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Abstract

In open distributed real-time and embedded (DRE) sys-
tems, different ORB endsystems may use different schedul-
ing disciplines. To ensure appropriate end-to-end applica-
tion behavior in an open architecture, DRE systems must
enforce an ordering on activities originating in an endsys-
tem and activities that migrate there, based on the relative
importance of these activities. This paper describes the
meta-programming techniques applied in Juno, which ex-
tends Real-time CORBA to enhance the openness of DRE
systems with respect to their scheduling disciplines by en-
abling dynamic ordering of priority equivalence classes.
We use the forthcoming OMG Real-Time CORBA 2.0: Dy-
namic Scheduling Joint Final Submission (RT-CORBA 2.0
JFS) to illustrate our techniques.

Keywords: Real-Time and Distributed Systems,
CORBA, Dynamic Scheduling, Meta-programming Archi-
tectures.

1. Introduction

Emerging challenges: Distributed object computing
(DOC) middleware, such as CORBA, COM+, and Java
RMI, shields developers from many complexities associated
with developing distributed systems. For example, DOC
middleware allows applications to invoke operations on dis-
tributed objects without concern for object location, pro-
gramming language, OS platform, communication proto-
cols and interconnects, and hardware [7]. The maturation of
DOC middleware specifications and implementations over
the past decade have greatly simplified the development of
open distributed systems with complexfunctionalrequire-
ments.

More recently, the emergence of quality of ser-
vice (QoS)-enabled DOC middleware, such as Real-
time CORBA 1.0 (RT-CORBA 1.0) [13], Real-Time
Java [15], [2] and Distributed Real-time Java [9], will sim-
plify open distributed real-time and embedded (DRE) sys-
tems with complex QoS requirements, such as stringent la-
tency, jitter, and dependability. For example, future combat
systems will involve heterogeneous collections of mobile

autonomous vehicles that must collaborate to perform co-
ordinated maneuvers in support of time-critical missions,
such as reconnaissance, perimeter defense, and suppres-
sion of enemy air defenses. Likewise, QoS-enabled DOC
middleware will benefit commercial DRE systems, such as
distributed virtual reality applications, distributed multime-
dia collaboration systems, and massively-multiplayer on-
line persistent-world games.

Key challenges arising in these types of DRE systems in-
volve communicating and enforcing the relative importance
of variouscompetitors(such as threads or operations on
CORBA objects) to ensure appropriate scheduling of sys-
tem resources(such as memory, CPU time, and network
bandwidth) at a given point in time. Resolving these chal-
lenges is essential to building DRE systems that are simul-
taneously:

1. Open, i.e., system components can connect and inter-
operate in a flexible manner without having to be pre-
configured statically; and

2. Dependable, i.e., the system can preserve key end-to-
end QoS properties, such as timeliness and resource
constraints.

For example, mobile autonomous vehicles should be able
to collaborate in a dependable and efficient manner, despite
the heterogeneity of their scheduling disciplines and imple-
mentations. The forthcoming Real-Time CORBA 2.0: Dy-
namic Scheduling Joint Final Submission (RT-CORBA 2.0
JFS) [14] addresses some aspects of the challenges outlined
above. For example, the RT-CORBA 2.0 JFS defines adis-
tributable threadmechanism that has the following proper-
ties:

� It can extend and retract itslocus of execution1 to tran-
sition among ORBs while servicing an operation re-
quest.

� It contends with other competitors for the use of differ-
ent resources (such as CPU time, memory, or network
bandwidth) in the various ORBs it traverses through a
dynamic call graph.

� It contains certain scheduling information carried
across ORBs embedded in a GIOP service context and

1The locus of executionof a distributable thread represents the ORBs
visited by the thread while servicing a remote method invocation.
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Figure 1. DRE Systems with Competitors that
Migrate from System to System.

used by ORBs visited by a distributable thread to en-
sure that the thread is processed at the appropriate pri-
orities end-to-end.

For example, Figure 1 illustrates a representative DRE
system in which three endsystems are running three ORBs
configured with three different scheduling disciplines.
Threads are distributed across endsystems as a result of re-
mote operation invocations or distributable thread migra-
tion.2 As a result, competitors originating on different
endsystems contend for the same set of resources on each
ORB endsystem. To adjudicate this competition, some type
of scheduling is required.

