
An Integrated Model-driven Development
Environment for Composing and Validating
Distributed Real-time and Embedded Systems?

Gabriele Trombetti1, Aniruddha Gokhale1, Douglas C. Schmidt1 and
John Hatcliff2, Jesse Greenwald2, Gurdip Singh2

1 Vanderbilt University, Nashville, TN 37235, USA
{gabtromb,gokhale,schmidt}@dre.vanderbilt.edu

2 Kansas State University, Manhattan, KS 66506, USA
{hatcliff,jesse,singh}@cis.ksu.edu

Abstract

Model-driven development (MDD) tools and processes are increasingly used to de-
velop component middleware and applications for distributed real-time and embed-
ded (DRE) systems, which have stringent requirements for timeliness, correctness,
scalability, and maintainability. MDD techniques help developers of DRE systems
express application functionality and quality of service (QoS) requirements at a
higher level of abstraction than is possible using third-generation programming lan-
guages, such as Visual Basic, Java, C++, or C#. The state-of-the-art in MDD for
large-scale DRE systems is still maturing, however, and no single MDD environ-
ment provides the capabilities needed for effective development of large-scale DRE
systems.

This chapter presents three contributions to the study of integrated MDD devel-
opment and model checking for large-scale DRE systems. First, we describe how our
CoSMIC and Cadena MDD toolsuites have been combined to provide an integrated
environment that enhances the development and validation of DRE systems. Sec-
ond, we discuss how we addressed key research issues associated with implementing
MDD algorithms for maintaining semantics-preserving transfer of model data be-
tween the CoSMIC and Cadena MDD tools. Third, we discuss how we overcame
technical difficulties encountered when applying the integrated COSMIC and Ca-
dena for a representative DRE system. Our results show that interoperation between
different MDD tools is achievable with the proper choice of communication format,
semantics, and the development of a reliable graph diff-merge algorithm. This in-
teroperation helps identify the workflow and capabilities needed for next-generation
DRE development environments.

? This work was sponsored in part by NSF ITR #CCR-0325274, NSF ITR #CCR-0312859,
DARPA/AFRL #F33615-03-C-4112, and Lockheed Martin.



2 Gabriele Trombetti et. al.

Keywords: Distributed Real-time and Embedded Systems, Component Middleware,
Model-driven Systems, Model checking.

1 Introduction

Emerging trends.

Developers of mission-critical distributed real-time and embedded (DRE) systems
face a number of challenges, including (1) alleviating complexity – both inherent
and accidental, (2) reducing total ownership costs – both initial and recurring costs,
and (3) ensuring correct end-to-end system behavior – both functional and quality of
service (QoS) requirements. Promising technologies that address various aspects of
these challenges are QoS-enabled component middleware and model-driven devel-
opment (MDD) with model checking capabilities, as we discuss below.

QoS-enabled component middleware. A key enabler in recent successes [1, 2] with
DRE systems has been middleware [3], which is software that provides reusable ser-
vices that coordinate how application components are composed and interoperate.
QoS-enabled component middleware technologies enhance conventional middle-
ware by offering (1) explicit support for configuring of policies and mechanisms for
systemic aspects, such as real-time QoS and security, and (2) a programming model
that decouples these systemic aspects from application functionality. These capabili-
ties help address complexity, cost, and correctness by making the QoS-enabled com-
ponent middleware responsible for (pre)allocating CPU resources, reserving network
bandwidth/connections, and monitoring/enforcing the proper use of system resources
at run-time to meet DRE system QoS requirements.

Our work on QoS-enabled component middleware has focused on the Component-
Integrated ACE ORB (CIAO) [4], which is open-source (www.dre.vanderbilt.
edu/CIAO) middleware that enhances The ACE ORB (TAO) [5] to provide Real-
time CORBA [6] enhancements to the CORBA Component Model (CCM) [7].
CIAO’s CCM components are interconnected via the following types of standard
ports:

• Facets, which define an interface that accepts point-to-point method invocations
from other components and receptacles, which indicate a dependency on point-
to-point method interfaces provided by other components. A receptacle is con-
nected to a facet to provide synchronous remote method invocation communica-
tion between a pair of components.

