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Abstract

Distributed real-time and embedded (DRE) systems have become critical in do-
mains such as avionics (e.g., flight mission computers), telecommunications (e.g.,
wireless phone services), tele-medicine (e.g., robotic surgery), and defense applica-
tions (e.g., total ship computing environments). These types of systems are increas-
ingly interconnected via wireless and wireline networks to form systems of systems.
A challenging requirement for these DRE systems involves supporting a diverse set
of quality of service (QoS) properties, such as predictable latency/jitter, throughput
guarantees, scalability, 24x7 availability, dependability, and security that must be
satisfied simultaneously in real-time. Although increasing portions of DRE systems
are based on QoS-enabled commercial-off-the-shelf (COTS) hardware and software
components, the complexity of managing long lifecycles (often ∼15-30 years) re-
mains a key challenge for DRE developers and system integrators. For example,
substantial time and effort is spent retrofitting DRE applications when the under-
lying COTS technology infrastructure changes.

This paper provides two contributions that help improve the development, valida-
tion, and integration of DRE systems throughout their lifecycles. First, we illustrate
the challenges in creating and deploying QoS-enabled component middleware-based
DRE applications and describe our approach to resolving these challenges based
on a new software paradigm called Model Driven Middleware (MDM), which com-
bines model-based software development techniques with QoS-enabled component
middleware to address key challenges faced by developers of DRE systems - particu-
larly composition, integration, and assured QoS for end-to-end operations. Second,
we describe the structure and functionality of CoSMIC (Component Synthesis using
Model Integrated Computing), which is an MDM toolsuite that addresses key DRE
application and middleware lifecycle challenges, including partitioning the com-
ponents to use distributed resources effectively, validating the software configura-
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tions, assuring multiple simultaneous QoS properties in real-time, and safeguarding
against rapidly changing technology.

Key words: MDA: Model Driven Architecture, MDM: Model Driven Middleware,
MIC: Model Integrated Computing, CCM: CORBA Component Model, D&C:
Deployment and Configuration

1 Introduction

1.1 Emerging Trends

Computing and communication resources are increasingly used to control
mission-critical, large-scale distributed real-time and embedded (DRE) sys-
tems. Figure 1 illustrates a representative sampling of DRE systems in the
medical imaging, commercial air traffic control, military combat operational
capability, electrical power grid system, and industrial process control do-
mains. These types of DRE systems share the following characteristics:

Fig. 1. Example Large-scale Distributed Real-time and Embedded Sys-
tems

1. Heterogeneity. Large-scale DRE systems often run on a variety of com-
puting platforms that are interconnected by different types of networking tech-
nologies with varying quality of service (QoS) properties. The efficiency and
predictability of DRE systems built using different infrastructure components
varies according to the type of computing platform and interconnection tech-
nology.

2. Deeply embedded properties. DRE systems are frequently composed
of multiple embedded subsystems. For example, an anti-lock braking software
control system forms a resource-constrained subsystem that is part of a larger
DRE application controlling the overall operation of an automobile.

3. Simultaneous support for multiple quality of service (QoS) prop-
erties. DRE software controllers [1] are increasingly replacing mechanical
and human control of critical systems. These controllers must simultaneously
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support many challenging QoS constraints, including (1) real-time require-
ments, such as low latency and bounded jitter, (2) availability requirements,
such as fault propagation/recovery across distribution boundaries, (3) security
requirements, such as appropriate authentication and authorization, and (4)
physical requirements, such as limited weight, power consumption, and mem-
ory footprint. For example, a distributed patient monitoring system requires
predictable, reliable, and secure monitoring of patient health data that can be
distributed in a timely manner to healthcare providers.

4. Large-scale, network-centric operation. The scale and complexity of
DRE systems makes it infeasible to deploy them in disconnected, standalone
configurations. The functionality of DRE systems is therefore partitioned and
distributed over a range of networks. For example, an urban bio-terrorist evac-
uation capability requires highly distributed functionality involving networks
connecting command and control centers with bio-sensors that collect data
from police, hospitals, and urban traffic management systems.

5. Dynamic operating conditions. Operating conditions for large-scale
DRE systems can change dynamically, resulting in the need for appropriate
adaptation and resource management strategies for continued successful sys-
tem operation. In civilian contexts, for instance, power outages underscore the
need to detect failures in a timely manner and adapt in real-time to maintain
mission-critical power grid operations. In military contexts, likewise, a mission
mode change or loss of functionality due to an attack in combat operations
requires adaptation and resource reallocation to continue with mission-critical
capabilities.

1.2 Technology Challenges and Solution Approaches

Although the importance of the DRE systems described above has grown sig-
nificantly, software for these types of systems remains considerably harder to
develop, maintain, and evolve [2,3] than mainstream desktop and enterprise
software. A significant part of the difficulty stems from the historical reliance
of DRE systems on proprietary hardware and software technologies and devel-
opment techniques. Unfortunately, proprietary solutions often fail to address
the needs of large-scale DRE systems over their extended lifecycles. For in-
stance, as DRE systems grow in size and complexity the use of proprietary
technologies can make it hard to adapt DRE software to meet new functional
or QoS requirements, hardware/software technology innovations, or emerging
market opportunities.

During the past decade, a substantial amount of R&D effort has focused on
developing standards-based middleware, such as Real-time CORBA [4] and
QoS-enabled CORBA Component Model (CCM) middleware [5], to address
the challenges outlined in the previous paragraph. As shown in Figure 2, mid-
dleware is systems software that resides between the applications and the
underlying operating systems, network protocol stacks, and hardware and pro-
vides the following capabilities:
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Fig. 2. Component Middleware Layers and Architecture

1. Control over key end-to-end QoS properties. A hallmark of DRE
systems is their need to control the end-to-end scheduling and execution of
CPU, network, and memory resources. QoS-enabled component middleware is
based on the expectation that QoS properties will be developed, configured,
monitored, managed, and controlled by a different set of specialists (such as
middleware developers, systems engineers, and administrators) than those re-
sponsible for programming the application functionality in traditional DRE
systems.

2. Isolation of DRE applications from heterogeneous operating sys-
tems and networks. Standards-based QoS-enabled component middleware
defines communication mechanisms that can be implemented over many net-
works and OS platforms. Component middleware also supports containers
that (a) provide a common operating environment to execute a set of related
components and (b) shield the components from the underlying networks,
operating systems, and even the underlying middleware implementations. By
reusing the middleware’s communication mechanisms and containers, develop-
ers of DRE systems can concentrate on the application-specific aspects of their
systems and leave the communication and QoS-related details to middleware
developers.

3. Reduction of total ownership costs. QoS-enabled component middle-
ware defines crisp boundaries between components, which can help to reduce
dependencies and maintenance costs associated with replacement, integration,
and revalidation of components. Likewise, common components (such as event
notifiers, resource managers, naming services, and replication managers) can
be reused, thereby helping to further reduce development, maintenance, and
validation costs.

1.3 Unresolved Technology Gaps for DRE Applications

Despite significant advances in standards-based QoS-enabled component mid-
dleware, however, there remain significant technology gaps that make it hard
to support large-scale DRE systems in domains that require simultaneous
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support for multiple QoS properties, including shipboard combat control sys-
tems [6], and supervisory control and data acquisition (SCADA) systems that
manage regional power grids. Key technology gaps include the following:

1. Lack of effective isolation of DRE applications from heterogeneous
middleware platforms. Advances in middleware technology and various
standardization efforts, as well as market and economical forces, have resulted
in a multitude of middleware stacks, such as CORBA, J2EE, SOAP, and .NET.
This heterogeneity makes it hard to identify the right middleware for a given
application domain. DRE systems are therefore built with too much reliance
on a particular underlying middleware technology, resulting in maintenance
and migration problems over system lifecycles.