RT-CORBA 1.0 specifies a Scheduling Service to relieve
application programmers of the tedious and error-prone task
of configuring scheduling properties on each end-system.
This service is an optional part of the RT-CORBA 1.0
specification, however, so it may not be available for all
RT-CORBA 1.0 ORBs. Moreover, the RT-CORBA 1.0
Scheduling Service deals only with priorities, which under-
specify mappings of more complex scheduling properties
(such as deadline) into an ordering of competitor execution
eligibilities.

The RT-CORBA 2.0 JFS—and the RT-CORBA 1.0 spec-
ification upon which it builds—are the most advanced open
standards that address static and dynamic scheduling in the
context of open, QoS-enabled middleware for DRE sys-
tems. Neither specification, however, fully addresses thein-
teroperabilityaspect of the challenges outlined above, due
to under-specification in the areas of:

2Threads at each endsystem are shown with a different shape, depend-
ing on the endsystem on which each originated.

1. Mapping of scheduling parameters: The RT-
CORBA 2.0 JFS does not define the mapping of scheduling
parameters when distributable threads pass through ORBs
that are configured with

� Heterogeneous scheduling disciplines or
� Different scheduling parameters for the same schedul-

ing discipline.

For example, during a request’s traversal through the dy-
namic call graph formed by a distributed thread execution,
one of the visited ORBs could be configured using anearli-
est deadline first(EDF) [12] scheduling discipline. An EDF
scheduler orders competitors according to the propinquity
of their deadlines. Another ORB in the traversal could use
a value-basedscheduling discipline [8], where every com-
petitor is characterized by a time-dependent function that
describes the value associated with the competitor at a given
point in time. A value-based scheduler tries to maximize the
value gained by the system using information this function
provides.

In the RT-CORBA 2.0 JFS, when a distributable thread
traverses endsystems, its corresponding scheduling infor-
mation must be understood at each endsystem. The com-
position of scheduling disciplines used along the chain of
endsystems must therefore besemantically coherent, even
if the result is non-optimal. There is no existing standard,
however, that specifieshow to provide interoperability be-
tween heterogeneous (but composable) schedulers. This
omission limits the openness of DRE systems using RT-
CORBA 2.0 JFS middleware.

2. Scheduling information propagation: Another
relevant issue that neither the RT-CORBA 1.0 specification
nor the RT-CORBA 2.0 JFS addresses is whether to update
scheduling information propagated on a hop-by-hop basis
through a distributed call graph. Although this issue is not
related directly to interoperability, the solution described in
this paper to enable interoperability can be used to propa-
gateandupdate scheduling parameters end-to-end.

In this paper, we present a solution to the problems out-
lined above by

� Formalizing the problem of interoperability in the con-
text of open DRE systems

� Defining formalisms to express different instances of
the problem precisely and

� Providing a meta-programming architecture [20] that
maps the formalized abstractions to a software archi-
tecture based on RT-CORBA.

Figure 1 outlines our solution approach in the context of
CORBA. As shown in this figure, three endsystems are
configured with three different scheduling disciplines. The
competitors initiated at endsystem (A) aresquare, those ini-
tiated at endsystem (B) arecircular, and those initiated at



endsystem (C) aretriangular. To preserve the QoS proper-
ties requested by the competitors, we apply techniques that
reconcile

1. The properties used by each scheduler to enforce QoS;
and

2. The properties used by each competitor to express its
QoS requirements.

Our techniques enable an open architecture in which com-
petitors can traverse endsystems without concern for how
QoS requirement are expressed. We also allow each ORB
endsystem to schedule competitors—including those ini-
tiated remotely—by adapting the competitors’ properties
for use by the ORB’s local scheduler. We use a meta-
programming architecture based on a two-level reflective
middleware model [20, 18, 17] to implement the solution
presented in this paper.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 defines a formal model for rec-
onciling heterogeneous scheduling disciplines in open dis-
tributed real-time systems; Section 3 presents Juno, which
is our meta-programming architecture for enhancing the
openness of DRE middleware and illustrates briefly how
Juno implements the formal model defined in Section 2;
Section 4 compares our approach with related work; and
Section 5 presents concluding remarks and outlines our fu-
ture research directions.

2. Terminology and Formalisms

This section defines the terminology used throughout the
paper and motivates the assumptions that underly our work.
The formalisms presented in this section are applicable to
any open DRE system. For concreteness, however, we focus
the examples in the context of RT-CORBA 1.0 [13] and the
RT-CORBA 2.0 JFS [14].