• Event sources and sinks, which indicate a willingness to exchange typed mes-
sages with one or more components. Event sources can be connected to event
sinks for asynchronous point-to-multipoint message-passing communication be-
tween components.

CIAO abstracts component QoS requirements into metadata that can be specified
in a CCM component assembly after a component has been implemented [8]. De-
coupling the specification of QoS requirements from component implementations



MDD Environment for DRE Systems 3

greatly simplifies the configuration and evaluation of DRE systems with multiple
QoS requirements [9].

Model-driven development (MDD). MDD software processes and tools are a promis-
ing approach for addressing the challenges of developing, evolving, validating large-
scale DRE system maintenance and modification [10, 11, 12]. The MDD paradigm
systematically applies domain-specific modeling languages (DSMLs) to direct the
understanding, design, construction, deployment, and operation of computing sys-
tems, ranging from small-scale real-time and embedded systems to large-scale busi-
ness applications distributed across an enterprise. MDD tools address complexity,
cost, and correctness by helping to automate (1) analysis and verification of char-
acteristics of system behavior, such as predictability, safety, and security, and (2)
synthesis of code that is customized for DRE system properties, such as isolation
levels of a transaction, recovery strategies to handle various runtime failures, and
authentication and authorization strategies modeled at higher levels of abstraction.

Our work on MDD technologies has focused on CoSMIC [13] and Cadena [14]:

• CoSMIC (www.dre.vanderbilt.edu/cosmic) is an open-source MDD
toolsuite that address key lifecycle development challenges of DRE middleware
and applications, such as modeling of DRE system deployment and configura-
tion capabilities [15] and their QoS requirements [16]. The CoSMIC MDD tools
enable developers of DRE systems to specify, develop, compose, and integrate
application and middleware software.

• Cadena (cadena.projects.cis.ksu.edu) is an open-source MDD tool-
suite that supports various aspects of component-based DRE systems, includ-
ing definition of component interfaces, deployment and configuration capabili-
ties, and configuration of underlying middleware services. In contrast to CoS-
MIC (which focuses on providing various forms of support for QoS manage-
ment and configuration of particular component middleware frameworks, such
as CIAO [4]), Cadena focuses on providing various forms of visualization and
model-level analysis of system configurations, including architectural slicing,
simulation, and model checking of abstract descriptions of system behaviors [17].

Gaps in MDD Technologies for DRE Systems.

The QoS-enabled component middleware and MDD toolsuites described above have
largely evolved independently in separate R&D communities. Due to the complexity
and mission-criticality of large-scale DRE systems, however, there is a need to com-
bine (1) lightweight specification and analysis capabilities that capture functional
and QoS specifications for component-based DRE systems with (2) capabilities for
QoS management and middleware configuration to achieve an integrated collection
of tools that can verifyfor DRE system behavior early in the development lifecycle
and enhance reliability. Such an integrated approach can help increase productivity
and reduce the risk of mistakes caused by DRE system developers, who would oth-
erwise need to port models from MDD tools manually into representations used by
other tools every time a model changes.



4 Gabriele Trombetti et. al.

This chapter is organized into the following three thrusts that describe our experi-
ence developing and evaluating an integrated model-driven development and analysis
environment for QoS-enabled component middleware and DRE systems:
• Section 2 describes how CoSMIC has been combined with Cadena to provide an

integrated MDD environment that accelerates the development and validation of
DRE systems by addressing key production stages and providing powerful anal-
ysis capabilities for tracking errors early in the development lifecycle. This inte-
grated environment foreshadows the types of capabilties needed in future DRE
development environments to improve the creation and validation of DRE sys-
tems.

• Section 3 discusses R&D issues associated with implementing algorithms for
integrating MDD tools for DRE systems, including coping with export-import
cycles, storing and transferring supersets and subsets of captured information,
merging and preserving information, and addressing future extensibility of the
integration.

• Section 4 presents a case study of a robot assembly3 DRE system that illus-
trates the technical difficulties encountered when integrating CoSMIC and Ca-
dena tools, highlighting how the choice of an effective communication protocol,
data interchange format, and a framework for semantic translators helped enable
smoother tool integration.