2. Lack of tools for effectively composing DRE applications from
components. DRE component middleware enables application developers
to develop individual QoS-enabled components that can be composed together
into assemblies that form complete DRE systems. Although this approach
supports the use of “plug and play” components in DRE systems, system
integrators now face the daunting task of composing the right set of compatible
components that will deliver the desired semantics and QoS to applications
that execute in large-scale DRE systems.

3. Lack of tools for configuring component middleware. In QoS-
enabled component middleware frameworks, application components and the
underlying component middleware services can have a large number of at-
tributes and parameters that can be configured at various stages of the devel-
opment lifecycle, such as:

• During component development, where default values for these attributes
could be specified.

• During application integration, where component defaults could be overrid-
den with domain specific defaults.

• During application deployment, where domain specific defaults are overrid-
den based on the actual capabilities of the target system.

It is tedious and error-prone, however, to manually ensure that all these pa-
rameters are semantically consistent throughout a large-scale DRE system.
Moreover, such ad hoc specification approaches have no formal basis for val-
idating and verifying that the configured middleware will indeed deliver the
end-to-end QoS requirements of applications throughout a DRE system.

4. Lack of tools for automated deployment of DRE applications on
heterogeneous target platforms. The component assemblies described in
bullet 2 above must be deployed in the distributed target environment before
applications can start to run. DRE system integrators must therefore perform
the complex task of mapping the individual components/assemblies onto spe-
cific nodes of the target environment. This mapping involves ensuring semantic
compatibility between the requirements of the individual components, and the
capabilities of the nodes of the target environment.
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This paper describes how we are addressing the technology gaps described
above using Model Driven Middleware (MDM). MDM is an emerging paradigm
that integrates model-based software development techniques (including Model-
Integrated Computing [7,8] and the OMG’s Model Driven Architecture [9])
with QoS-enabled component middleware (including Real-time CORBA [4]
and QoS-enabled CCM [5]) to help resolve key software development and val-
idation challenges encountered by developers of large-scale DRE middleware
and applications. In particular, MDM tools can be used to specify require-
ments, compose DRE applications and their supporting infrastructure from
the appropriate set of middleware components, synthesize the metadata, col-
lect data from application runs, and analyze the collected data to re-synthesize
the required metadata. These activities can be performed in a cyclic fashion
until the QoS constraints are satisfied end-to-end.

1.4 Paper Organization

The remainder of paper is organized as follows: Section 2 describes key R&D
challenges associated with large-scale DRE systems and outlines how the
MDM paradigm can be used to resolve these challenges; Section 3 describes
our work on MDM in detail, focusing on our CoSMIC toolsuite that integrates
OMG MDA technology with QoS-enabled component middleware; Section 4
compares our work on CoSMIC with related research activities; and Section 5
presents concluding remarks.

2 Key DRE Application R&D Challenges and Resolutions

This section describes in detail the following R&D challenges associated with
building large-scale DRE systems using component middleware that were out-
lined in Section 1:

(1) Safeguarding DRE applications against technology obsolescence
(2) Ensuring composition of valid DRE applications from sub-components
(3) Choosing semantically compatible configuration options
(4) Making effective deployment decisions based on target environment

For each challenge listed above we describe the context in which it arises, the
specific technology problem that needs to be solved, and outline how Model
Driven Middleware (MDM) tools can be applied to help resolve the problem.
Section 3 then describes how we are implementing these MDM solutions via
CoSMIC, which is a toolsuite that combines MDA technology (such as the
Generic Modeling Environment (GME) [10]) with QoS-enabled component
middleware (such as the Component Integrated ACE ORB (CIAO) [5] that
adds advanced QoS capabilities to the OMG CORBA Component Model).
MDM expresses software functionality and QoS requirements at higher lev-
els of abstraction than is possible using conventional programming languages
(such as C, C++, and Java) or scripting languages (such as Perl and Python).
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2.1 Challenge 1 - Safeguarding DRE Applications Against Technology Obso-
lescence

• Context. Component middleware refactors what was often historically ad
hoc application functionality into individually reusable, composable, and con-
figurable units. Component developers must select their component middle-
ware platform and implementation language(s). Component developers may
also choose to provide different implementations of the same functionality that
use different algorithms and data structures to tailor their components for dif-
ferent use cases and target environments. This intellectual property must be
preserved over extended periods of time, ı.e., ∼15-30 years.
• Problem – Accidental complexities in identifying the right tech-
nology and safeguarding against technology obsolescence. Recent
improvements in middleware technology and various standardization efforts,
as well as market and economical forces, have resulted in a multiplicity of
middleware stacks, such as those shown in Figure 3. The heterogeneity shown

Fig. 3. Popular Middleware Stacks

in this figure makes it hard to identify the right middleware for a given appli-
cation domain. Moreover, there are limitations on how much application code
can be refactored into reusable patterns and components in various layers of
each middleware stack. These refactoring limits in turn affect the optimiza-
tion possibilities that can be implemented in different layers of the middle-
ware. Binding applications to one middleware technology - and expressing
the application’s QoS requirements in terms of that underlying technology -
introduces unnecessary coupling between the application and the underlying
middleware. Such early binding makes these applications obsolete when the
underlying middleware is incapable of meeting application requirements that
change over its lifetime.
• Solution approach. Our approach to Challenge 1 is to apply the MDM
paradigm to model the functional and systemic (i.e., QoS) requirements of
components separately at higher levels of abstraction than that provided by
conventional programming languages or scripting tools. MDM analysis and
synthesis tools can then map these middleware independent models onto the
appropriate middleware technology, which itself might change over the appli-
cation’s lifetime. Section 3 describes the architecture of CoSMIC, which is an
integrated suite of MDM tools we are developing to address the challenge of
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identifying the right middleware technology and safeguarding against technol-
ogy obsolescence.

2.2 Challenge 2 – Composing Valid DRE Applications from Component Li-
braries

•Context. Component-based applications are composed from a set of reusable
components. Composition is an important step in developing component-
based applications and composition techniques affect the reusability and se-
mantics of the composite. Composition is typically performed by packaging
(i.e., bundling component implementations with associated systemic meta-
data), where a component can either be a standalone unit or an assembly
(i.e., group of inter-dependent, inter-connected components).
• Problem – Inherent complexities in composing applications from
a set of components. As illustrated in Figure 4, composing an DRE ap-

Fig. 4. Application Composition Challenges

plication by packaging components presents many problems to component
packagers. First, component connections should be checked for type incom-
patibility before they can be connected together. Second, collaborating com-
ponents must be checked to ensure they have compatible semantics, which is
hard to capture via interface signatures alone. For example, if a component
developer has provided different implementations of the same functionality,
it is necessary to assemble components that are semantically- and binary-
compatible with each other. For DRE systems it is also essential that the
assembled packages maintain the desired systemic QoS properties.

Challenge 2 therefore involves ensuring syntactic, semantic, systemic, and bi-
nary compatibility of assembled packages. Ad hoc techniques (such as manually
selecting the components) are tedious, error-prone, and lack a solid analytical
foundation to support verification and validation, and ensuring that the end-
to-end QoS properties are satisfied with the given assembly. Likewise, ad hoc
techniques for determining, composing, assembling, and deploying the right
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mix of semantically compatible, QoS-enabled COTS middleware components
do not scale well as the DRE system size and requirements increase.

• Solution approach. Our approach to Challenge 2 involves developing
MDM tools to represent component assemblies using the modeling techniques
described in Section 3.2. In particular, our MDM approach provides the fol-
lowing capabilities:

• Creating models of the various components as black boxes that are part of
an application

• Modeling the interconnections between the components
• Specifying systemic QoS properties of the components
• Building component assemblies i.e., a set of components connected accord-

ing to a well-defined specification that can be viewed and used as a single
sub-component of a larger component and

• Bundling multiple component implementations into packages, which serve
as the basic unit of composition in the MDM approach.

