies are replaced with the
physical assemblies. All references to the original components
are also replaced with references to the physical assemblies.
The replacement of components (and their references) is done
at the scope of a single deployment plan by the implementation
of Algorithm 1 in PAM.

When Algorithm 2 is applied, PAM generates a single de-
ployment plan. Since the optimizations are applied at the scope
of the entire application, PAM merges the different deployment
plans to create a single aggregate deployment plan. PAM then
replaces the original components merged together to form
physical assemblies with the physical assemblies including the
replacement of references as done for Algorithm 1.

IV. EMPIRICAL EVALUATION AND ANALYSIS

To evaluate the benefits of our fusion algorithms de-
scribed in Section III-A, we applied PAM on arepresentative
DRE application, an application from the shipboard comput-
ing domain [2] This section describes the characteristics of
the application, explains the experiment testbed architecture,
presents the experiments to evaluate footprint improvement.
Our experiments compare the space properties of applications
developed using standard CCM configurations against the
execution of these applications after applying PAM to optimize
the application.

A. Experimental Platforms

1) Shipboard Application: The shipboard computing en-
vironment that we used for our experiments was developed
using the CIAO middleware. This application consists of a
number of components grouped together into multiple opera-
tional strings. As shown in Figure 6, an operational string is
composed of a sequence of components connected together.
Each operational string contains a number of sensors (e.g.,
ed1_A, ed2_A shown on the far left) and system monitors
(e.g., sm1_A, sm2_A shown at the top) that publish data

Component

sm1_A sm3_Asm2_A

ec_A

co_A

p3_A

p2_Ap1_A

ed4_A

ed3_A

ed2_A

ed1_A

e1_A e3_Ae2_A

Event Source Event Sink

Fig. 6: Sample Operational String

from the physical devices as well as the overall system state
to a series of planners.

After analyzing the sensor data and the inputs from system
monitors, the planners (e.g.,p1_A, p2_A shown in the cen-
ter) perform control decisions using the effectors (e.g., e1_A,
e2_A shown at the bottom). Each operational string contains
15 components altogether, and the application used in our
experiments is made up of 10 such operational strings, for
a total of 150 components. Operational strings are at different
importance levels. In case of a resource contention, the higher
importance operational strings receive priority when accessing
a resource.

The application itself is deployed using 10 different de-
ployment plans across 5 different physical nodes named bath-
leth, scimitar, rapier, cutlass, and saber. The assignment of
components to nodes was determined a priori using high-
level resource planning algorithms [14], and was available as
input to our algorithms. Each node had a variable number of
components, ranging from 20 to as high as 80 components
assigned to it.

B. Experimental Setup

We used the ISISlab open testbed for experimentation
on distributed real-time and embedded (DRE) systems and
distributed continuous quality assurance (see www.dre.
vanderbilt.edu/ISISlab for information on ISISlab).
Our experiments used version 0.5.10 of CIAO running on
Windows XP SP2 and Linux with Ingo Molnar’s real-time pre-
emption patches [15]. For the footprint experiments using the
shipboard computing application described in Section IV-A.1,
we used 5 blades running Windows XP SP2. All the machines
were connected on the same local network and connected to
each other using Gigabit ethernet. We measured the footprint
of the components in the deployed shipboard

www.dre.vanderbilt.edu/ISISlab
www.dre.vanderbilt.edu/ISISlab

9

Original

Local

Global

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500

N
o

.
o

f
P

ri
v

at
e

p
ag

es

(a) Total Static Footprint

Original

Local

Global

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

N
o

.
o

f
P

ri
v

at
e

p
ag

es

(b) Total Dynamic Footprint

Original

Local

Global

 0

 500

 1,000

 1,500

 2,000

 2,500

sabercutlassscimitarrapierbathleth

N
o

.
o

f
P

ri
v

at
e

p
ag

es

(c) Node Specific Static Footprint

Original

Local

Global

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

sabercutlassscimitarrapierbathleth

N
o

.
o

f
P

ri
v

at
e

p
ag

es

(d) Node Specific Dynamic Footprint

Fig. 7: Static and Dynamic Footprint

computing application using Virtual Address Dump (VaD-
ump)distributed with the Windows Resource Kit Tools [16].
We used VaDump to measure both static (code and static data)
and dynamic (heap memory) footprint of the components by
taking a snapshot of the process that creates the container
hosting the components on each machine.

