
A QoS Policy Configuration Modeling Language for
Publish/Subscribe Middleware Platforms ∗

Joe Hoffert, Douglas Schmidt, and Aniruddha Gokhale
Institute for Software Integrated Systems, Dept of EECS

Vanderbilt University, Nashville, TN 37203

{jhoffert,schmidt,gokhale}@dre.vanderbilt.edu

ABSTRACT
Publish/subscribe (pub/sub) middleware platforms for event-
based distributed systems often provide many configurable
policies that affect end-to-end quality of service (QoS). Al-
though the flexibility and functionality of pub/sub middle-
ware platforms has matured, configuring their QoS poli-
cies in semantically compatible ways has become more com-
plex. This paper makes two contributions to reducing the
complexity of configuring QoS policies for event-based dis-
tributed systems. First, it evaluates various approaches for
managing complex QoS policy configurations in pub/sub
middleware platforms. Second, it describes a domain-specific
modeling language (DSML) that automates the analysis and
synthesis of semantically compatible QoS policy configura-
tions.

Categories and Subject Descriptors
D.3.2 [Software]: Programming Languages—Language Clas-
sifications

Keywords
Pub/sub Middleware, Event-based Distributed Systems, Dom-
ain-Specific Modeling Languages, Data Distribution Service

1. INTRODUCTION
With increasing advantages of cost, performance, and scale

over single computers, the proliferation of distributed sys-
tems in general and distributed event-based systems in par-
ticular have increased dramatically in recent years [4]. In
contrast to distributed object computing middleware (such
as CORBA and Java RMI)—where clients invoke point-to-
point methods on distributed objects—pub/sub middleware
platforms distribute data from suppliers to (potentially mul-
tiple) consumers. Examples of standardized pub/sub mid-
dleware include the Java Message Service (JMS) [11], Web

∗This work is supported in part by the AFRL/IF Pollux
project and NSF TRUST.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’07,June 20-22, 2007, Toronto, Ontario, Canada
Copyright 2007 ACM 978-1-59593-665-3/07/03 ...$5.00.

Services Notification [9], CORBA Event Service [7], and
OMG Data Distribution Service (DDS) [8]. These event-
based services allow the propagation of data throughout
a system using an anonymous publish/subscribe (pub/sub)
model that decouples event suppliers from event consumers.

To support the requirements of a broad spectrum of ap-
plication domains, pub/sub middleware for event-based dis-
tributed systems typically provides many policies that affect
end-to-end system QoS properties. Examples of these poli-
cies include persistence, i.e., determining how much data
to save for current subscribers; durability, i.e., determining
whether to save data for late joining subscribers; and grouped
data transfer, i.e., determining if a group of data needs to
be transmitted and received as a unit.

Each QoS policy may have multiple attributes associated
with it, such as the data topic of interest, data filter cri-
teria, and the maximum number of data messages to store
when transmitting data. Moreover, each attribute can be
assigned one of a range of values, such as the legal set of
topics, a range of integers for the maximum number of data
messages stored for transmission, or the set of criteria used
for filtering. The research challenges addressed in this pa-
per thus focus on choosing the right set of values for QoS
policies and ensuring that these QoS policies are configured
together in a semantically compatible way, i.e., that they do
not conflict with or contradict each other.

This paper uses DDS as a case study to illustrate the
challenges of ensuring semantically compatible QoS policy
configurations. DDS is an OMG specification [8] that defines
a standard anonymous pub/sub architecture for exchanging
data in event-based distributed systems. It provides a global
data store in which publishers and subscribers write and
read data, respectively. The DDS architecture consists of
two layers: (1) the data-centric pub/sub (DCPS) layer that
provides APIs to exchange topic data based on specified QoS
policies and (2) the data local reconstruction layer (DLRL)
that makes topic data appear local.