Moreover, these component assemblies are amenable to model checking [11],
which in turn can ensure semantic and binary compatibility.

2.3 Challenge 3 – Choosing Semantically-compatible Configuration Options
• Context. Assuming a suitable component packaging capability exists, the
next challenge involves configuring packages to achieve the desired function-
ality and systemic behavior. Configuration involves selecting the right set of
tunable knobs and their values at different layers of the middleware. For ex-
ample, in QoS-enabled component middleware [5], both the components and
the underlying component middleware framework may have a large number
of configurable and tunable parameters, such as end-to-end priorities, size of
thread pools, internal buffer sizes, locking mechanisms, timeout values, and
request dispatching strategies.

Moreover, QoS-enabled component middleware platforms are intended to lever-
age the benefits of component-based software development while simultane-
ously preserving the optimization patterns and principles of DOC middle-
ware, such as its support for publisher/subscriber services. Before developers
of event-based DRE systems can derive benefits from QoS-enabled component
middleware, however, they must first reduce the complexity of configuring and
deploying publisher/subscriber services. In particular, DRE system developers
are faced with the following challenges when trying to use publisher/subscriber
mechanisms provided by conventional component middleware:

(1) Configuring publisher/subscriber QoS, where there are no standard
means of configuring the component middleware mechanisms that can
deliver appropriate QoS to DRE systems, and

(2) Deploying federated publisher/subscriber services, where there
are no standard policies and mechanisms to deploy a federation of publisher/-
subscriber services for DRE systems.
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• Problem – Inherent complexities in middleware configuration. In
a large-scale DRE application, hundreds or thousands of components must be
interconnected. As shown in Figure 5, the number of configuration options
and the set of compatible options can be overwhelming. This problem is ex-

Fig. 5. Middleware Configuration Challenges

acerbated as the number of components increases. It is therefore tedious and
error-prone to manually verify that the set of chosen options and their values
are semantically consistent throughout a large-scale DRE system. Moreover,
such ad hoc approaches have no formal basis for validating and verifying that
the configured middleware will indeed deliver the end-to-end application QoS
requirements.

• Solution approach. Our approach to Challenge 3 involves developing
MDM configuration tools that support the (1) modeling and synthesis of con-
figuration parameters for the middleware, (2) containers that provide the ex-
ecution context for application components, and (3) configuration of common
middleware services, such as event notification, security, and replication. Sec-
tion 3.3 describes how our MDM tools help ensure configuration parameters
at different layers of a middleware stack are tuned to work correctly and effi-
ciently with each other.

2.4 Challenge 4 – Making Effective Deployment Decisions based on Target
Environment

• Context. Applications that run in DRE systems often possess multiple
QoS requirements, such as acceptable deadlines for various time-critical func-
tionality, support for specific synchronization mechanisms, and resource limits
that the middleware must enforce on the target platform. This enforcement
process involves planning and preparing the deployment of components. The
goal is to satisfy the functional and systemic requirements of DRE applica-
tions by making appropriate deployment decisions, which take into account
the properties of the target environment, and to retain flexibility by not com-
mitting prematurely to physical resources.
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• Problem – Satisfying multiple QoS requirements simultaneously.
As illustrated in Figure 6, planning includes specifying the target environ-
ment and making appropriate component deployment decisions. Deployment

Fig. 6. Planning for Deployment

involves coming up with a mapping between the components of the applica-
tion and the nodes of the target environment where these components will
run. This mapping is hard to do manually, i.e., it is equivalent to resource
allocation problems common in operations research, where given a finite set
of resources, a finite set of tasks, and a set of constraints on allocation of
resources to tasks, a solution that allocates resources to tasks that satisfies
all the constraints is required. As the number of components and their tar-
get nodes increases, keeping track of the constraints manually is very time
consuming, and in some cases cannot be solved without automated methods.

• Solution approach. Due to the layering and partitioning of large-scale
DRE systems, it is necessary to have a sequence of steps that will ensure that
functional dependencies are met and the systemic requirements are satisfied
after deployment. Our approach to challenge 4 involves developing the MDM
tools described in Section 3.4 that (1) model the target environment and (2)
determine how deployment can be made based on an analysis of required end-
to-end QoS of components, and capabilities of the nodes in the given target
environment [12,13]. For example, target environment modeling includes the
network topology, the network technology and the available bandwidth, the
CPUs, and the OS they run and its available memory that are used to make
suitable deployment decisions. Moreover, target environment models can be
combined with component package models to synthesize custom test suites
that can benchmark different aspects of DRE application and middleware
performance. In turn, this empirical benchmark data can be used in end-to-
end QoS prediction analysis tools to guide the deployment of components
throughout a DRE system.
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3 Resolving DRE Application Lifecycle Challenges with Model
Driven Middleware

To address the challenges described in Section 2, principled methods are
needed to specify, develop, compose, integrate, and validate the application
and middleware software used by DRE systems. These methods must enforce
the physical constraints of DRE systems, as well as satisfy the system’s strin-
gent functional and systemic QoS requirements. Achieving these goals requires
a set of integrated Model Driven Middleware (MDM) tools that allow devel-
opers to specify application and middleware requirements at higher levels of
abstraction than that provided by low-level mechanisms, such as conventional
general-purpose programming languages, operating systems, and middleware
platforms.

Figure 7 illustrates how in the context of DRE middleware and applications,
MDM tools can be applied to:

Fig. 7. Model Driven Middleware Process

• Model different functional and systemic properties of DRE systems via
separate middleware- and platform-independent models [14]. Domain-specific
aspect model weavers [15] can integrate these different modeling aspects into
composite models that can be further refined by incorporating middleware
and platform-specific properties.

• Analyze different—but interdependent—characteristics and requirements
of DRE system behavior (such as scalability, predictability, safety, schedu-
lability, and security) specified via models. Model interpreters [10] translate
the information specified by models into the input format expected by model
checking [11] and analysis tools [16]. These tools can check whether the re-
quested behavior and properties are feasible given the specified application
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and resource constraints. Tool-specific model analyzers [17,18] can also ana-
lyze the models and predict [19] expected end-to-end QoS of the constrained
models.

• Synthesize platform-specific code and metadata that is customized for a
particular QoS-enabled component middleware and DRE application proper-
ties, such as end-to-end timing deadlines, recovery strategies to handle various
run-time failures in real-time, and authentication and authorization strategies
modeled at a higher level of abstraction [20,21].

• Provision middleware and applications by assembling and deploying the
selected components end-to-end using the configuration metadata synthesized
by MDM tools. In the case of legacy components that were developed without
consideration of QoS, the provisioning process may involve invasive changes
to existing components to provide the hooks that will adapt to the metadata.
The changes can be implemented in a relatively unobtrusive manner using
program transformation systems, such as DMS [22].

OMG MDA technologies initially focused largely on enterprise applications [23].
More recently, MDA technologies have emerged to customize QoS-enabled
component middleware for DRE systems, including aerospace [24], telecom-
munications [25], and industrial process control [26]. This section describes
our R&D efforts that focus on integrating the MDA paradigm with QoS-
enabled component middleware to create an MDM toolsuite called CoSMIC
(Component Synthesis using Model Integrated Computing). As shown in Fig-
ure 8, CoSMIC consists of an integrated collection of modeling, analysis, and
synthesis tools that address key lifecycle challenges of DRE middleware and
applications. The CoSMIC MDM toolsuite provides the following capabilities:

Fig. 8. CoSMIC Model Driven Middleware Toolsuite
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• Specification and implementation, which enables application functionality
specification, partitioning, and implementation as components.

• Packaging, which allows bundling a suite of software binary modules and
metadata representing application components.