C. Analysis of Empirical Footprint Results

Experiment design. To measure the footprint of the shipboard
computing application, we deployed the 10 operational strings
across the 5 nodes using 10 deployment plans. We allowed the
application to execute for 5 minutes and measured the footprint
of the components by running VaDump on the process hosting
the components on each node. We refer to this run of the
experiment as Original in the graphs shown below.

We used PAM (off-line) on the input model by invoking
it to use the local component fusion algorithm described in
Section III-A.4 and repeated the experiment using the 10
locally optimized deployment plans generated. We refer to this
run of the experiment as Local in the graphs shown below.
Finally, we used PAM (also done off-line) on the input model
by invoking it to use the global component fusion algorithm
described in Section III-A.5 and repeated the experiment using

the single global deployment plan generated. We refer to this
run of the experiment as Global in the graphs shown below.
Analysis of results – Static Footprint. Figure 7a compares
the static footprint, which includes the footprint contribution
from code and the static data of the whole application deployed
across all the 5 nodes. We measure the footprint of the
application as the sum of the number of private and shareable
pages (as opposed to shared) of the processes hosting the
components using VaDump. The three runs of the experiment
did not include the contributions from the operating system
and middleware shared libraries, since they were unaffected
by our optimizations.

As shown in Figure 7a, the original static footprint of the
application was 4,478 pages and the application of the local
component fusion algorithm reduced it to 3,110, which is an
improvement of 31%. Applying the global fusion algorithm
reduced the static footprint further to 2,324 pages, which is
an improvement of 49%. The creation of physical assemblies
by the component fusion algorithms therefore significantly
reduced the static footprint of the application.
Analysis of results – Dynamic Footprint. Figure 7b com-
pares the dynamic footprint of the application. The contri-
butions here are primarily from the dynamic allocation of
memory by the application in the three runs. Unlike the static

10

footprint measurements, measuring the dynamic footprint of
the application captures the heap usage of the whole process,
since VaDump does not provide the heap usage of individual
shared libraries. Since we could not precisely pinpoint the heap
usage of individual shared libraries, our dynamic footprint
results are not as fine-grained as the static footprint results.

As shown in Figure 7b, the original dynamic footprint of the
application was 8,231 pages. Application of the local fusion
algorithm reduced it to 7,393 pages, which is an improvement
of 11%. Application of the global fusion algorithm reduced
it to 4,713 pages, which is an improvement of 43%. The
reduction in dynamic memory stems primarily from reducing
the number of homes and component context created in the
physical assemblies. The increased reduction in the global
compared to local is due to increased opportunities for cre-
ating physical assemblies (i.e., the scope is across the entire
application), as well as the merging of multiple deployment
plans into a single deployment plan, which reduces the number
of processes required to deploy the application.

Figure 8 shows the combined footprint of the application.
As shown in Figure 8, the combined footprint of the original
application was 12,709 pages, the application of local fusion
algorithm reduced it to 10,503 pages, which is an improvement
of 18%. The application of the global fusion algorithm reduced
it to 7037 pages, which is an improvement of 45%.

Figure 7c and Figure 7d provide the breakup of the total
footprint across the different nodes. The increased footprint in
the case of node saber in the three runs is due to the number
of components deployed on that node.

Original

Local

Global

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

N
o
.
o
f

P
ri

v
at

e
p
ag

es

Fig. 8: Total Footprint

V. RELATED WORK

Optimizing middleware to increase the performance of
applications has long been a goal of system researchers [17],
[18], [19]. In this section, we compare our deployment-time
optimizations to other component middleware optimization
techniques. Optimization techniques to improve application
performance can be categorized along the dimension of the
time at which such optimization techniques are applied, i.e.
design/development-time, run-time or deployment-time. Our
research in PAM is done at deployment-time.