This chapter shows how our integrated CoSMIC and Cadena MDD technolo-
gies enable developers to specify DRE system requirements at higher levels of ab-
straction than those provided by low-level mechanisms, such as conventional third-
generation programming languages, operating systems, and middleware platforms.
Our case study shows how these higher-level specifications express constraints that
are transformed into running lower-level code that preserves and enforces the se-
mantics of the specifications. These “correct by construction” MDD techniques are
in contrast to the “construct by correction” techniques commonly used today by post-
construction tools, such as compilers, source-level debuggers, and XML descriptor
validators.

2 An Overview of the CoSMIC and Cadena MDD Environments

This section presents an overview of the CoSMIC and Cadena MDD toolsuites, high-
lighting the capabilities of each tool will emphasize in the DRE system case study
presented in Section 4.

2.1 Overview of CoSMIC

The Component Synthesis using Model Integrated Computing (CoSMIC) [13] tool-
suite is an integrated collection of MDD tools that address the key lifecycle chal-
3 “Assembly” is used here as in “assembly line,” which is a different use of the term than the

concept of a “CCM component assembly” mentioned above.



MDD Environment for DRE Systems 5

lenges of middleware and applications in DRE systems. Figure 1 illustrates CoS-
MIC’s MDD tools that address deployment and configuration lifecycle challenges of
DRE systems. CoSMIC supports modeling of DRE system deployment and config-

���������

�	�
������

���������

�������

�����������

���

�

���

�

���

�
����������

���������

����������

����������

��������

��������� ���������

��������� ���������

�����������������

����������

��������

��������� ���������

��������� ���������

����������

��������

��������� ���������

��������� ���������

��
��
�
�

�
��
�
�

���������

���������
���������

�������������

���������

���������

� �����������

�!
���
�
���

�
�
�

�"
��
��
��
��
��
��

�#���������������������

��������

	���������

�����������

��������

��������

��$%��

�&��������������

��������������'
�

��������

���������'�(���)�������

������

�����*��

��
��
��
���

�
�
�
�
�
�
��

�������������

�������������

�
��
�
�
��
�

���
��
��
�

�+�����������'�

����)�������

��
	
%
,
�'
��
��
%
,
�

����%,�

��
��
%
,
� �-

�
%
,�

�%�	�.$$�

��������'�(/%,�

�	���.�

Fig. 1. The CoSMIC MDD Toolsuite

uration capabilities, their QoS requirements, and QoS adaptation policies used for
DRE system QoS management. Its MDD tools are implemented via domain-specific
modeling languages (DSMLs) developed using the Generic Modeling Environment
(GME) [18], which is a configurable toolkit for creating domain-specific modeling
and program synthesis environments. CoSMIC uses GME to define the modeling
paradigms4 for each stage of its tool chain. CoSMIC ensures that the rules of con-
struction – and the models constructed according to these rules – can evolve together
over time. Each CoSMIC tool synthesizes XML-based metadata that is used by the
CIAO QoS-enabled component middleware [4] described in Section 1. In particular,
CoSMIC supports CIAO’s implementation of the OMG’s Deployment and Config-
uration (D&C) specification [19] and provides the following capabilities shown in
Figure 1:
• Specification and implementation, which enables application functionality speci-

fication, partitioning, and implementation as components. CoSMIC provides the
Interface Definition Modeling Language (IDML), which is a DSML that can be
used to specify component definitions. IDML also provides an importer that can
transform preexisting IDL definitions into modeling elements.

• Component assembly and packaging, which can bundle a suite of software binary
modules and metadata representing application components. CoSMIC provides

4 A modeling paradigm defines the syntax and semantics of a DSML [11].



6 Gabriele Trombetti et. al.

the Platform Independent Component Modeling Language (PICML) [15], which
is a DSML that models the connections between various components to form
assemblies. PICML enables these assemblies to be composed into packages that
can be shipped to target nodes.

• Configuration, which allows packages to be customized with the appropriate pa-
rameters that satisfy the functional and systemic requirements of applications.
CoSMIC provides the Options Configuration Modeling Language (OCML) [16]
to model the middleware configuration rules, which are then synthesized into a
rules engine and graphical environment that application developers use to con-
figure the middleware.

• Planning, which makes appropriate deployment decisions including identifying
the entities, such as CPUs, of the target environment where the packages will
be deployed. The Model Integrated Deployment and Configuration Environment
for Composable Softwware Systems (MIDCESS) [13] DSML in CoSMIC can be
used to model deployment plans for DRE system components.