• Installation, which involves populating a repository with the packages re-
quired by the application.

• Configuration, which allows configuration of the packages with the appro-
priate parameters to satisfy the functional and systemic requirements of
application without constraining to any physical resources.

• Planning, which makes appropriate deployment decisions including identify-
ing the entities, such as CPUs, of the target environment where the packages
will be deployed.

• Preparation, which moves the binaries to the identified entities of the target
environment.

• Launching, which triggers the installed binaries and bringing the application
to a ready state.

• Adaptation, which enables run-time reconfiguration and resource manage-
ment to maintain end-to-end QoS.

The CoSMIC MDM toolsuite also provides the capability to interwork with
third party model checking tools, such as Cadena [11], and aspect model
weavers, such as C-SAW [27].

The CoSMIC tools are based on the Generic Modeling Environment (GME) [10],
which is a metamodeling environment that defines the modeling paradigms 1

for each stage of the CoSMIC tool chain. The CoSMIC tools use GME to en-
force their “correct by construction” techniques, as opposed to the “construct
by correction” techniques commonly used by post-construction tools, such as
compilers, source-level debuggers, and script validators. CoSMIC ensures that
the rules of construction – and the models constructed according to these rules
– can evolve together over time. Each CoSMIC tool synthesizes metadata in
XML for use in the underlying middleware. The CoSMIC toolsuite currently
uses a platform-specific model (PSM) approach that integrates the modeling
technology with our CIAO QoS-enabled component middleware [5]. We chose
CIAO as our initial focus since it is targeted to meet the QoS requirements of
DRE applications. As other component middleware platforms (such as J2EE
and .Net) mature and become suitable for DRE applications, we will enhance
the CoSMIC toolsuite so it supports platform-independent models (PIMs) and
then include the necessary patterns and policies to map the PIMs to individual
PSMs for the various component middleware platforms.

The remainder of this section describes the tools in the CoSMIC toolsuite,
focusing on the modeling paradigms we developed for each tool and how the

1 A modeling paradigm defines the syntax and semantics of a modeling lan-
guage [14].
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tool helps resolve the R&D challenges described in Section 2. To make the tool
discussions concrete, however, we first describe a representative scenario of a
DRE avionics system developed using QoS-enabled component middleware.
This example demonstrates the middleware-based DRE system development
challenges described in Section 2. We use this example to describe how the
individual CoSMIC tools help address these challenges.

3.1 Demonstrating CoSMIC via Boeing Avionics Scenarios

Our representative DRE system is drawn from the avionics mission comput-
ing domain. In particular, we chose a product scenario called Basic Single
Processor (BasicSP) from the Boeing Bold Stroke component avionics mission
computing product suite. Bold Stroke uses a push event/pull data publisher/-
subscriber communication paradigm [28] atop the Prism QoS-enabled compo-
nent middleware platform [29].

Fig. 9. Navigation Display Collaboration Example

As shown in Figure 9, BasicSP comprises four avionics mission computing
components that are assembled to form a product line architecture where a
navigation display simulation receives the global positions from a GPS device
and displays them at a GUI display in a periodic manner that has stringent
timing constraints. The desired data request and the display frequencies run
at 20 Hz.

Figure 9 also shows the component interaction for the navigation display ex-
ample. This scenario begins with the GPS being invoked by the TAO ORB’s
Real-time Event Service [30], shown as a Timer component. After receiving
a pulse event from the Timer, the GPS generates its data and pushes a data
available event to the airframe. TAO’s Real-time Event Service then forwards
the event on to the Airframe component, which pulls the data from the GPS

component, updates its state, and pushes a data available event. The Event
Service forwards the event to the Nav Display component, which in turn pulls
the data from the GPS, updates its state, and displays it.

The remainder of this section describes the design of individual tools of CoS-
MIC and illustrate how they resolve the deployment and configuration chal-
lenges of DRE systems in the context of the BasicSP representative scenario.
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3.2 Model-driven Component Packaging: Resolving Component Packaging
Challenges

CoSMIC provides the COMPosable Adaptive Software Systems (COMPASS)
tool to resolve the problem of packaging component functionality described
in Challenge 2 of Section 2.2. COMPASS defines a modeling paradigm that
allows DRE application integrators to model the component assembly and
packaging aspects of the application, validate syntactic, semantic, and binary
compatibility of the assembled components, and generate the systemic meta-
data as descriptors, as explained later in this section.

Figure 10 illustrates shows the sequence of steps involved in component pack-

Fig. 10. Component Packaging & Application Assembly

aging and application assembly. These steps include collecting information
about properties and requirements of a single component, assembling a set of
components into an application assembly (which satisfies the set of constraints
that determines a valid assembly), and creating component packages from ei-
ther the assembly created in the previous step or just from the information
about individual components collected in the first step. Below we describe
the key elements of the COMPASS tool from the perspective of the model-
ing paradigm, constraint specification, and model interpreter aspects. We also
show how COMPASS can be applied to the BasicSP scenario described in
Section 3.1.

3.2.1 Modeling Paradigm

The modeling paradigm of COMPASS comprises different packaging and con-
figuration artifacts, as well as the legal domain-specific associations between
the various artifacts. The modeling paradigm enables application integrators
to visualize the packages at different levels of abstractions i.e., at the level of
package, assembly, and individual components. Visualization of abstractions is
achieved by using the hierarchy inherent in composition-based approaches of
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software development i.e., it utilizes the hierarchy of individual packages, the
set of assemblies contained within a package, and the individual components
contained as part of each assembly.

Since components can be composed from assemblies of sub-components, indi-
vidual components must be associated with information about their properties
and requirements so that informed decisions can be made at composition time
by application integrators and tools. By making both properties and require-
ments as first-class entities of the modeling paradigm, COMPASS ensures
that the properties of the set of available components can be matched against
the set of requirements. This matching is done via metrics defined by the
OMG Deployment and Configuration of Component-based Distributed Appli-
cations (D&C) specification [31], including (1) quantity, which is a restriction
on number (em e.g., number of available processors), (2) capacity, which is a
restriction on consumption (e.g., available bandwidth), (3) minimum, which is
a restriction on the allowed minimum (e.g., minimum latency), (4) maximum,
which is a restriction on the allowed maximum (e.g. maximum throughput),
(5) equality, which is a restriction on the allowed value e.g., the required op-
erating system), and (6) selection, which is a restriction on a range of allowed
values (e.g., allowed versions of a library satisfying a dependency).

For example, the components of the BasicSP scenario (i.e., Timer, GPS, Airframe
and Navdisplay) can be modeled using COMPASS. Properties such as the
name, unique identifiers for the components and the list of implementation ar-
tifacts that each component is composed of can be specified for each of these
components. COMPASS also allows specification of the assembly information
that describes the connections between components, e.g., the connection be-
tween the Timer and GPS component can be captured in a COMPASS model.

3.2.2 Constraint Specification

COMPASS provides a constraint checker to ensure that the packages it creates
are valid. This checker plays a crucial role in enforcing CoSMIC’s “correct by
construction” techniques. Constraints are defined on elements in the COM-
PASS metamodel using the Object Constraint Language (OCL) [32], which is a
strongly typed, declarative, query and constraint language that has formal se-
mantics that domain experts can use to describe their domain constraints. For
example, COMPASS defines constraints to capture the restrictions that exist
in the context of component packaging and configuration, including (1) cre-
ation of component packages, (2) interconnection of component packages, (3)
composition of packages, (4) creation of component assemblies, (5) intercon-
nection of component assemblies, (6) composition of assemblies, (7) creation
of components, and (8) interconnection of components.
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Adding constraints to the COMPASS metamodel ensures that illegal connec-
tions are not made among the various modeling elements. These constraints
help catch errors early in the component development cycle. Since COMPASS
performs static model checking, it has the added advantage that sophisticated
constraint checking can be done prior to application instantiation, without in-
curring the cost of run-time constraint checking. For example, in the context
of the scenario described in the Section 3.1, the constraints defined in COM-
PASS, will disallow connections between incompatible ports (such as the data
ports of the GPS component and the control interface of the Airframe com-
ponent) in the model.