Design/development-time approaches. Design-time ap-
proaches to component middleware optimization include elim-
inating the dynamic loading of component implementation
shared libraries and establishing connections between com-
ponents done at run-time, as described in static configuration
of CIAO [20]. Our PAM approach is different since it uses
models of applications to modify the structure of the assem-
bly by creating physical assemblies, i.e., new components,
at deployment time. Our approach is thus not restricted to
optimizing just the inter-connections between components.
Moreover, the static configuration approach can be applied in
combination to our deployment-time optimizations.

Another approach to optimizing the middleware at
design/development-time employs context-specific middleware
specializations for product-line architectures [21], which ex-
ploits “invariant properties”— application-, middleware- and
platform-level properties that remain fixed during system
execution — to reduce the overhead caused by excessive
generality in middleware frameworks. Researchers have also
employed Aspect-Oriented Programming (AOP) techniques to
automatically derive subsets of middleware based on use-case
requirements [22], modify applications to bypass middleware
layers using aspect-oriented extensions to CORBA Interface
Definition Language (IDL) [23].

In addition, middleware has been synthesized in a “just-
in-time” fashion by integrating source code analysis, and
inferring features and synthesizing implementations [24]. The
key difference between our approach in PAM and the various
context-specific specializations and AOP-based techniques is
that the optimizations performed by PAM do not require
any input from the application developer, i.e., the application
developer need not design his application tuned for a specific
deployment scenario. Our approach in PAM is, however,
complementary to these approaches, since not all optimiza-
tions done via modification of application advocated by these
approaches are possible to perform at deployment-time using
PAM.
Run-time approaches. Research on approaches to optimizing
middleware at run-time has focused on choosing optimal
component implementations from a set of available alternatives
based on the current execution context [25]. QuO [26] is a
dynamic QoS framework that allows dynamic adaptation of
desired behavior specified in contracts, selected using proxy
objects called delegates with inputs from run-time monitoring
of resources by system condition objects.

Other aspects of run-time optimization of middleware in-
clude domain-specific middleware scheduling optimizations
for DRE systems [27], using feedback control theory to
affect server resource allocation in internet servers [28] as
well as to perform real-time scheduling in Real-time CORBA
middleware [29]. Our work in PAM is targeted at optimizing
the middleware resources required to host composition of
components in the presence of a large number of components,
whereas, the main focus of these efforts is to either build the
middleware to satisfy certain performance guarantees, or effect
adaptations via the middleware depending upon changing con-
ditions at run-time. Our work in PAM is thus complementary
to these approaches to application optimization.

11

Deployment-time approaches. Deployment-time optimiza-
tions research includes BluePencil [30], which is a framework
for deployment-time optimization of web services. BluePencil
focuses on optimizing the client-server binding selection using
a set of rules stored in a policy repository and rewriting
the application code to use the optimized binding. While
conceptually similar, our work in PAM differs from BluePencil
because it uses models of application structure and application
deployment to serve as the basis for the optimization infras-
tructure.

In contrast, BluePencil uses approaches like configuration
discovery that extract deployment information from config-
uration files present in individual component packages. By
operating at the level of individual client-server combinations,
the kind of global optimizations performed by PAM are non-
trivial to perform in BluePencil. BluePencil also relies on
modification of the application source code to rewrite the
application code, while PAM is non-intrusive and does not
require application source code modifications.

VI. CONCLUDING REMARKS

Component middleware technologies, such as EJB and
Lightweight CCM, allow developers to build DRE systems
with a large number of components. The increase in the
number of components imposes increased demands on DRE
system resources. Without sophisticated tools and techniques
for managing the complexity of large-scale component-based
DRE systems, the benefits of using component middleware
may be negated by the excessive resource demands. We there-
fore need optimization techniques in large-scale component-
based DRE systems to ensure that the productivity benefits of
component middleware are realized without compromising the
overall requirements of the system.