2.1. Properties, Competitors, and Schedulers

We model an open DRE system as consisting ofproper-
ties, competitors, andschedulers, which are defined infor-
mally as follows:

� Propertiesdescribe QoS attributes, such as a criticality
level, a deadline, or a constraint on jitter. We do not
restrict the domain of the properties,i.e., a property
can be a function, which allows value and/or quality
functions to be expressed as properties.

� Competitorsdenote entities that can contend for com-
mon system resources. Competitors expose properties
that describe theirfeatures, such as their importance,
or QoS requirements, such as deadline or worst-case
execution time.

� Schedulersgrant competitors access to shared re-
sources. The order in which competitors can access
a resource depends on scheduler disciplines and com-
petitor properties. Scheduling disciplines are formu-
lated in terms of the properties they use to determine
the ordering of competitors. These properties can
therefore be viewed as an abstraction of the competi-
tors for the purpose of scheduling. Since we focus
on dynamic systems, all our schedulers operate on-
line [4], rather than off-line [16].

The remainder of this section presents a formal model
for properties, competitors, and schedulers. The advantage
of creating a formal model is to enable heterogeneous ORB
endsystems to exchange precise information about the prop-
erties associated with individual competitors and sched-
ulers. This information allows each endsystem to transform
competitors’ properties and reconcile them for each ORB
endsystem’s scheduler.

2.1.1 Properties

Definition 2.1 Let � be the Universe of Properties. A
generic element of� is denoted by� and is called a prop-
erty type, or simply aproperty. Each property� 2 � is
associated with the following tuple:

hD� ; d�i

Where:

1. D� is the domain of the property.

2. d� 2 D� is the default value for the property.

That is, given any property� 2 � we denote its associated
domain byD�, and its associated default value byd�.

Moreover, given a property� 2 � we define aTagged
Domain(T�) of � as:

T� = f�g �D� = f(�; u) : u 2 D�g

Given anye 2 T� we denote the property of the tagged
element bye:� and its value bye:value.

RT-CORBA3 ) An example of a property in RT-CORBA
is the deadline of a distributable thread. In this case, the
domainof the property is the time, which in RT-CORBA
is represented as the integral typeTimeBase::TimeT .
Other examples of properties in RT-CORBA includecriti-
cality (which distinguishes classes of real-time competitors)
and the periodicity of activities.

Definition 2.2 Given a set of n properties,n > 0:

3Henceforth, our use of the term “RT-CORBA” connotes both static
anddynamic scheduling capabilities.



P = f�1; �2; : : : ; �ng

We define theCompound Property Domain(CPD) as:

CPD = fE : jEj = n and jE \ T�i j = 1; 1 � i � ng

The compound property domain is a set of sets, each having
sizen. Each set has exactly one element from each tagged
domain associated with each property in P. Note that the
definition of CPD does not impose any ordering on the prop-
erties.

RT-CORBA) The Compound Property Domaincan be
viewed as a generalization of the RT-CORBA 2.0 JFS con-
cept ofscheduling parameter types. A given scheduling pa-
rameter type (e.g., the EDF scheduling parameters defined
in the RT-CORBA 2.0 JFS) is a collection of typed proper-
ties, where a type defines a domain for the property. The
RT-CORBA 2.0 JFS focuses on the identity of the aggre-
gate, treating each kind of scheduling parameter as a dif-
ferent type. In our definition we stress the identity of sin-
gle properties, so each scheduling parameter is treated as a
collection of properties, rather than as a typed aggregate of
properties.

2.1.2 Competitors

LetC be the Universe of Competitors.4 We assume that each
competitor exposes a set of properties, as shown in Figure 2.
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Figure 2. Association Between Competitors
and Properties

Definition 2.3 We define the following function:

� : C 7! 2�

that when given a competitorc 2 C, maps it to the set�(c)
of properties it exposes.

4In our case, the universe of discourse is those entities that can compete
for the use of resources, and are thus subject to scheduling.

At any point in time, any competitorc has associated with
it the current value of its properties. This value is actually
an element of the Compound Property Domain of�(c), and
will be indicated withc:pval.

Figure 2 shows schematically how the relation� works.
In this figure,C represents the Universe of Competitors,2�

is the power-set of the Universe Of Properties,eh andem
represent generic competitors, and�(eh) and�(em) repre-
sent the property sets (contained in2�), respectively.