3.2.3 Model Interpretation

The COMPASS model interpreter translates the various packaging and config-
uration information captured in the models constructed using its metamodel
into a set of descriptors, which are files containing metadata that describe the
systemic information of component-based DRE applications. The output of
the COMPASS model interpreter serves as input to other downstream tools,
such as the deployment planner described in Section 3.4 that uses informa-
tion in the descriptors to deploy the components. The descriptors generated
by COMPASS model interpreter are XML documents that conform to a XML
Schema [33,34]. To ensure interoperability with other CoSMIC modeling tools,
COMPASS synthesizes descriptors conforming to the XML schema defined by
the OMG D&C specification [31], which defines the following four different
types of descriptors:

• Component package descriptor, which describes the elements in a package.
• Component implementation descriptor, which describes elements of a spe-

cific implementation of an interface, which might be a single implementation
or an assembly of interconnected sub-component implementations.

• Implementation artifact descriptor, which describes elements of a compo-
nent implementation.

• Component interface descriptor, which describes the interface of a single
component along with other elements such as component ports.

The output of COMPASS can be validated by running the descriptors through
any XML schema validation tool, such as Xerces. The generated descriptors
are input to the CoSMIC run-time infrastructure, which uses this information
to instantiate the different components of the application and interconnect the
different components.

For the scenario described in Section 3.1, COMPASS generates XML descrip-
tors that describe the connections between different components, a portion of
which is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
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<Deployment:ComponentImplementationDescription>
<label>HUDDisplay Implementation</label>
<UUID>effd4bd0-6db0-4c50-9bb7-db9decebae1c</UUID>
<assemblyImpl>

<instance xmi:id="a_GPS">
<name>GPS</name>
<reference href="GPS.cpd"/>

</instance>
<instance xmi:id="a_RateGen">

<name>RateGen</name>
<reference href="RateGen.cpd"/>

</instance>
...
<connection>

<name>GPS-NavDisplay</name>
<internalEndpoint>

<portName>MyLocation</portName>
<instance xmi:idref="a_NavDisplay"/>

</internalEndpoint>
<internalEndpoint>

<portName>GPSLocation</portName>
<instance xmi:idref="a_GPS"/>

</internalEndpoint>
</connection>
...

</assemblyImpl>
</Deployment:ComponentImplementationDescription>

The XML fragment shown above describes an assembly that contains RateGen,
GPS, NavDisplay, and Timer (not shown above) components, and describes
the connections to be made among the ports of these components. This in-
formation is used by MDM tools in the planning stage to perform the actual
connections between the components.

3.3 Model-driven Middleware Configuration: Resolving Configuration Chal-
lenges

CoSMIC provides two tools to address the problem of multi-layer middleware
configuration discussed in Challenge 3 of Section 2. The tools are the Op-
tion Configuration Modeling Language (OCML) [35] tool that handles ORB-
level configurations and the Event QoS Aspect Language (EQAL) tool that
addresses container- and application-level configurations. We discuss each of
these tools below from the perspective of the modeling paradigm, constraint
specification, and model interpreter aspects. We also show how OCML and
EQAL can be applied to the BasicSP scenario described in Section 3.1.
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3.3.1 Modeling paradigms.

The metamodel for each tool outlined above defines a modeling paradigm and
contains the various types of configuration models, individual configuration
parameters, and constraints that enforce model dependencies. Below we de-
scribe the modeling paradigm for the two tools that help resolve middleware
configuration challenges.

• OCML. To address the middleware level configuration challenges we have
developed Option Configuration Modeling Language (OCML) tool [35]. OCML
is a GME-based modeling paradigm for configuring QoS-enabled middleware
and alleviating accidental complexities involved in this process. As shown in
Figure 11 OCML is designed for use by both (1) middleware developers, who
use OCML to define the constraints and dependencies of the middleware op-
tions, and (2) application developers, who use OCML and its constraints to
specify semantically compatible middleware configuration options.

Fig. 11. OCML Process

The OCML language defines two different artifacts: (a) the structure artifact,
which contains the hierarchical organization of the middleware configuration
options a DRE system will require (e.g., OCML has been used to model the
configuration options provided by the TAO [36] ORB) and (b) the rules ar-
tifact, which constrains the available combination of these options. In the
following we describe the artifacts defined by the OCML language.

In the structure artifact the middleware configuration options are arranged
hierarchically within different option categories. An option category may in-
clude other option categories or may include options. Options are categorized
according to the type of the values which they have (e.g. numeric, strict, enu-
merated, etc.) Using the rules artifact, rule categories can be defined, which
represents the dependency information of certain options on other options.
A rule definition element contains logical expressions. The operands of these
logic expressions are both the references to the options which is modeled in the
hierarchical option and other rules. Logical “and,” “or,” and “not” operations
are provided as the operations.

The OCML modeling paradigm addresses middleware-level configuration op-
tions. OCML contains artifacts to define and categorize the middleware op-
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tions and to configure the middleware with these options. OCML also gener-
ates the documentation for the middleware options. OCML is based on the
Graphical Modeling Environment (GME). As shown in Figure 11 the OCML
tool is intended to be used by both middleware developers and application
developers.

• EQAL. The Event QoS Aspect Language (EQAL) tool is designed to ad-
dress container- and application-level configurations. The EQAL architecture
is show in Figure 12. EQAL allows DRE system modelers to specify three

Fig. 12. The Event QoS Aspect Language Architecture

types of CORBA event services: the OMG standard CORBA Event and No-
tification Services and the TAO’s proprietary Real-time Event Service. These
services allow components to asynchronously and anonymously send and re-
ceive customized data structures called events.

The EQAL modeling paradigm consists of two parts, the configuration part
and the deployment part. For the configuration part, modelers can specify
policies and strategies that include (but are not limited to) event filtering,
event correlation, timeouts, locking, disconnect control, and priority. Each
service policy can have different scopes, ranging from a single port to an
entire event channel. EQAL’s configurations can therefore be provisioned at
the following three levels of granularity:

• Channel scope, which applies to all components using the channel. Each
event channel must be specified with a number of policies that control its
behavior. These policies control the way that the channel handles all con-
nections and events.

• Proxy scope, which applies to a single component port. Each event port
is associated with a proxy object. A number of QoS policies are configured
at the proxy level. QoS parameters are provided for each connection by
configuring the proxy. It follows that connection-level parameters must be
coherent with channel-level policies.

• Event scope, which applies to an event instance. A limited number of QoS
settings, such as timeout, can be specified for an individual event instance.

The EQAL modeling paradigm allows modelers to provision reusable and
sharable configurations at each level of granularity outlined above. Model-
ers assign configurations to individual event connections and then construct
filters for each connection. EQAL supports two forms of event generation us-
ing the push model: (1) a component may be an exclusive supplier of an event
type or (2) a component may supply events to a shared channel.
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To address the scalability problem in any large-scale event-based architecture,
QoS-enabled component middleware such as CIAO provides event services
that supports event channel federations. The federation could share filtering
information to minimize or eliminate the transmission of unwanted events to
a remote entity. Moreover, the federation of event services allows events that
are being communicated in one channel to be made available on other chan-
nels. The channels could communicate with each other through CORBA IIOP
Gateways, UDP, or IP Multicast [37]. Connecting event channels from differ-
ent systems together allows event information to be interchanged, providing
a level of integration among the systems.