This paper described a model-driven approach to performing
deployment-time optimizations. Our approach includes a fam-
ily of optimization techniques that use fusion (i.e., combining
multiple elements into a single element) to reduce the number
of elements without affecting the original semantics. We
described two algorithms—Local Component Fusion, Global
Component Fusion—that differ in the scope at which they
operate.

We implemented the two algorithms in a prototype model-
driven tool called Physical Assembly Mapper (PAM), which
is a DSML that supports development and optimization of
component-based DRE systems using the Lightweight CCM.
We conducted experiments on applying the techniques imple-
mented in PAM on several representative DRE systems. Our
results indicate that the PAM’s deployment-time optimization
techniques provide 45% improvement in footprint compared
with conventional component middleware technologies.

The following is a summary of lessons learned thus far
from our work developing and applying PAM to optimize
component-based DRE systems at deployment-time:
Deployment phase should be treated with equal impor-
tance. The benefits provided by component middleware sig-
nificantly alter the lifecycle of DRE system development with
system deployment achieving importance similar to design,

development and analysis/verification. The presence of a sep-
arate, well-defined deployment phase in DRE system develop-
ment helps defer key system decisions to an intermediate stage
between the traditional design/development-time vs. run-time.
By using information available at deployment-time (but not
available at design/development-time and that is too late for
use at run-time), the deployment phase opens up new possibil-
ities for system optimizations. In addition to system optimiza-
tions, deferring key system decisions until deployment-time
help increase reuse by decoupling deployment-time variability
from component functionality.
Application-specific optimizations are critical to build-
ing large-scale systems. While general-purpose optimizations
can improve the performance of all systems, application- or
context-specific optimizations have even more potential. Our
experiments with PAM show the footprint benefits of perform-
ing deployment-time optimizations in an application-specific
fashion. An alternative approach is to perform these optimiza-
tions at run-time. For example, the middleware could try to
fuse components to create physical assemblies dynamically at
run-time instead of our application-specific deployment-time
approach. Dynamic fusion of components would necessitate
the middleware to keep state about the characteristics of
the different components as well as evaluate the maximal
clique algorithm at run-time. Such an approach, however,
becomes infeasible in large-scale DRE systems due to the
excessive state the middleware must maintain in addition to
the evaluation of the fusion algorithms at run-time.

By performing the optimizations in an application-specific
fashion, we can obtain the benefits of such fusion without
the overhead of maintaining state or run-time evaluation.
Large-scale DRE systems thus start exhibiting an interesting
inversion of the traditional process: instead of the application
conforming to middleware characteristics, the middleware
needs to conform to application characteristics.
Optimizations should be performed across layers in any
layered architecture. Our results indicate that irrespective
of the number and kind of optimizations performed at the
middleware layer, the middleware is ultimately restricted to
the context information available to it. By using higher-level
abstractions, such as DSMLs, we can perform optimizations
that are not possible at the middleware layer alone.

Our results show that any optimizations performed on a
system with a layered architecture can significantly benefit
from propagation of context information freely across the
different layers. In addition to the propagation of deployment
to the middleware, we need to be able to propagate information
from levels above the application deployment (i.e., application
functionality) and below the middleware (i.e., operating system
and system hardware). Our approach currently only unifies
two of these layers, so it must be extended to encompass all
DRE system layers, i.e. the application, middleware, operating
system and the underlying hardware.
Model-driven engineering has the potential to serve as the
unifying foundation for building DRE systems. To separate
the different phases of DRE system lifecycle—while also
achieving the benefits gained from propagating information
from one phase to another—it is necessary to create a pipeline

12

for DRE system development. Just like a pipeline in a micro-
processor relies on a common instruction set and allows
processing instructions by splitting each instruction into a
number of different stages, models and DSMLs can provide
the basis for building a DRE system development pipeline.
By using models to convey information across the different
stages of such a DRE system development pipeline, we can
realize the goals of exposing information across the different
stages, thereby yielding DRE systems that are both optimized
and easier to evolve.