RT-CORBA) Competitors in RT-CORBA can be

� Distributable threads that compete for CPU time on
ORB endsystems

� Events in an event channel [6] that must be delivered
to consumers that have subscribed for particular events
or

� GIOP requests that compete for network/bus re-
sources.

If competitorc is a distributable thread in the context of RT-
CORBA, then�(c) can be the set of properties containing
the elementsdeadline, importance, andlaxity. In this case,
thec:pval would be the value of the deadline, importance,
and laxity at a particular point of time.

2.1.3 Schedulers

Definition 2.4 We define anOrdering of Classes of Equiv-
alence(OCE) over the set of propertiesP � 2� as consist-
ing of the following tuple:

h=OCE ; <OCEi

where:

1. =OCE is an equivalence relation over the CPD of P.

2. <OCE is a total ordering over the setf[a] : a 2

CPDg

[a] represents the equivalence class to which the elementa

belongs. Based on this definition, the OCE provides a par-
tition of equivalence classes over CPD and also provides a
total order of equivalence classes.

Note that the ordering of equivalence classes is defined
over a set of properties. Property ordering therefore has
no effect on the structure of the equivalence classes, nor
on equivalence class ordering. The ordering of equivalence
classes depends only on thevalueand typeof properties.
Conversely, due to run-time changes in system configura-
tion or scheduler operation mode, the ordering of equiva-
lence classes can depend on time. The time dependency of
equivalence classes—and of their ordering—can also occur
when schedulers refer to time-dependent properties, such as
value functions.



Definition 2.5 A Scheduler is an Ordering of Classes of
Equivalence (OCE) over a set of properties. The set of prop-
erties on which a scheduler imposes an OCE is called its
Characteristic Set, which expresses the properties used by a
scheduler to impose an ordering on competitors. Of prop-
erties exposed by a competitor, a scheduler only considers
those in its characteristic set. Given a schedulerS, we in-
dicate its characteristic set with�S .

RT-CORBA) Figure 3 shows the characteristic sets the RT-
CORBA 2.0 JFS defines for the least laxity first (LLF)5,
EDF, and rate monotonic (RM) scheduling disciplines. If

χ
RM

Deadline

χ
EDF

Deadline

Importance

χ
LLF

Deadline

Importance

Execution Time
Remaining

Figure 3. Characteristic Set for Least Laxity
First (LLF), Earliest Deadline First (EFF), and
Rate Monotonic (RM) Scheduling Disciplines

we consider the RT-CORBA 2.0 JFS EDF scheduler, the
properties in the scheduler’s characteristic set are thedead-
line and theimportance.6 The equivalence classes in this
case are therefore represented by the set containing these
two properties. The equivalence classes are ordered so
that the importance and deadline(i; d) associated with each
equivalence set are ordered. An example of such an order-
ing could be the following expression:

(i1; d1) < (i2; d2) iff (i1 < i2) or (i1 = i2; d1 > d2)

In this example, the ordering of the importance and deadline
are both the ordering of integral values. RT-CORBA 2.0
JFS defines the importance as along type, and deadline as
aTimeBase::TimeT type.

Based on the definitions presented above, we can treat
any scheduler as an ordering of equivalence classes over a
set of properties used by a scheduler. These properties are
associated with a competitor by the relation�. Note that the
scheduler partitions the fullCompound Property Domain
of its characteristics into a series of equivalence classes and

5An LLF scheduler determines the execution eligibility based onlaxity,
which is defined as the difference between the deadline, the current time,
and the estimated remaining computation time.

6In the canonical EDF definition [12] there is no concept of “impor-
tance” but in the RT-CORBA 2.0 JFS there is.

then orders these classes. Also note that the property values
associated with competitors can change over time; a poten-
tial effect of this change is to move a competitor from one
equivalence class to another.

Finally, we assume that all schedulers in DRE systems
are well-behaved, which means that schedulers on differ-
ent ORB endsystems try to enforce real-time QoS over the
properties used to characterize the competitors. Specifi-
cally, we do not consider pathological cases where sched-
ulers do not work to improve QoS in at least some dimen-
sion. For example, a rate monotonic scheduler (RMS) [12]
and an EDF scheduler will use different orderings of op-
erations, but they will both work toimprovethe deadline
feasibility of operations they schedule.