The EQAL deployment part specifies how components and event channels are
assigned to hosts on a target network. For example, collocating a gateway with
its consumer event channel (i.e., the one it connects to as a supplier) eliminates
the need to transmit events that are not subscribed to by the consumer event
channel. Application developers can also choose different types of gateways
based on different application deployment scenarios with different networking
and computing resources. These deployment decisions have no coupling with,
or bearing on, component application logic. The same set of components can
therefore be reused and deployed into different scenarios without modifying
application code manually.

The EQAL modeling paradigm allows three types of federations (i.e., CORBA
IIOP, UDP, or IP multicast) to be deployed. For event channel federation
models, the EQAL modeling paradigm defines two levels of syntactic elements:

• The outer-level, which contains the host elements as basic building blocks
and allows users to define the hosts present in the DRE system and

• The inner-level, which represents a host containing a set of syntactic ele-
ments (including event channels, CORBA IIOP gateways, UDP senders and
receivers, IP multicast senders and receivers, and event type references) that
allow users to configure the deployment of these artifacts inside a host.

3.3.2 Constraint Specification

Dependencies among middleware QoS policies, strategies, and configurations
are complex. Ensuring coherency among policies and configurations has been a
major source of accidental complexity in component middleware. One of CoS-
MIC’s primary benefits is the prevention of inconsistent combinations of QoS
parameters during modeling time through constraint checking. Constraints en-
sure that only valid models can be constructed and interpreted. This section
describes the constraint checkers in the OCML and EQAL tools that ensure
compatibility and validity of configuration options.

• OCML. The rules artifact of OCML is used to define the constraints
which the ORB service configuration is required to satisfy. These constraints
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are enforced to be satisfied by the application developer in the Service Configu-
ration Modeling Environment. For example, TAO ORB developers use OCML
to define rules that constrain the permissible combinations of ORB level con-
figuration options. DRE system developers are thus constrained to use only
valid combinations of configuration parameters for their applications.

• EQAL. EQAL automatically verifies the validity of different types of event
service configurations and notifies the user during modeling time of incompat-
ible QoS properties. Consequently, EQAL dramatically reduces the time and
effort involved in configuring components with stringent real-time require-
ments. Also, this model checker provides us the opportunity to detect consis-
tent event channel settings in an early design phase rather than the assembly
and deployment phase.

3.3.3 Model Interpretation

The CoSMIC middleware configuration tools provides model interpreters that
synthesize the target middleware configuration files and component descriptor
files. Below we describe the model interpreters in the OCML and EQAL tools,
which support the synthesis of configuration metadata for the TAO ORB and
CIAO component middleware that uses the TAO ORB.

• OCML. The middleware-specific options configuration language is val-
idated against the OCML metamodel and when interpreted generates the
following:

• Source code for the service configuration design environment. Service config-
uration design environment is used by the application developer to generate
ORB service configuration files.

• Source code for a handcrafted service configuration file validation tool.
• An HTML file documenting all the options and the dependencies.

This procedure is illustrated in Figure 11.

• EQAL. EQAL encompasses two model interpreters. The first interpreter
generates XML descriptor files that conform to the Boeing Prism XML schema
for Event Services component configuration. These descriptor files identify the
real-time requirements of individual connections and event channel federa-
tions. The second interpreter generates the service configuration files that spec-
ify event channel policies and strategies. The component deployment frame-
work parses these files, creates event channels, and configures each connection,
while shielding the actual component implementations from the lower-level
middleware services. Currently, these files must be written by hand a tedious
process that is repeated for each component deployment. Accordingly, the au-
tomation of this process, and the guarantee of model validity, improves the
reusability of components across diverse deployment scenarios. The informa-
tion captured in the descriptor files include the relationship between each
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artifacts, the physical location of each supplier, consumer, event channel and
CIAO Gateway.

3.3.4 Resolving Middleware Configuration Challenges for BasicSP Scenario
using OCML and EQAL

In this section we demonstrate how the middleware configuration challenges
are resolved for the BasicSP application scenario using OCML and EQAL
tools.

• OCML. As discussed in the previous section a model for TAO ORB Con-
figuration Options is designed within the GME modeling environment using
the OCML modeling language and interpreted to generate the TAO specific
Configuration File Generator application. The Configuration File Generator is
used to configure middleware for each component of the BasicSP scenario. For
example, the OCML tool is used to configure ORB level configuration options
including server concurrency mechanism, protocol factories so that BasicSP
can operate over distinct transport protocols, and real-time CORBA threading
policies so that these can support the 20Hz periodic real-time requirements of
BasicSP.

• EQAL. The BasicSP components transmit and receive events at speci-
fied real-time rates. Consequently, the event propagation mechanism must be
capable of delivering events in a timely manner. For the BasicSP, therefore,
we use EQAL to configure and deploy the TAO real-time event service that
can provide guaranteed timely delivery of events. Using EQAL, a developer
or deployer of the BasicSP application can rapidly specify the timing require-
ments (20Hz in our case) for each component, while being assured of semantic
compatibility among event dependencies.

3.4 Model-driven Configuration and Deployment of Components: Resolving
Deployment Planning Challenges

CoSMIC provides the Model Integrated Deployment and Configuration Envi-
ronment for Composable Software Systems (MIDCESS) and the CCM Per-
formance (CCMPerf) tools to resolve the problem of deployment planning
described in challenge 4 of Section 2.4. MIDCESS can be used to specify the
target environment for deploying packages. A target environment is a model
of the computing resource environment (such as processor speed and type of
operating system) in which a component-based application will execute. The
various entities of the target model include:

(1) Nodes, where the individual components and component packages are
loaded and used to instantiate those components.

(2) Interconnects among nodes, to which inter-component software connec-
tions are mapped, to allow the instantiated components to intercommu-
nicate.
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(3) Bridges among interconnects. Interconnects provide a direct connection
between nodes, while bridges provide a routing capability between inter-
connects.

Nodes, interconnects, and bridges are collected into a domain, which collec-
tively represents the target environment. In the context of the BasicSP sce-
nario described in Section 3.1, various components need to collaborate to com-
plete the GPS application. Compatible component implementations of GPS
and airframe functionality need to be chosen depending on the target envi-
ronment specified. For example, components may be implemented in different
programming languages because the target environment in which these com-
ponents will execute may not be known at design-time. MIDCESS helps in this
deployment planning process by specifying the target environment in which
these components will execute.

Using the target environment information available from MIDCESS, CCM-
Perf [38] can then be used to synthesize experiments that measure black-box
(e.g., latency, jitter, and throughput) and white-box (e.g., context-switch over-
head) metrics that can be used to evaluate the consequences of mixing and
matching component assemblies in a given target environment. In the context
of the BasicSP scenario, CCMPerf can be used to identify the set of nodes
that minimize latency between any two components thereby guaranteeing the
20Hz rate end to end. The experiments in CCMPerf can be divided into the
following three experimentation categories:

(1) Distribution middleware tests that quantify the performance of CCM-
based applications using black-box and white-box metrics, for example,
measuring latency for navigation updates to propagate to the Nav Display

component for a given domain,
(2) Common middleware services tests that quantify the suitability of using

different implementations of CORBA services, such as using Real-time
Event [39] service against the Notification Services [40] for delivering
periodic trigger updates to the Nav Display component, and

(3) Domain-specific middleware tests that quantify the suitability of CCM
implementations to meet the QoS requirements of a particular DRE ap-
plication domain, such as jitter metrics for associating real-time policies
with component servers and containers that host Timer and Nav Display

components in the BasicSP scenario.

A model-driven approach to deployment planning allows modelers to get in-
formation about the target environment, get the middleware configuration
information, and generate tests at the push of button. Without modeling tech-
niques, these tedious and error-prone code would have to be written by hand.
In a hand-crafted approach, changing the configuration would entail re-writing
the benchmarking code. In a model-based solution, however, the only change
will be in the model and the necessary experimentation code will be automat-
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ically generated. A model-based solution also provides the right abstraction
to visualize and analyze the overall planning phase rather than looking at the
source code.