• Analysis and benchmarking, which enables run-time reconfiguration and re-
source management to maintain end-to-end QoS. CoSMIC provides the Bench-
mark Generation Modeling Language (BGML) [16], which models DRE systems
QoS requirements and synthesizes empirical benchmarking testsuites. Additional
analysis capability is achieved via integration with external tools, as described in
Section 3.

• Deployment, which triggers the installed binaries and brings the application to
a ready state. CoSMIC is integrated with a run-time framework called DAnCE
(Deployment and Configuration Engine), which implements the OMG’s D&C
specification and can be used to model the deployment of DRE system packages
according to precisely specified plans.

The CoSMIC toolsuite also provides the capability to interwork with model check-
ing tools, such as Cadena [14] (Section 2.2), and aspect model weavers, such as
C-SAW [20]. The integration of CoSMIC with Cadena is the focus of Section 3.

The core DSML provided by CoSMIC is PICML, which figures prominently in
the integration of CoSMIC and Cadena described in Section 3. PICML allows de-
velopers to model packages of components into assemblies that can then be config-
ured and deployed appropriately. Configuration and deployment concerns crosscut
assemblies and systems. These crosscutting concerns are captured by the different
aspects of PICML. During the configuration and deployment process, multiple con-
cerns captured in the format of metadata in the component development process are
woven together by PICML, as shown in Figure 2.

PICML allows the specification of the component-based deployment and con-
figuration concerns outlined above by allowing users to model them as elements in
a GME paradigm. Additional constraints are defined via GME’s object constraint
language (OCL) [21] facilities to ensure that the models built using PICML are se-
mantically valid. PICML’s constraints check that the static semantics (i.e., the se-
mantics that are required to be present at design time) are not violated. For example,
at design-time, PICML can enforce the CCM constraint that only ports with the same
interface or event type can be connected together.



MDD Environment for DRE Systems 7

Fig. 2. The PICML Architecture

The generative capabilities of PICML enable the separation of crosscutting de-
ployment and configuration concerns, which are represented in the form of XML
metadata and whose semantics can be validated automatically. The DAnCE run-time
framework provided by CIAO is then responsible for weaving these concerns into
component middleware and applications. The model interpreters in PICML target
the configuration and deployment of DRE components for CIAO. We chose CIAO
as our initial focus since it is QoS-enabled component middleware designed to meet
the requirements of DRE systems. As other component middleware platforms (such
as J2EE and .Net) mature and become suitable for DRE systems, we will (1) enhance
CoSMIC so it supports platform-independent models (PIMs) and then (2) include
the necessary patterns and policies to map these PIMs to platform-specific models
(PSMs) for various component middleware platforms.

2.2 Overview of Cadena

The Cadena [14] MDD toolsuite was built to investigate the effectiveness of a vari-
ety of structural and behavioral analysis techniques for component-based systems. It
architectural slicing capabilities help developers identify dependencies among com-
ponents for system understanding and for guiding component integration tasks, such
as establishing event handling priorities and locking policies. Cadena’s behavioral
descriptions and model checking capabilities enable developers to perform simple
simulations of their systems to reason about, e.g., high-level mode transitions, and to
check system designs against crucial system requirements phrased in the form of in-
variants, event/state ordering contraints and component interaction protocols phrased
as regular expressions or temporal logic formulas.

The following is a summary of the capabilities Cadena provides to develop
component-based systems.

• A collection of lightweight specification forms that can be attached to IDL to
specify mode variable domains, intra-component dependencies, and component



8 Gabriele Trombetti et. al.

state-transition semantics. These forms have a natural refinement order so that
useful feedback can be obtained with little annotation effort, and increasing the
precision of annotation yields more precise analysis. In addition, Cadena spec-
ifications allow developers to specify the same information in different ways,
achieving a form of checkable redundancy that is useful for exposing design
flaws.

• Dependency analysis capabilities that allow tracing inter/intra-component event
and data dependencies, as well as algorithms for synthesizing dependency-based
real-time and distribution aspect information.

• A novel model-checking infrastructure (based on the Bogor model-checking
framework [22]) dedicated to event-based inter-component communication via
real-time middleware enables system design models (derived from component
IDL, component assembly descriptions and annotations) to be model-checked
for global system properties.