The DCPS entities in DDS include Topics, which describe
the type of data to be written or read; Data Readers, which
subscribe to the values or instances of particular topics; and
Data Writers, which publish values or instances for particu-
lar topics. Various properties of these entities can be config-
ured using combinations of the 22 QoS policies. Moreover,
Publishers manage groups of data writers and Subscribers
manage groups of data readers.

Table 1 summarizes all the DDS QoS policies. Each QoS
policy has ∼2 attributes with the majority of the attributes
having a large number of possible values, e.g., an attribute

of type long or character string. Moreover, not all QoS poli-
cies are applicable to all DCPS entities, nor are all combina-
tions of policy values semantically compatible, as described
in Sections 3.1 and 4.

DDS QoS Policy Description

User Data Attaches application data to DDS
entities

Topic Data Attaches application data to topics
Group Data Attaches application data to

publishers, subscribers
Durability Determines if data outlives the time

when written or read
Durability
Service

Details how durable data is stored

Presentation Delivers data as group and/or in order
Deadline Determines rate at which periodic data

is refreshed
Latency
Budget

Sets guidelines for acceptable
end-to-end delays

Ownership Controls writer(s) of data
Ownership
Strength

Sets ownership of data

Liveliness Sets liveness properties of topics, data
readers, data writers

Time Based
Filter

Mediates exchanges between slow
consumers and fast producers

Partition Controls logical partition of data
dissemination

Reliability Controls reliability of data transmission
Transport
Priority

Sets priority of data transport

Lifespan Sets time bound for “stale” data
Destination
Order

Sets whether data sender or receiver
determines order

History Sets how much data is kept to be read
Resource
Limits

Controls resources used to meet
requirements

Entity
Factory

Sets enabling of DDS entities when
created

Writer Data
Lifecycle

Controls data and data writer lifecycles

Reader Data
Lifecycle

Controls data and data reader lifecycles

Table 1: DDS QoS Policies

Semantic compatibility in DDS is accomplished when the
combination and interaction of the specified QoS policies
produce the overall desired QoS for the system, i.e., when
the system executes with the QoS that is intended. It is
hard to achieve semantic compatibility using conventional
programming techniques, i.e., manually specifying valid QoS
policy configurations with particular QoS policies tuned us-
ing appropriate values for the attributes of the policies. Achiev-
ing semantic compatibility is particularly hard when QoS
policies can conflict with each other, e.g., specifying unre-
liable data transmission for the data sender with reliable
data reception for the data receiver. Moreover, this prob-
lem is exacerbated in DDS-based distributed systems where
the overall QoS policy configuration is not globally defined
or controlled but is defined by the aggregation of the locally
defined QoS policy configurations.

A promising way to address key QoS policy configura-
tion concerns for event-based distributed systems involves
the use of model-driven engineering (MDE) tools [10] based
on domain-specific modeling languages (DSMLs)[12]. The
type systems of DSMLs formalize the application structure,
behavior, and requirements within particular domains, such
as software-defined radios, avionics mission computing, on-
line financial services, warehouse management, or even the
domain of pub/sub middleware platforms. DSMLs are de-
scribed using metamodels, which define the relationships

among concepts in a domain and precisely specify the key
semantics and constraints associated with these domain con-
cepts. Developers use DSMLs to build applications using
elements of the type system captured by metamodels and
express design intent declaratively rather than imperatively.

This paper describes how a particular MDE-based DSML,
the DDS QoS Modeling Language (DQML), can help allevi-
ate the complexities of QoS policy configuration for event-
based distributed systems. QoS policy configurations can
be defined as complex when, in general, a human being can-
not manually manage the number of QoS policies, policy
attributes, possible values for the attributes, and the inter-
actions of the policies to ensure that the configurations are
valid. DQML can be used to model QoS policy configura-
tions within the domain context, i.e., using terminology and
constructs within the domain of interest, while also checking
for valid QoS policy configurations early in development at
design-time, when errors require less effort to fix. DQML
can also be used to generate correct-by-construction1 QoS
policy configuration artifacts, e.g., QoS policy configuration
files that store particular attribute values for QoS policies
which the system loads during execution.