2.2. Adapters

2.2.1 Core Adapter Concepts

Having formally defined the terms property, competitor, and
scheduler, we can now address problems arising when es-
tablishing an ordering of competitors with sets of properties
that differ from theCharacteristic Setof a scheduler. Be-
low, we address the different cases that can arise.

Definition 2.6 Given two set of properties:

P1; P2 � 2�

then anAdapterfromP1 to P2 is a function of the type:

AP1 7!P2 : CPDP1 7! CPDP2

Thus, anAdapteris defined as a function that transforms
one set of properties into another. The definition given
above is quite general,i.e., no assumption are made about
the mapping performed by anAdapter. In practice, some
Adaptersmake more sense than others.

RT-CORBA) Figure 4 depicts a scenario in which three
endsystems are each running an ORB with a different
scheduling discipline. Two distributable threads, DT1 and
DT2 are moving across endsystems. DT1 originated at
endsystem A, where it executed an operation on the object
X. It migrates from endsystem A to endsystem B after in-
voking an operation on object Y. In contrast, DT2 originated
at endsystem B, where it executed an operation on object Z.
It migrates from endsystem A to endsystem B after invoking
an operation on object Y.

Three different schedulers are used by the ORBs in Fig-
ure 4, (endsystem C has a static RM scheduler). As shown
in Figure 3 these schedulers have differentCharacteristic
Sets. As a result, some adaptation will be required when
a distributable thread crosses ascheduling domain.7 The

7A scheduling domain is a collection of ORB endsystems using the
same scheduling algorithm and properties.
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claim of this paper is that the proper type ofAdaptercan
handle this adaptation. In addition, Figure 4 shows the point
at which schedulers are executed, and the place at which
distributable thread property adaptation can occur,i.e., the
place at which the right adapter is executed.

Figure 4 also shows DT2 is preempted by DT1 while ex-
ecuting on the endsystem B’s ORB. This case shows that the
dynamic priority of DT1 must be higher than that of DT2.
In general, DT1 and DT2 would be non-comparable unless
adaptation is performed to make sure that their properties
can be expressed in a manner comprehensible by endsys-
tem B’s ORB scheduler. Such adaptation and reconciliation
of the distributable threads (i.e., competitor) properties can
be achieved by means ofAdapters.

2.2.2 Reconciling Properties Through Adapters

Now that we have defined our terminology and formal
model, we show how these formalisms can be used to rec-
oncile properties to support interoperability between hetero-
geneous RT-CORBA schedulers. Below, we examine three
relevant cases that can occur and outline a solution for each
of them.

Case 1: Figure 5 shows a schedulerS with a non-empty
Characteristic Set�S and given competitorc with �(c) �

�S . To map the properties exposed by theCompetitor
into the Ordering of Classes of Equivalence created by the
scheduler over�S we can apply the followingRestriction
Adapter:

RA : CPD�(c) 7! CPD�S

defined as:

8a 2 CPD�(c); RA(a) = fe 2 a : e:� 2 �Sg

(c)ρ

χS

Figure 5. The Properties used by a Scheduler
are a Subset of Properties Exposed by a Com-
petitor

A Restriction Adapterdrops the properties exposed by a
competitor that do not belong to the scheduler’sCharac-
teristic Set.

RT-CORBA) For example, if we consider the case shown
in Figure 4, aRestriction Adaptercould be applied to DT1
immediately before leaving its ORB or when arriving at
endsystem B’s ORB. What theRestriction Adapterdoes
in this case is map the property exposed by DT1 from a
set containingdeadline, importance, andremaining execu-
tion time, to the set containing justdeadlineand impor-
tance. Moreover, aRestriction Adapterimplementation
should also express the property being adapted in a form
that can be manipulated efficiently by the scheduler. This
form is generally scheduler-dependent because properties
are exposed uniformly by competitors,e.g., a distributable
thread in this context.

Case 2: Figure 6 shows a scheduler S with aCharac-
teristic Set�S and given competitorc with a non-empty
�(c) � �S . To map the properties exposed by theCompeti-

χS

(c)ρ

Figure 6. The Properties Exposed by the Com-
petitor are a Subset of Properties used by the
Scheduler

tor into the ordering of equivalence classes created by the
scheduler over�S we can use the followingDefault Exten-
sion Adapter:

DEA : CPD�(c) 7! CPD�S

which is defined as:



8a 2 CPD�(c);

DEA(a) = fag [ fe:�:d� : e 2 �S � �(c)g

A variation of theDefault Extension Adapteris one that
considers specific values for extending the given set of prop-
erties. Using this, we can then define theExtension Adapter
as the tuple:

hE;EAi

where:

1. E 2 (CPD�S�CPD�(c)) is the set of default values.

2. EA : CPD�(c) 7! CPD�S

8a 2 CPD�(c); EA(a) = fag [ E

An Extension Adaptercan be used to extend the set of prop-
erties exposed by a competitor, so they are at least the same
as those present in the scheduler’sCharacteristic Set.