• A component assembly framework supporting a variety of visualization and pro-
gramming tools for developing component connections.

• A component deployment facility that auto-generates XML deployment and con-
figuration information.

• Cadena is implemented as a set of plug-ins to IBM’s Eclipse IDE, which enables
the incorporation of other tools as add-ons to Cadena.

In the integration with CoSMIC, we focus on using Cadena’s system configura-
tion dependency analysis facilities. Even with small systems of ∼20-30 components,
relationships between components and component dependences are often hard to de-
termine from visual inspections of textual or graphical component assembly views.
Component-based DRE system can often have over 1,000 components, and engi-
neers at Boeing and Lockheed Martin with whom we collaborate have identified the
development of automated support for component dependency analysis and visual-
ization as a high priority.

Given a component library and component assembly description (along with op-
tional Cadena property specification file described below), Cadena’s dependency
module builds a port dependence graph PDG = (N,E) where each node n ∈ N is a
component/port pair (i.p). Edges (i.e., dependences) between PDG nodes arise from
two sources: inter-component dependences corresponding to port connections speci-
fied in component assembly descriptions and intra-component dependences captured
by CPS declarations in component property specifications. Cadena provides the fol-
lowing analysis capabilities for dependency graphs:
• Forward and backward slices, which detects the components that are affected

by (forward) or affect (backward) a particular component or port. Note that slices
are computed at two levels of granularity: (1) a component-level forward slice
finds all components that are affected by a given component vs. (2) a port-level
forward slice finds all components that are affected by a particular port of a given
component. In either case, slices are constructed by considering the reachability
of components in the port dependence graph described above.



MDD Environment for DRE Systems 9

• Chopping, which highlights all the ports and components that lie on a path be-
tween two given components/ports. Intuitively, given two components C1 and
C2, a chop based on C1 and C2 finds all paths between C1 and C2 by intersect-
ing the forward slice from C1 and the backward slice from C2.

• Cycle detection, which detects cycles along a series of event connections in the
dependence graph. In certain computational models, event cycles may indicate
design flaws.

Fig. 3. Cadena Dependency Analysis Interface

Figure 3 shows a portion of Cadena’s interface for issuing dependence-related
queries over the graphical structure of a system configuration. The displayed pull-
down menu allows developers to select from among the dependence analysis capa-
bilities described above. The results of an analysis are displayed by changing the
color of relevant components, ports, and connections. For example, the results of
a forward slice are displayed by rendering in gray all the components, ports, and
connections affected by the given component.

Cadena decouples various aspects of modeling by requiring that these crosscut-
ting concerns be captured in the following types of files located in a common project
space:
• IDL3 file *.idl, which contains OMG’s standard interface description lan-

guage metadata describing components and their interfaces.
• Scenario file (*.scenario), which describes an assembly of interconnected

CCM components, including the value of their configuration properties. Cadena
provides a graphical visualizer, a text editor, and a form view editor to manipulate



10 Gabriele Trombetti et. al.

*.scenario files. The equivalent of a scenario file in CoSMIC’s PICML is the
CCM component assembly view, which enables graphical editing of properties.

• Profile file (*.profile), which acts as a scenario format definition and vali-
dation system by defining the type of the properties that can be associated with
different components and/or connections. Cadena supports three types for prop-
erties: STRING, INT, and BOOLEAN. There is no equivalent for the .profile
file on PICML, which is another motivation for integrating CoSMIC and Cadena.

• CPS (Cadena Property Specification) file (*.cps), which contains light-
weight semantic annotations to capture abstract semantics that can be leveraged
by Cadena’s analysis facilities. For example, in DRE systems, a component’s be-
havior is often organized into a collection of modes (e.g., a component can be
in an active or inactive mode, or in a normal or fault-recovery
mode, etc.). Modes can be used to represent the abstract state of a component.
A component’s mode state is often implemented as a variable with an enumer-
ated type that includes each of the mode states, and a modal component typically
varies its behavior by branching to different implementations based on the cur-
rent state of its mode variable. The *.cps file provides a means to capture the
modes within a component and the internal interconnections within each com-
ponent that depend on the mode. Information in this file includes conditional
behavior, such as a set of inputs of a component having an effect on a set of
outputs only when that component is in a particular mode/state. Cadena *.cps
files can also include simple state transition systems – finite state automata that
describe the abstract control flow of actions on a component’s interface (e.g.,
method calls and event publishing) as well as transitions on mode state variables.
This information can be used to generate finite state models suitable for simula-
tion or state-space exploration (model checking) of system designs. There is no
equivalent for the *.cps file in PICML or in CCM.