The remainder of the paper is organized as follows: Sec-
tion 2 uses the NASA Magnetospheric Multiscale (MMS)
Mission [1] as an example of an event-based distributed
system that can benefit from an MDE-based approach to
QoS policy configuration; Section 3 highlights the challenges
of QoS policy configuration in a DDS-based design for the
MMS mission and analyzes various approaches to addressing
these challenges; Section 4 describes how we resolve the chal-
lenges presented above using DQML; and Section 5 presents
lessons learned guiding future work on DQML.

2. MOTIVATING EXAMPLE: NASA’S MAG-
NETOSPHERIC MULTISCALE MISSION

We chose NASA’s Magnetospheric Multiscale (MMS) Mis-
sion to highlight the challenges of configuring QoS policies in
event-based distributed systems. This mission is designed to
study particular aspects of the earth’s magnetosphere, such
as magnetic reconnection, charged particle acceleration, and
turbulence, in key boundary regions. MMS utilizes five co-
orbiting coordinated spacecraft with identical instrumenta-
tion to perform the desired measurements. The spacecraft
can be (re)positioned into different spatial/temporal rela-
tionships so that a three dimensional view of the plasma,
field, and current structures can be constructed.

Figure 1 shows an example MMS spacecraft deployment,
including a ground station with which the spacecrafts can
communicate during a high-capacity window and a non-
MMS satellite that can communicate with the MMS space-
craft. The figure also shows data flows between MMS sys-
tems and the QoS requirements applicable to the MMS mis-
sion outlined below. MMS spacecraft will be equipped with
uplink and downlink capability to transport telemetry data.
Each spacecraft will need to gather, store, and transmit in-
formation regarding neighboring spacecraft to enable precise
coordination for particular types of telemetry and position-
ing. The instruments aboard each spacecraft will also gen-

1In this paper “correct-by-construction” refers to QoS policy
configuration artifacts that faithfully and accurately transfer
design configurations into valid implementation and deploy-
ment.

Key:

= MMS ground station,

= MMS spacecraft

= other satellites

= data flow

Reliable data via

reliability QoS

Data for late arriving

readers via

durability QoS

Ordered data via

presentation QoS

Data priority via

transport priority

&/or deadline QoS

Figure 1: MMS Mission QoS Requirements

erate ∼250 megabytes of data per day. To minimize ground
station cost each spacecraft will store up to 2 weeks worth
(i.e., 3.5 GB) of data so that the spacecraft can wait for
high-rate transmission windows. With these data require-
ments, the DDS pub/sub middleware would be appropriate
since its QoS policies support the following capabilities:

a. Storage and later dissemination of data by data writers
(such as the spacecraft) to accommodate later data
readers (such as other satellites arriving within range).
This capability would utilize the DDS durability and
durability service QoS policies.

b. Ordered and/or grouped data dissemination so that in-
formation transmitted between various MMS systems
are received in the same order and the appropriate
level of granularity. This capability would utilize the
DDS presentation QoS policy.

c. Prioritization of data delivery so that mission-critical
or high value data is delivered before lower-valued data.
This capability would utilize the DDS transport prior-
ity and/or deadline QoS policies.

d. Reliability of data transmission so that no critical data
is lost. This capability would utilize the DDS reliabil-
ity QoS policy.

An MMS mission may need all capabilities listed above, as
well as others that occur during the mission. The challenge
for MMS developers, however, is to determine what impact
the interaction of different QoS policies has on the system,
e.g., how will the system behave when the desired QoS set-
tings conflict with each other? As mentioned in Section 1,
not all combinations of QoS policy attributes and values are
semantically compatible, i.e., only a subset actually make
sense and provide the needed capabilities.