Figure 13 illustrates how MIDCESS and CCMPerf are designed to be a link in
the CoSMIC tool chain that enables developers to model the planning phase
of the component development process. We discuss each of these tools below

Fig. 13. Deployment Planning Process

from the perspective of the modeling paradigm, constraint specification, and
model interpreter aspects. We also show how MIDCESS and CCMPerf can be
applied to the BasicSP scenario described in Section 3.1.

3.4.1 Modeling Paradigm

This section describes the modeling paradigm supported by the MIDCESS
and CCMPerf tools.

• MIDCESS. MIDCESS is a graphical tool that provides a visual inter-
face for specifying the target environment for deploying DRE applications.
The modeling paradigm contains entities to model the various artifacts of the
target environment for deploying composable software systems and also the
interconnections between those artifacts. The modeling paradigm also allows
the domain administrators to visualize the target environment at various levels
of abstractions i.e. at the level of domains and sub-domains. MIDCESS also
provides built-in constraint checkers that check for the semantic compatibility
of the specified target environment. For example, the constraint checker could
check for connections involving bridges and make sure that no two nodes are
directly connected using a bridge.

The MIDCESS tool enables the modeling of the following features of a target
environment:

(1) Specification of node elements and the interconnections between the node
elements, e.g., specifying the node that will host the Nav Display com-
ponent and how it will be connected to other nodes hosting other com-
ponents, e.g., Airframe.
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(2) Specification of the attributes of each of the nodes, e.g., specifying the
name of the node.

(3) Hierarchical modeling of the individual nodes that share certain basic at-
tributes (such as their type), but vary in the processing power, supported
OS etc.

(4) Hierarchical modeling of the interconnects to specify the different vari-
eties of connections possible in the target environment.

(5) Hierarchical modeling of the domain to have sub-domains.

• CCMPerf. The modeling paradigm of CCMPerf is defined in a manner
that will allow its integration with other paradigms, for example, COMPASS.
To achieve the aforementioned goal, CCMPerf defines Aspects, i.e., visualiza-
tions of existing meta model that allows the modeler to depict component
interconnection and associate metrics the above interaction. The following are
the three aspects defined in CCMPerf

(1) Configuration aspect, that defines the interface that are provided and
required by the individual component, e.g., modeling the events propa-
gated by the Airframe Component.

(2) Metric aspect, that defines the metric captured in the benchmark, e.g.,
associating latency information for GPS position updates generated by
the GPS components and received by the Nav Display component.

(3) Inter-connection aspect, that defines how the components will interact
in the particular benchmarking experiment, e.g., connecting the provides
and required ports of the Airframe component with the corresponding
ports of the Nav Display component.

3.4.2 Constraints Specification

This section describes the constraint checking capabilities of MIDCESS and
CCMPerf.

• MIDCESS contains a constraint checker to ensure that the target en-
vironments specified by the tool are semantically compatible. Constraints
are defined using the Object Constraint Language (OCL) [32], which is a
strongly typed, declarative, query and constraint language. MIDCESS defines
constraints to enforce restrictions in the (1) specification of node elements, (2)
specification of interconnect elements, (3) specification of bridge elements, (4)
specification of resource elements, and (5) interconnection of various elements
of the domain. For example, MIDCESS will flag an error if the binary format
of a component does not match the target node’s supported format. Similarly,
it can flag errors if the underlying network cannot support the bandwidth
requirements.

• CCMPerf also contains a constraint checker that validates the experiment
to preclude invalid configuration, such as (1) conflicting metrics, such as us-
ing both back box and white box metrics in a given experiment, (2) invalid
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connections, such as not connecting a required interface with the correspond-
ing provides interface (e.g., in the BasicSP scenario this constraint violation
corresponds to connecting Nav Display ports directly to the GPS component
instead of the Airframe component), and (3) incompatible exchange format,
such as connecting a point-to-point entity with a point-to-multipoint entity,
e.g., connecting Timer refreshes (events) to position updates generated for
the Nav Display (”pull” operations). Constraints are defined in the CCMPerf
meta model are defined using OCL [32]. The use of constraints ensure that
the experiment is correct a priori minimizing errors at run-time.

3.4.3 Model Interpretation

This section describes the artifacts of the model interpretation process in
MIDCESS and CCMPerf.

• MIDCESS generates a domain descriptor that describes the domain as-
pect of the target model environment of composable software systems. This
descriptor is an XML document that conforms to a XML Schema defined by
the Deployment and Configuration of Component-based Distributed Applica-
tions Specification [31]. The output of MIDCESS can therefore be validated
by running the descriptor through a tool that supports XML schema valida-
tion. The generated descriptor is then used by the CIAO deployment run-time
infrastructure, which uses information in the planning descriptor to make de-
ployment decisions.

• CCMPerf generates the necessary descriptor files that provide meta-data
to configure the experiment. In addition to the descriptor files, the CCMPerf
interpreter also generates benchmarking code that monitors and records the
values for the variables under observation. To allow the experiments to be
carried out in varied hardware platforms, script files can be generated to run
experiments.

3.4.4 Resolving BasicSP Scenario Configuration Challenges using MIDCESS
and CCMPerf

We now demonstrate how the BasicSP configuration challenges can be resolved
using the MIDCESS and CCMPerf tools described above. For example, pro-
viding application developer with QoS metrics (such as latency, throughput,
and jitter) for the scenario on a target platform at design-time helps them
make intelligent decisions on mapping components to appropriate nodes in
the domain. To achieve this goal, developers can use CCMPerf to compose
a representative test application to be run of a target environment modeled
using MIDCESS, and associate certain QoS requirements, such as minimizing
latency. Figures 14 and 15 show how the component interaction and QoS
association can be modeled using CCMPerf.
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Fig. 14. Modeling Component In-
teraction using CCMPerf

Fig. 15. Associating QoS At-
tributes with BasicSP Scenario

The following steps help resolve configuration and deployment challenges for
DRE applications:

(1) Determine the QoS expected from the middleware.
(2) Select a set of middleware configurations options using the OCML tool

(Section 3.3) that are expected to provide these QoS guarantees. It is
assumed that middleware developers will have the appropriate insights
to select the right options.

(3) Use CCMPerf to generate a testsuite for evaluating QoS delivered by the
middleware. The CCMPerf interpreter will generate the scaffolding code
required to set up, run and tear down the experiment.

(4) Use MIDCESS to model the target configuration and synthesize the nec-
essary descriptors for component deployment.

(5) For each configuration option discussed in step 4, run the generated
benchmarking tests to evaluate the QoS. 2

(6) Repeat steps 4-5 for DRE systems in different nodes in the domain by
mapping components to individual nodes. If a particular combination of
configuration option along with the target mapping set delivers similar
QoS properties, it is good candidate solution.

4 Related Work

This section reviews related work on model-based software development and
describes how modeling, analysis, and generative programming techniques are
being used to model and provision QoS capabilities for DRE component mid-
dleware and applications.
Model-based software development. Our work on Model Driven Middle-
ware extends earlier work on Model-Integrated Computing (MIC) [7,43,44,8]
that focused on modeling and synthesizing embedded software. MIC provides
a unified software architecture and framework for creating Model-Integrated
Program Synthesis (MIPS) environments [10]. Examples of MIC technology
used today include the Generic Modeling Environment (GME) [10] and Ptolemy [45]

2 The challenges arising from the explosion in the configuration space can be alle-
viated using pruning techniques discussed in research [41,42].
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(used primarily in the real-time and embedded domain) and MDA [9] based
on UML [46] and XML [47] (which have been used primarily in the business
domain). Our work on CoSMIC combines the GME tool and UML modeling
language to model and synthesize QoS-enabled component middleware for use
in provisioning DRE applications. In particular, CoSMIC is enhancing GME to
produce domain-specific modeling languages and generative tools for DRE ap-
plications, as well as developing and validating new UML profiles (such as the
UML profile for CORBA [48], the UML profile for quality of service [49], and
UML profile for schedulability, performance and time [50]) to support DRE
applications. Moreover, CoSMIC is applying the MIC principles to large-scale
network-centric DRE systems as opposed to standalone embedded platforms
restricted to digital signal processors.