RT-CORBA) Again using the example in Figure 4, aDe-
fault Extension Adapteror Extension Adaptercould be ap-
plied to DT2 right before leaving its ORB or upon its arrival
on endsystem B’s ORB. TheExtension Adapterwould map
the property exposed by DT2 from a set containing only
thedeadlineto the set containingdeadlineandimportance.
As with the earlier cases, an adapter can express the prop-
erty being adapted into a form that can be manipulated ef-
ficiently by a scheduler. Moreover, anAdaptercan enable
a statically scheduled ORB to interoperate with a dynami-
cally scheduled ORB.

Case 3: In general, given a scheduler S with a non-empty
Characteristic Set�S and given competitorc with �(c),
there could be no particular relation between the two set
of properties�S and�(c), as shown in Figure 7. In this

(c)ρχS

Figure 7. No Assumption about the Properties
used by the Scheduler and the Properties Ex-
posed by the Competitor

case aGeneralized Adaptershould be used. Unlike Case 2,
however, this type ofAdapterdoes not guarantee the value
of the properties shared by the two sets�(c) and�S will
remain unchanged. AGeneralized Adapteris defined as a
transformation of the type:

GA : CPD�(c) 7! CPD�S

A Generalized Adaptercontains the adapters described
thus far as a special case. We introduce the concept of
a Generalized Adapterto define custom adaptation be-
tween property sets, thereby allowing extra flexibility and
control over how adaptation occurs. WhileExtension
andRestriction Adapterscan be created dynamically by a
Meta Adapter (as described in Section 3.1),Generalized
Adaptersmust be provided by users or applications.

RT-CORBA) For example, consider a case in which a dis-
tributable thread transitions from

� An ORB configured with a MUF scheduler that uses
the importance property to isolate different classes of
competitors (e.g., statistical real-time vs. deterministic
real-time) to

� An ORB with an EDF scheduler that does not consider
the importance property.

In this case, if we simply use aRestriction Adapterwe will
lose information contained in the importance property as-
sociated with the distributable thread. One way to handle
competitors having the same deadline—but different rela-
tive importance—is to boost the deadline of the more impor-
tant competitor via anad hoctransformation, which could
be performed via aGeneralized Adapter.

As shown in the three cases examined above,Adapters
provide a way to transform and reconcile the properties of
competitors to properties used by a scheduler. For most
cases that occur in practice, anAdapter that perform the
right transformation can be generated at run-time by the sys-
tem or provided by the users or applications.

3. Juno: A Meta-Programming Architecture
for Heterogeneous Middleware Interoper-
ability

This section shows how the formalisms described in
Section 2 can be used as the conceptual foundation for
building DRE middleware that supports interoperability be-
tween heterogeneous scheduling disciplines. We outline
the requirements imposed on a DRE middleware meta-
programming framework calledJuno, which implements
the formalisms described in Section 2. We then briefly show
how this architecture can be implemented in an ORB.

3.1. Overview of the Juno Meta-Programming Ar-
chitecture

To assure scheduler interoperability, a DRE system that
implements the formalisms introduced in Section 2 must de-
termine how to map properties, competitors, the function
�(c), schedulers, each scheduler’s characteristic set�S , and
the necessaryAdaptersonto a meta-programming software



architecture. Juno’s architecture has been designed based
on the observation that the function�(c) and the charac-
teristic set�S can be treated as operators that “reflect” the
properties exposed by competitors and schedulers.