For example, the deadline period specified for data re-
ception can conflict with the inter-arrival spacing of data.
It is therefore incompatible to specify that (1) data should
be received within a particular deadline and (2) the spac-
ing between data reception should at least be greater than
that deadline. Likewise, QoS policies between different data
publishers and subscribers may conflict, e.g., specifying a
publisher’s deadline period for sending data to be greater
than a subscriber’s deadline.

In mission-critical event-based distributed systems, such
as MMS, that require QoS support to accomplish system
objectives, developers must deal with complex QoS policy
configurations. It is necessary to detect incompatibilities
between QoS policy configurations, ideally before the sys-
tem begins to run. Different approaches to managing this

complexity within the context of the DDS middleware for
event-based distributed systems are explored below.

3. QOS POLICY CONFIGURATION CHAL-
LENGES AND ANALYSIS FOR DDS

DDS provides a wide range of QoS capabilities (outlined in
Table 1) that can be configured to meet the needs of event-
based distributed systems with diverse QoS requirements.
DDS’s flexible configurability, however, requires careful man-
agement of interactions between various QoS policies so that
the system behaves as expected. This section uses our MMS
example from Section 2 to present the challenges of config-
uring DDS QoS policies so the system executes as intended.

3.1 DDS QoS Policy Configuration Challenges
The following are three general types of challenges that

arise when creating DDS QoS policy configurations.
Challenge 1: QoS compatibility. DDS defines con-

straints for compatible QoS policies. When these constraints
are violated data will not flow between data writers and data
readers. For example, an incompatibility between reliability
QoS policies will occur if an MMS ground station requests
data be sent reliably but an MMS spacecraft offers only a
best-effort policy. The data will not flow between the space-
craft and the ground station because the values of the QoS
policies are incompatible, as shown in Figure 2.

Best effort data

transfer offered

Reliable

data transfer

requested

X
Data will not

be transferred

Figure 2: Incompatible MMS Ground Station and
Spacecraft Reliability QoS

Table 2 lists the QoS policies that can be incompatible and
the relevant types of entities for those policies. Incompatibil-
ity applies to QoS policies of the same type, e.g., Reliability,
across multiple type of entities, e.g., Data Reader and Data
Writer. Section 4.3.1 presents our approach to addressing
QoS compatibility challenges.

QoS Policies Affected DDS Entities

Durability Topic, Data Reader, Data Writer
Presentation Publisher, Subscriber
Deadline Topic, Data Reader, Data Writer
Latency Budget Topic, Data Reader, Data Writer
Ownership Topic, Data Reader, Data Writer
Liveliness Topic, Data Reader, Data Writer
Reliability Topic, Data Reader, Data Writer
Destination Order Topic, Data Reader, Data Writer

Table 2: Potential Incompatible DDS QoS Policies

Challenge 2: QoS consistency. DDS also defines when
QoS policies are inconsistent indicating that the multiple
QoS policies associated with a single DCPS entity are not
allowed. For example, an inconsistency between the Dead-
line and Time-based Filter QoS polices will occur if an MMS
ground station tries to set the Deadline QoS policy’s dead-
line period to 5 ms and the Time-based Filter QoS policy’s

minimum separation between incoming pieces of data to 10
ms, as shown in Figure 3.

Time based filter.minimum_separation = 10ms
Deadline.period = 5 ms.

X

QoS policies

will not be set

Figure 3: Inconsistent QoS Policies for an MMS
Ground Station

This policy configuration specifies that the ground sta-
tion requires data at time interval 5 ms but that it also
should only receive data at an interval of at least 10 ms.
Unfortunately, this policy configuration is inconsistent with
the DDS constraint that deadline period ≥ minimum sep-
aration. Table 3 describes consistency constraints for QoS
policies associated with a single DDS entity.