The Virginia Embedded System Toolkit (VEST) [51] is an embedded system
composition tool that enables the composition of reliable and configurable
systems from COTS component libraries. VEST compositions are driven by a
modeling environment that uses the GME tool [10]. VEST also checks whether
certain real-time, memory, power, and cost constraints of DRE applications
are satisfied.

The Cadena [11] project provides an MDA toolsuite with the goal of assessing
the effectiveness of applying static analysis, model-checking, and other light-
weight formal methods to CCM-based DRE applications. The Cadena tools are
implemented as plug-ins to IBM’s Eclipse integrated development environment
(IDE) [52]. This architecture provides an IDE for CCM-based DRE systems
that ranges from editing of component definitions and connections information
to editing and debugging of auto-generated code templates.

We are using the Open Tool Integration Framework (OTIF) [53] to build
model translators that will allow our CoSMIC models to communicate with
Cadena and VEST thereby leveraging their model checking capabilities for
validating properties, such as end-to-end rates in a component assembly.

Commercial successes in model-based software development include the Ra-
tional Rose [54] suite of tools used primarily in enterprise applications. Rose is
a model driven development toolsuite that is designed to increase the produc-
tivity and quality of software developers. Its modeling paradigm is based on
the Unified Modeling Language (UML). Rose tools can be used in different ap-
plication domains including business and enterprise/IT applications, software
products and systems, and embedded systems and devices. In the context of
DRE applications, Rose has been applied successfully in the avionics mission
computing domain [2].

Other commercial successes include the Matlab Simulink and Stateflow tools
that are used primarily in engineering applications. Simulink is an interactive
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tool for modeling, simulating, and analyzing dynamic, multidomain systems.
It provides a modeling paradigm that covers a wide range of domain areas, in-
cluding control systems, digital signal processors (DSPs), and telecommunica-
tion systems. Simulink is capable of simulating the modeled system’s behavior,
evaluating its performance, and refining the design. Stateflow is an interac-
tive design tool for modeling and simulating event-driven systems. Stateflow is
integrated tightly with Simulink and Matlab to support designing embedded
systems that contain supervisory logic. Simulink uses graphical modeling and
animated simulation to bridge the traditional gap between system specifica-
tion and design.

Program transformation technologies. Program Transformation [22] is
the act of changing one program to another. It provides an environment for
specifying and performing semantic-preserving mappings from a source pro-
gram to a new target program. Program transformation is used in many areas
of software engineering, including compiler construction, software visualiza-
tion, documentation generation, and automatic software renovation.

Program transformations are typically specified as rules that involve pattern
matching on an abstract syntax tree (AST). The application of numerous
transformation rules evolves an AST to the target representation. A trans-
formation system is much broader in scope than a traditional generator for a
domain-specific language. In fact, a generator can be thought of as an instance
of a program transformation system with specific hard-coded transformations.
There are advantages and disadvantages to implementing a generator from
within a program transformation system. A major advantage is evident in the
pre-existence of parsers for numerous languages [22]. The internal machinery
of the transformation system may also provide better optimizations on the
target code than could be done with a stand-alone generator.

Generative Programming (GP) [55] is a type of program transformation con-
cerned with designing and implementing software modules that can be com-
bined to generate specialized and highly optimized systems fulfilling specific
application requirements. The goals are to (1) decrease the conceptual gap
between program code and domain concepts (known as achieving high inten-
tionality), (2) achieve high reusability and adaptability, (3) simplify managing
many variants of a component, and (4) increase efficiency (both in space and
execution time).

GenVoca [21] is a generative programming tool that permits hierarchical con-
struction of software through the assembly of interchangeable/reusable com-
ponents. The GenVoca model is based upon stacked layers of abstraction that
can be composed. The components can viewed as a catalog of problem solu-
tions that are represented as pluggable components, which then can be used
to build applications in the catalog domain.
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Yet another type of program transformation is aspect-oriented software de-
velopment (AOSD). AOSD is a new technology designed to more explicitly
separate concerns in software development. The AOSD techniques make it
possible to modularize crosscutting aspects of complex DRE systems. An as-
pect is a piece of code or any higher level construct, such as implementation
artifacts captured in a MDA PSM, that describes a recurring property of a pro-
gram that crosscuts the software application i.e., aspects capture crosscutting
concerns). Examples of programming language support for AOSD constructs
include AspectJ [56] and AspectC++ [57].

CoSMIC has been developed to interwork with model-level aspect weaving
tools like C-SAW [15] to weave into models crosscutting properties like host
assignment.

5 Concluding Remarks

Large-scale distributed real-time and embedded (DRE) systems are increas-
ingly being developed using QoS-enabled component middleware [5]. QoS-
enabled component middleware provides policies and mechanisms for pro-
visioning and enforcing large-scale DRE application QoS requirements. The
middleware itself, however, does not resolve the challenges of choosing, con-
figuring, and assembling the appropriate set of syntactically and semantically
compatible QoS-enabled DRE middleware components tailored to the appli-
cation’s QoS requirements. Moreover, any given middleware API does not
resolve all the challenges posed by obsolescence of infrastructure technologies
and its impact on long-term DRE system lifecycle costs.

It is in this context that the OMG’s Model Driven Architecture (MDA) is
an effective paradigm to address the challenges described above by apply-
ing domain-specific modeling languages systematically to engineer computing
systems. This paper provides an overview of the emerging paradigm of Model
Driven Middleware (MDM), which integrates model-based software techniques
(including Model-Integrated Computing [7,8] and the OMG’s Model Driven
Architecture [9]) with QoS-enabled component middleware (including Real-
time CORBA [4] and QoS-enabled CCM [5]) to help resolve key software de-
velopment and validation challenges encountered by developers of large-scale
DRE middleware and applications. The MDM analysis-guided composition
and deployment of DRE middleware helps to provide a verifiable and cer-
tifiable basis for ensuring the consistency and fidelity of DRE applications,
such as those deployed in safety-critical domains like avionics control, medical
devices, and automotive systems.

To illustrate recent progress on MDA technologies, this paper describes CoS-
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MIC, which is an MDM toolsuite that combines the power of domain-specific
modeling, aspect-oriented domain modeling, mathematical analysis, genera-
tive programming, QoS-enabled component middleware, and run-time dy-
namic adaptation and resource management to resolve key challenges that
occur throughout the DRE application lifecycle. CoSMIC currently provides
platform-specific metamodels that address the packaging, middleware con-
figuration, deployment planning and runtime QoS assurance challenges. The
middleware platform we use to demonstrate our MDM R&D efforts is the
Component-Integrated ACE ORB (CIAO) [5], which is QoS-enabled imple-
mentation of the CORBA Component Model (CCM). As other component
middleware technologies mature to the point where they can support DRE
applications, the CoSMIC tool-chain will be enhanced to support platform-
independent models and their mappings to various platform-specific models.

The CoSMIC MDM toolsuite is available for download at www.dre.vanderbilt.
edu/cosmic. The associated QoS-enabled component middleware platform
CIAO can be downloaded from www.dre.vanderbilt.edu/CIAO.
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AspectC++: An Aspect-Oriented Extension to C++, in: Proceedings of the
40th International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS Pacific 2002), 2002.

37