PAM, PICML, and CQML are open-source and available
for download at www.dre.vanderbilt.edu/cosmic.

REFERENCES

[1] D. C. Sharp and W. C. Roll, “Model-Based Integration of Reusable
Component-Based Avionics System,” in Proc. of the Workshop on
Model-Driven Embedded Systems in RTAS 2003, May 2003.

[2] P. Lardieri, J. Balasubramanian, D. C. Schmidt, G. Thaker,
A. Gokhale, and T. Damiano, “A Multi-layered Resource Management
Framework for Dynamic Resource Management in Enterprise DRE
Systems,” Journal of Systems and Software: Special Issue on Dynamic
Resource Management in Distributed Real-time Systems, vol. 80,
pp. 984–996, July 2007.

[3] R. van Ommering, “Building product populations with software
components,” in ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering, (New York, NY, USA),
pp. 255–265, ACM Press, 2002.

[4] D. C. Sharp, “Reducing Avionics Software Cost Through Component
Based Product Line Development,” in Software Product Lines:
Experience and Research Directions, vol. 576, (New York, NY, USA),
Springer-Verlag, Aug 2000.

[5] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai, “Composing Domain-Specific Design
Environments,” IEEE Computer, pp. 44–51, November 2001.

[6] G. Coulson, G. Blair, M. Clarke, and N. Parlavantzas, “The design of
a configurable and reconfigurable middleware platform,” Distributed
Computing, vol. 15, no. 2, pp. 109–126, 2002.

[7] U. Drepper, “How to write shared libraries.”
http://people.redhat.com/drepper/dsohowto.pdf,
Nov 2002.

[8] R. Karp, “Reducibility among combinatorial problems,” in Complexity
of Computer Computations (R. E. Miller and J. W. Thatcher, eds.),
pp. 85–103, New York, NY: Plenum Press, 1972.

[9] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Communications of ACM, vol. 16, no. 9,
pp. 575–577, 1973.

[10] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computational
experiments,” Theoretical Computer Science, vol. 363, no. 1,
pp. 28–42, 2006.

[11] I. Koch, “Enumerating all connected maximal common subgraphs in
two graphs,” Theoretical Computer Science, vol. 250, no. 1-2,
pp. 1–30, 2001.

[12] K. Balasubramanian, Model-Driven Engineering of Component-based
Distributed Real-time and Embedded Systems. PhD thesis, Vanderbilt
University, 2007.

[13] A. Kavimandan, K. Balasubramanian, N. Shankaran, A. Gokhale, and
D. C. Schmidt, “Quicker: A model-driven qos mapping tool for
qos-enabled component middleware,” in ISORC ’07: Proceedings of
the 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing, (Washington,
DC, USA), pp. 62–70, IEEE Computer Society, 2007.

[14] D. de Niz and R. Rajkumar, “Partitioning Bin-Packing Algorithms for
Distributed Real-time Systems,” International Journal of Embedded
Systems, 2005.

[15] I. Molnar, “Linux with real-time pre-emption patches.”
http://people.redhat.com/mingo/realtime-preempt/,
Sep 2006.

[16] Microsoft, “Virtual address dump.”
http://support.microsoft.com/kb/927229, December
2006.

[17] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: a
flexible, optimizing idl compiler,” in PLDI ’97: Proceedings of the
ACM SIGPLAN 1997 conference on Programming language design
and implementation, (New York, NY, USA), pp. 44–56, ACM Press,
1997.

[18] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas, “An efficient
component model for the construction of adaptive middleware,” in
Middleware 2001: Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms, pp. 160–178,
Springer-Verlag, 2001.

[19] D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic, A. Goel,
P. Wagle, C. Consel, G. Muller, and R. Marlet, “Specialization tools
and techniques for systematic optimization of system software,” ACM
Trans. Comput. Syst., vol. 19, no. 2, pp. 217–251, 2001.