Inconsistent QoS Policies

Resource_Limits.max_samples_per_instance < History.depth
Deadline.period < Time_Based_Filter.minimum separation
Resource_Limits.max_samples <

Resource_Limits.max_samples_per_instance

Table 3: Consistency of DDS QoS Policies
Even with a relatively small system, the incompatible and

inconsistent QoS policies that exist between the reader and
writer may not be obvious. This complexity is exacerbated
in larger systems, which must consider the number of pos-
sible values for each attribute of a QoS policy, the number
of attributes for any one QoS policy, the number of QoS
policies used, the number of entities associated with QoS
policies, the interactions of the QoS policies, and the num-
ber of computing nodes in a distributed system.

For example, in the MMS system it is hard to check all in-
compatible and inconsistent QoS policies manually. If there
are any QoS settings that are semantically incompatible, the
intended QoS behavior will not be realized and the system
will not perform as needed, e.g., data will not be transmitted
as required between the spacecraft and the ground stations,
between the spacecraft themselves, or within a single space-
craft. Section 4.3.2 describes our approach to addressing
QoS consistency challenges.

Challenge 3: Accurate QoS policy configuration
transformation. After a valid QoS policy configuration
has been designated it must be transformed from design
into implementation. A conventional approach to this trans-
formation is to (1) document the desired QoS policies, at-
tributes, values, and associated entities often in an ad-hoc
manner such as with handwritten notes or conversations
between developers, and then (2) transcribe this informa-
tion into the source code. However, this process creates
opportunities for accidental complexities as the QoS poli-
cies, attributes, values, and related entities can be misread,
mistyped, or misunderstood so that the QoS policy configu-
rations that are encoded in the system differ from the valid
configurations originally intended.

3.2 Evaluating Common Alternative Solution
Techniques

Below we evaluate three common alternatives for address-
ing the challenges outlined in Section 3.1 in terms of their

ability to document and realize proven QoS policy configu-
rations robustly.

3.2.1 Point Solutions
In this approach, modifications are made to the exist-

ing system’s QoS policies, feedback is gathered, and further
modifications are made based on the feedback. Developers
are challenged not only to design a proper QoS policy con-
figuration, but also ensure that the configuration is trans-
formed faithfully from design to implementation.

A point solution approach works best when a configura-
tion expert is available, the configuration is simple, and the
configuration need not be maintained nor enhanced. Point
solutions, however, make it hard to capture proven QoS pol-
icy configurations or leverage from the expertise of others.
Moreover, point solutions do not support automated trans-
formation of configuration solutions from design to imple-
mentation. Developers must instead rely on human experts
who have developed approaches to solving this transforma-
tion challenge or must reacquire this expertise.

3.2.2 Patterns-based Solutions
This approach to addressing the DDS QoS policy configu-

ration challenges uses configuration patterns for DDS, which
document the use of QoS policies that provide management,
prioritization, and shaping of a data-flow in a network [5].
For example, system developers could limit access to certain
data by utilizing the DDS Controlled Data Access pattern,
which uses the DDS Partition and User Data QoS Policies
along with other DDS elements to provide the desired QoS.

Configuration patterns enable the codification of config-
uration expertise so it is documented clearly and can be
reused broadly. It addresses the problems of the availability
of human experts by making the configuration policy exper-
tise generally available. A drawback with a patterns-based
approach, however, is that developers are still responsible
for implementing the policies manually, which can be te-
dious and error-prone. Moreover, developers may choose to
implement the patterns in different ways, which can impede
reuse and integration.

3.2.3 DSML-based Solutions
This approach to addressing the complexity of manag-

ing QoS policy configurations involves the use of DSMLs.
DSMLs not only codify configuration expertise in the meta-
models that are developed for the particular domain but
also use an executable form of that expertise to synthesize
part or all of an implementation. For example, DSMLs can
generate valid QoS configuration files from valid QoS policy
configurations modeled in the DSMLs.