The degree of control and introspection needed to im-
plement the formalisms introduced in Section 2 can be ob-
tained via the Juno meta-programming architecture shown
in Figure 8. As shown in this figure, competitors and

PropertyCompetitor

1 0..*

Meta_Competitor Meta_Scheduler

Scheduler

Meta_Property

1

1..*

0..* 1

Adapter

Meta_Adapter

1

1

1..*

1

rho

Meta-Level

Base-Level

Figure 8. UML Class Diagram for Juno’s Meta-
Programming Architecture

properties are first class entities, along with adapters and
schedulers. Moreover, the function�(c) is represented by
the association between competitors and properties, which
are treated as first class entities. The characteristic set of
a scheduler� is exploited by the association between the
scheduler meta-object and the property meta-object. The
roles of components in Figure 8 are summarized below:

Property: This class provides an abstraction for the rep-
resentation of a value of the property domain, as defined
in Section 2. The combination of theProperty and its
meta-object provides the same information as an element
of theTagged Domain. For example, in the context of RT-
CORBA the deadline and the period might map to the same
Property class, but their meta-objects would contain the
information needed to distinguish the two properties.

Competitor: This class provides an abstraction for enti-
ties that can be scheduled. For example, in the context of
the RT-CORBA 2.0 JFS a distributable thread can be imple-
mented as a specialization of this class.

Scheduler: This class represents the abstraction for an
ORB endsystem scheduler. It provides an interface for
adding and removing competitors, and for testing their fea-
sibility. In the context of RT-CORBA, a concrete imple-
mentation of this class could be an EDF scheduler or an
LLF scheduler.

Adapter: This class provides an abstract interface for all
Adapter implementations. As defined in Section 2, an
Adapterconverts one set of properties to another. In the
context of RT-CORBA, anAdapter object can, for exam-
ple, convert the properties needed by an earliest deadline
first (EDF) scheduler into those needed by a maximize ac-
crued utility (MAU) 8 scheduler.

Meta Property: This meta-class associates aProper-
ty base-object with aProperty type. As discussed
above, theProperty base-object represents an element
of the Property Domain defined in Section 2. This value
must be associated with a property type. As shown in Sec-
tion 2, this association was achieved by using the Tagged
Domain of aProperty . In Juno, we achieve this associ-
ation by tying each property base object to its meta-object
Meta Property .

A Meta Property provides access to the default value
of a property, and a factory method creates its associated
property. This meta-class reconciles property representa-
tions that might differ from ORB endsystem to endsystem.
For example, a property that represents time could be ex-
pressed using different time scales on different systems.

Meta Competitor: This meta-class manages the trans-
formations required whenever a competitor has properties
that do not match a scheduler’s characteristic set directly.
Juno encapsulates the logic that performs property reconcil-
iation in the meta-classMeta Competitor . This meta-
class shields developers from the complexities of interoper-
ability.

A Meta Competitor selects theAdapter that per-
forms the most suitable transformation, depending on the
following factors:

� The properties that are associated with its competitor;
and

� The properties that characterize the endsystem sched-
uler, which are accessed via theMeta Scheduler
defined below.

Juno provides an explicit meta-object protocol that enables
base-objects to configure the way in which property adap-
tation can occur, and to restrict the types of property adap-
tation.

Meta Scheduler: This meta-class provides an interface
that enables introspection of the properties used by its as-
sociated base-objecti.e., aScheduler . It implements an
interface to the characteristic set of a scheduler by providing
an explicit MOP to introspect the characteristic set.

Meta Adapter: This meta-class provides a way to intro-
spect the signature associated with its base-object,i.e., an

8A maximize accrued utility (MAU) scheduler, associates each com-
petitor with a value function and the scheduler tries to maximize the value
of this function.



Adapter . By “signature” we mean the two sets of prop-
erties that represent the domain and the co-domain for an
Adapter . A Meta Adapter also provides a factory
method to create anAdapter that matches a given sig-
nature. Describing anAdapter in terms of the adaptation
of properties it performs is essential to enable the activities
of aMeta Competitor .

3.2. Applying Juno to RT-CORBA

Juno’s meta-programming architecture described in Sec-
tion 3.1 can be used as a reference model to realize in-
teroperable RT-CORBA ORBs. Some of the meta-objects
present in the meta-layer outlined in Figure 8 can be di-
rectly embedded inside the ORB Core, whereas other meta-
objects can be associated with stubs and skeletons. As
shown in Figure 9, a CORBA ORB can incorporate certain
meta-objects present in the meta-layer outlined in Figure 8
directly inside the ORB Core, whereas other meta-objects
can be associated with stubs. Each time a distributable
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Figure 9. An Open and Interoperable RT-
CORBA Implementation

thread transitions from one ORB to another, the properties
it exposes must be reconciled with theCharacteristic Set
of the foreign ORB endsystem’s scheduler, as described in
Section 2.2.