[20] V. Subramonian, L.-J. Shen, C. Gill, and N. Wang, “The design and
performance of configurable component middleware for distributed
real-time and embedded systems,” in RTSS ’04: Proceedings of the
25th IEEE International Real-Time Systems Symposium (RTSS’04),
(Washington, DC, USA), pp. 252–261, IEEE Computer Society, 2004.

[21] A. Krishna, A. Gokhale, D. C. Schmidt, J. Hatcliff, and V. Ranganath,
“Context-Specific Middleware Specialization Techniques for
Optimizing Software Product-line Architectures,” in Proceedings of
EuroSys 2006, (Leuven, Belgium), ACM, Apr. 2006.

[22] F. Hunleth and R. K. Cytron, “Footprint and Feature Management
Using Aspect-oriented Programming Techniques,” in Proceedings of
the Joint Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES 02), pp. 38–45, ACM Press, 2002.

[23] Ömer Erdem Demir, P. Dévanbu, E. Wohlstadter, and S. Tai, “An
aspect-oriented approach to bypassing middleware layers,” in AOSD
’07: Proceedings of the 6th international conference on
Aspect-oriented software development, (New York, NY, USA),
pp. 25–35, ACM Press, 2007.

[24] C. Zhang, D. Gao, and H.-A. Jacobsen, “Towards just-in-time
middleware architectures,” in AOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software development,
(New York, NY, USA), pp. 63–74, ACM Press, 2005.

[25] A. Diaconescu, A. Mos, and J. Murphy, “Automatic performance
management in component based software systems,” in ICAC ’04:
Proceedings of the First International Conference on Autonomic
Computing (ICAC’04), (Washington, DC, USA), pp. 214–221, IEEE
Computer Society, 2004.

[26] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,” Theory and Practice of
Object Systems, vol. 3, no. 1, pp. 1–20, 1997.

[27] C. D. Gill, R. Cytron, and D. C. Schmidt, “Middleware Scheduling
Optimization Techniques for Distributed Real-time and Embedded
Systems,” in Proceedings of the 7th Workshop on Object-oriented
Real-time Dependable Systems, (San Diego, CA), IEEE, Jan. 2002.

[28] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic, “Controlware:
A middleware architecture for feedback control of software
performance,” in ICDCS ’02: Proceedings of the 22 nd International
Conference on Distributed Computing Systems (ICDCS’02),
(Washington, DC, USA), p. 301, IEEE Computer Society, 2002.

[29] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control
real-time scheduling: Framework, modeling, and algorithms,”
Real-Time Syst., vol. 23, no. 1-2, pp. 85–126, 2002.

[30] S. Lee, K.-W. Lee, K. D. Ryu, J.-D. Choi, and D. Verma, “Ise01-4:
Deployment time performance optimization of internet services,”
Global Telecommunications Conference, 2006. GLOBECOM’06. IEEE,
pp. 1–6, Nov 2006.

www.dre.vanderbilt.edu/cosmic
http://people.redhat.com/drepper/dsohowto.pdf
http://people.redhat.com/mingo/realtime-preempt/
http://support.microsoft.com/kb/927229

	Introduction
	Overview and Challenges of Component Middleware for DRE Systems
	Solution Approach Physical Assembly Optimizer
	Paper Organization

	Challenges in Large-scale Component-based DRE systems
	Static Footprint Overhead
	Dynamic Footprint Overhead

	Deployment-time Optimization Techniques
	Deployment-time Optimization Algorithms
	Assumptions and Challenges in Component Fusion
	Common Characteristics of Fusion Algorithms
	Terminology
	Local Component Fusion Algorithm
	Global Component Fusion Algorithm

	Design and Functionality of the Physical Assembly Mapper
	Implementation of Fusion Algorithms in Physical Assembly Mapper
	Model Transformation in PAM
	Generation of Glue-code in PAM
	Generation of Configuration Files in PAM

	Empirical Evaluation and Analysis
	Experimental Platforms
	Shipboard Application

	Experimental Setup
	Analysis of Empirical Footprint Results

	Related Work
	Concluding Remarks
	References