DSMLs can also ensure proper semantics for specifying
QoS policies and enforce all attributes for a particular QoS
policy to be specified and used correctly, as described in
Section 1. They can therefore detect many types of QoS
configuration problems at design time and can automate the
generation of implementation artifacts (e.g., source code and
configuration files) that reflect the design intent.

A drawback of using DSMLs is the learning curve required
to use them effectively. Moreover, DSMLs typically depend
on a particular modeling tool, so users must be familiar with
the modeling tool as well as the particular DSML.

4. THE DDS QOS MODELING LANGUAGE

This section describes the DDS QoS Modeling Language
(DQML), which is a DSML we created using the Generic
Modeling Environment (GME)[2] to automate the analysis
and synthesis of semantically compatible DDS QoS policy
configurations. We summarize the structure and function-
ality of DQML and then present how DQML helps address
the challenges described in Section 3.1.

4.1 Structure of DQML
DDS defines 22 QoS policies shown in Table 1 that con-

trol the behavior of DDS applications. DQML models all of
these DDS QoS policies, as well as the seven DDS entities
that can have QoS policies, i.e., Data Reader, Data Writer,
Topic, Publisher, Subscriber, Domain Participant, and Do-
main Participant Factory. Associations between the seven
entities themselves and also between the entities and the
22 QoS policies can be modeled taking into account which
and how many QoS policies can be associated with any one
entity as defined by DDS.

There have been several decisions made regarding the de-
sign of the DQML metamodel that affects DQML’s function-
ality and how it is used. These involve scope, constraints,
and the relationship of QoS policies to DDS entities. To
focus specifically on the QoS policy configuration challenges
outlined above, the scope of DQML is limited to only those
DDS entities that can have QoS policies associated with
them. In addition to Data Reader, Data Writer, and Topic
outlined before, DQML can associate QoS policies with (1)
Publishers, which manage one or more Data Writers, (2)
Subscribers, which manage one or more Data Readers, (3)
Domain Participants, which are a factory for DDS entities
for a particular domain or logical network, and (4) Domain
Participant Factories, which are factories for generating Do-
main Participants. While other entities and constructs exist
in DDS none of them directly use QoS policies and are there-
fore not included within the scope of DQML.

The constraints placed on QoS policies for compatibil-
ity and consistency are defined in the DDS specification.
DQML uses the Object Constraint Language (OCL)[13] im-
plementation provided by GME to define these constraints.
As noted in Section 3.1, Challenge 1, compatibility con-
straints involve a single type of QoS policy associated with
more than one DDS entity whereas consistency constraints
involve a single DDS entity with more than one QoS policy.
Both types of constraints are included in DQML. The con-
straints are checked when explicitly prompted by the user.

4.2 Functionality of DQML
DQML allows DDS application developers to specify and

control the following aspects of QoS policy configuration:
Creation of DDS entities. DQML allows developers

to create the DDS entities involved with QoS policy config-
uration. DQML supports the seven DDS entities that can
be associated with QoS policies.

Creation of DDS QoS policies. DQML also allows
developers to create the DDS QoS policies involved with QoS
policy configuration. DQML supports the 22 DDS policies
that can be associated with entities to provide the required
QoS along with the attributes, the appropriate ranges of
values, and defaults.

Creation of associations between DDS entities and
QoS policies. DQML supports the generation of associa-
tions between the entities and the QoS policies and ensures

that the associations are valid.
Checking compatibility and consistency constraints.

DQML supports checking for compatible and consistent QoS
policy configurations. The user initiates this checking and
DQML reports if there are any violations.

4.3 Resolution of QoS Configuration Design
Challenges

This section outlines how DQML is designed to address
the challenges that arise when creating valid QoS policy con-
figurations as outlined in Section 3.1.