In the context of an ORB, it is necessary to determine
where and when property reconciliation occurs. As Fig-
ure 4 suggests, property reconciliation must occur before
a scheduler can order competitors. It must therefore occur
either right before the distributable thread leaves its home
ORB (client) or right after the arrival at the foreign ORB
(server).

4. Related Work

Our research on meta-programming mechanisms has
been influenced by the following projects.

Emerging middleware standards: Distributed real-time
and embedded (DRE) systems are increasingly being imple-
mented via standard middleware. CORBA is one of most
widely used middleware platforms for DRE systems. To
enable the use of CORBA as middleware for building DRE
systems the Object Management Group has specified RT-
CORBA 1.0 [13] and the RT-CORBA 2.0 JFS [14].

Meta-programming techniques and reflective middle-
ware: Meta-programming techniques have been a fo-
cus of research for many years. For example, the Com-
mon Lisp Object System (CLOS) is an early example of
a sophisticated meta-object protocol (MOP) [10]. Meta-
programming techniques were used initially in artificial in-
telligence research, but are now being applied in systems
software research, where they are used to make ORB mid-
dleware more dynamically configurable, adaptive, and re-
flective.

An example of this cross-fertilization is dynamic-
TAO [11] from the University of Illinois, Urbana Cham-
paign, which illustrates that TAO can be reconfigured at run-
time by dynamically linking/unlinking certain components.
A related effort at Washington University and UCI [19]
is exploring the application of reflective middleware tech-
niques in the context of the CORBA Component Model [1].
Yet another example is the Adapt Project [5, 3] at Lancaster
University, which is applying a multi-level reflective mid-
dleware model focused on dynamic composition of objects.

5. Concluding Remarks

This paper presents a model that formally characterizes
properties, competitors, and schedulers in open distributed
real-time and embedded (DRE) systems. A key idea that
emerges from this formal model is that properties “belong”
to competitors. Moreover, a competitor can expose more
or fewer properties than a scheduler strictly needs to order
access to resources. The process of making a property a
first-class entity is fundamental to achieve interoperability
among heterogeneous ORB endsystem schedulers.

This paper also outlines how our formal model of prop-
erties, competitors, and schedulers is being reified inJuno.
Juno appliesmeta-programming techniquesto improve
scheduler interoperability in heterogeneous ORB endsys-
tems. Meta-programming techniques are becoming a popu-
lar way to enable DRE systems that are adaptable, flexible,
configurable, predictable [19] and composable [17].

Our future research on Juno focuses on the following two
topics:



1. Theoretical analysis: We are investigating the theo-
retical aspects involved in transforming and adapting the
properties of competitors. Understanding the effect of a
property transformation on a competitor’s importance–and
how we can relate the equivalence classes created by differ-
ent scheduling algorithms–is important to detect “invalid”
transformations,i.e., transformations that disregard proper-
ties fundamental to expressing the key QoS requirements of
competitors. The advantage of expressing these theoretical
aspects in formal model is that it simplifies the communica-
tion between systems and the transformations performed on
properties of competitors.

Another theme in our theoretical investigation is how
adaptations affect the fulfillment of end-to-end application
QoS requests. Our focus is on schedulability analysis in
end-to-end DRE systems where each endsystem can poten-
tially have a different scheduling algorithm that requires
adaptation of QoS requirements. This investigation will
provide us with criteria to determine the schedulability of
a given set of competitors automatically in an open DRE
environment.

2. Empirical evaluation: We are extending TAO to sup-
port the Juno meta-programming architecture described in
Section 3. These enhancements are part of broader efforts
to apply reflective middleware techniques [19] and dynamic
scheduling [4] to TAO. In these efforts we are developing a
testbed to conduct empirical benchmarks that will quantify
the QoS provided by Juno. Our goals are to

1. Identify the critical software patterns and framework
components and

2. Measure the impact of our solution on end-to-end DRE
performance, predictability, and flexibility.

This dimension of our research will demonstrate how to de-
velop open DRE systems that implement the flexible Juno
formalisms and meta-programming architecture presented
in this paper without undue loss of QoS.

All the source code, documentation, and test cases for the
TAO open-source CORBA ORB can be downloaded from
www.cs.wustl.edu/ �schmidt/TAO.html .
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