4.3.1 Resolving QoS Compatibility
Challenge 1 in Section 3.1 describes the difficulties of en-

suring compatible QoS policies between DDS entities that
need to exchange data. DQML is designed to address this
challenge by including compatibility checking in the model-
ing language itself. As shown in Figure 4, DQML users can
invoke compatibility checking to make sure that the QoS
policy configuration specified is valid. If QoS policies are
found to be incompatible then the user is notified at design
time and given details of the incompatibility.

if (dr_reliability_policies->size() > 0) then

let dr_reliability_kind =

dr_reliability_policies->theOnly().oclAsType(ReliabilityQosPolicy).reliability_kind in

if (dw_reliability_policies->size() > 0) then

let dw_reliability_kind =

dw_reliability_policies->theOnly().oclAsType(ReliabilityQosPolicy).reliability_kind in

(((dw_reliability_kind = #BEST_EFFORT or dw_reliability_kind = #RELIABLE)

and dr_reliability_kind = #BEST_EFFORT)

or ((dw_reliability_kind = #RELIABLE) and dr_reliability_kind = #RELIABLE))

…

Best effort data

transfer offered

Reliable

data transfer

requested

X

Com
patib

ili
ty

O
CL

Constra
in

t

fo
r Relia

bili
ty

- VIO
LATED

Figure 4: Example MMS QoS Policy Incompatibility

DQML is designed to allow for easy resolution of QoS
incompatibilities. QoS policies are associated with DDS en-
tities via connections made between them. When an incom-
patibility is found it can be quickly resolved in most cases
by associating the incompatible DDS entities to the same
QoS policy ensuring compatibility.

4.3.2 Resolving QoS Consistency
Challenge 2 in Section 3.1 describes the difficulties of en-

suring consistent QoS policies so that the policies will not
conflict with each other when associated with the same DDS
entity. DQML is designed to address this challenge by in-
cluding consistency checking in the modeling language itself.
Just as with compatibility checking, the user of DQML can
invoke consistency checking to ensure that the QoS policy
configuration is valid. If inconsistent QoS policies are found
then the user is notified at design time with detailed infor-
mation to aid in correcting the problem.

Figure 5 shows an example of how DQML catches incon-
sistent QoS policies for a QoS policy configuration. In this
example, the deadline period, i.e., 10, is less than the time
based filter’s minimum separation, i.e., 15. Both of these
policies are associated with the same MMS Spacecraft data
reader. DQML checks the consistency of the modeled QoS
policies and notifies the user of the violation.

4.3.3 Transforming QoS Policy Configurations
Challenge 3 in Section 3.1 outlines the problems of prop-

agating a valid QoS policy configuration from design to im-

let dr_deadline_policies = self.connectedFCOs(dr_deadline_Connection) in

let dr_timebased_policies = self.connectedFCOs(dr_timebased_Connection) in

if (dr_deadline_policies->size() > 0) then

let dr_deadline = dr_deadline_policies->theOnly().oclAsType(DeadlineQosPolicy).period in

if (dr_timebased_policies->size() > 0) then

let dr_min_sep =

dr_timebased_policies->theOnly().oclAsType(TimeBasedFilterQosPolicy).minimum_separation in

dr_deadline >= dr_min_sep or dr_deadline = -1

…

Consistency OCL Constra
int

VIO
LATED

Time based filter.minimum_separation = 10msDeadline.period = 5 ms.

X

Figure 5: Example MMS QoS Policy Inconsistency

plementation and then deployment. DQML addresses this
challenge by enabling its developers to create model inter-
preters that can iterate over the QoS policy configuration
model designed in DQML to create appropriate implemen-
tation artifacts (e.g., source code, configuration files) that
will faithfully recreate the QoS policy configuration as de-
signed.

Figure 6: Example QoS Policy Configuration File

Figure 6 shows an example of a QoS policy configura-
tion file for an MMS Spacecraft data reader as generated by
DQML. In this listing, QoS policies associated with the data
reader along with values for the policies are shown. This
file can then be directly plugged into the implementation of
MMS to ensure the desired QoS configuration.

5. CONCLUDING REMARKS
Highly configurable pub/sub middleware platforms are in-

creasingly being used as the basis for event-based distributed
systems. This adoption has also increased demand for pow-
erful QoS polices. We developed DQML to address the chal-
lenges of managing the complexity of the wide variety of
possible QoS policies, attributes, and values available with
DDS, though its DSML techniques can also be generalized
to other pub/sub middleware, such as JMS.

The following is a summary of lessons learned from our
experience using DQML to model QoS policy configurations
for DDS that are guiding our future work.

• Ensuring semantic compatibility of QoS policies
is crucial to proper deployment of event-based pub/-
sub systems. When incompatibilities exist the system will
not perform as designed with potentially cascading effects
of non-performance and unpredictability.

• Ensuring that the designed QoS policy configura-
tion is faithfully mapped to deployment is crucial to
system integrity. Even with the valid and proper design of
a QoS policy configuration, a system will not perform as in-
tended if the configuration is not faithfully transformed into
the implementation. In future work we plan to incorporate
DQML into model-based deployment tools [3] to provide
“correct-by-construction” deployment for DDS.

• Becoming proficient with OCL is hard and it can
be easy to misuse. Most systems developers are not fa-
miliar with rule-based languages such as OCL so there is

the added overhead of training. Development tool support
for OCL is often rudimentary, e.g., little debugging support,
which lowers productivity. In future work we therefore plan
to address enforcing constraints by looking at other con-
straint solving technologies, such as the Constraint Logic
Programming Finite Domain (CLP(FD)) solver [6].

• Real-world use and feedback are crucial elements
to developing a robust DSML. As with any development
tool, DSMLs can only be as good as the particular environ-
ments and systems with which they are used. DSML design-
ers cannot foresee all the potential environments and scenar-
ios a priori. In future work, we therefore plan to use DQML
to generate QoS policy configurations for benchmarking of
DDS implementations and the various DDS QoS policies.

6. REFERENCES
[1] S. Curtis. The Magnetospheric Multiscale

Mission...Resolving Fundamental Processes in Space
Plasmas. NASA STI/Recon Technical Report N, pages
48257–+, December 1999.

[2] Akos Ledeczi et al. Composing Domain-Specific
Design Environments. IEEE Computer, pages 44–51,
November 2001.

[3] Gan Deng et al. DAnCE: A QoS-enabled Component
Deployment and Configuration Engine. In Proceedings
of the 3rd Working Conference on Component
Deployment, Grenoble, France, November 2005.

[4] Yi Huang and Dennis Gannon. A comparative study
of web services-based event notification specifications.
Proceedings of the International Conference on
Parallel Processing Workshops, 0:7–14, 2006.

[5] Gordon Hunt. DDS Use Cases: Effective Application
of DDS Patterns and QoS. In OMG’s Workshop on
Distributed Object Computing for Real-time and
Embedded Systems, Washington, D.C., July 2006.
Object Management Group.

[6] Joxan Jaffar and Michael J. Maher. Constraint logic
programming: A survey. Journal of Logic
Programming, 19/20:503–581, 1994.

[7] Object Management Group. Event Service
Specification Version 1.1, OMG Document
formal/01-03-01 edition, March 2001.

[8] Object Management Group. Data Distribution Service
for Real-time Systems Specification, 1.2 edition,
January 2007.

[9] Organization for the Advancement of Structured
Information Standards. Web Services Base
Notification Version 1.3, OASIS Document
wsn-ws_base_notification-1.3-spec-os edition,
October 2006.

[10] Douglas C. Schmidt. Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

[11] SUN. Java Messaging Service Specification.
java.sun.com/products/jms/, 2002.

[12] Janos Sztipanovits and Gabor Karsai.
Model-Integrated Computing. IEEE Computer,
30(4):110–112, April 1997.

[13] Jos Warmer and Anneke Kleppe. The Object
Constraint Language: Getting Your Models Ready for
MDA. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