3 Approaches to Integrating MDD Tools for DRE Systems

Due to the magnitude and complexity of the DRE problem space, no single MDD
toolsuite yet provides solutions to all challenges of large-scale DRE system devel-
opment. For example, CoSMIC did not initially provide tools for analyzing and val-
idating the functional correctness and QoS properties of DRE systems. Likewise,
Cadena did not initially provide capabilities for modeling elements and procedures
meaningful for important stages of the development of DRE systems, such as instal-
lation, packaging, and deployment. What we therefore required was an integrated
MDD toolsuite that developers of DRE systems could use to compose, configure,
and deploy their applications end-to-end to help (1) identify bugs early in the lifecy-
cle, (2) reduce total development costs, (3) decrease time to market, and (4) increase
the reliability of DRE systems.

Integrating CoSMIC and Cadena required that (1) software components and as-
sociated modeling artifacts could be manipulated via any of their MDD tools, (2)



MDD Environment for DRE Systems 11

changes to the components and modeling artifacts made by one tool could be re-
flected in other tools, where applicable, (3) any tool capturing unique information
(i.e., not captured by any other tool) required special support to preserve this infor-
mation correctly, and (4) all the pieces of information captured by each integrated
MDD tool could be treated as parts of a single global project. Achieving this level of
integration was hard since different MDD tools captured different sets of properties.
For example, certain CoSMIC tools captured certain parts of a project, whereas other
parts are captured by certain Cadena tools.5

The remainder of this section describes key challenges that arose when integrat-
ing CoSMIC and Cadena and discusses our solutions to resolve these challenges.
These challenges are discussed in order of increasing complexity, where a subse-
quent challenge could be resolved only when the previous challenge was addressed.
Section 4 then presents a case study of a robot assembly application that illustrates
our experiences applying the integrated CoSMIC and Cadena toolsuites to a repre-
sentative DRE system.

Challenge 1: Identifying an Inter-tool Communication Model

Context. Different MDD tools provide different capabilities, e.g., browsable models
and visual modeling of deploy requirements vs. rate-monotonic schedulability anal-
ysis and model-checking. Large-scale DRE systems, however, may require the use of
multiple MDD tools. What is needed is a communication model for interoperability
among various MDD tools. An important goal of our work was therefore to transfer
model documents back and forth between CoSMIC and Cadena, while minimizing
user intervention.
Problems. Since Cosmic and Cadena were developed independently for several
years they had little/nothing in common with respect to the type of model docu-
ments they used. Moreover, under many aspects these tools do not even capture the
same type of information, e.g., the *.scenario and *.IDL3 model documents
of Cadena appear to have equivalent representation in CoSMIC, but there are sub-
tle differences between the model documents. Likewise, the *.profile, *.cor
and *.cps model documents have no equivalent in CoSMIC. Similarly, 80% of the
information in the CoSMIC model documents have no direct equivalent in Cadena.

Many standard interoperability solutions available for tool interoperability cater
to a specific concern. For example, the Analysis Interchange Format (AIF) [23] pro-
vides interoperability by promoting seamless exchange of only analysis data among
tools. Similarly, the Hybrid Systems Interchange Format (HSIF) [24] provides model
exchanges for those systems that are modeled as hybrid systems, but does not support
exchanging analysis information. In many cases, therefore, an interchange format
might not support a feature of a tool. Hence, a decision to use such an interchange
format would preclude the use of that feature, thereby decreasing the value of the
tool. It is also undesirable to create point-to-point solutions since they do not scale as
the number of tools with different capabilities increases. It is therefore necessary to

5 The subset of the project captured by one tool is referred as the tool’s model document.



12 Gabriele Trombetti et. al.

develop a framework that allows seamless interoperability between desired features
among tools without creating point-to-point solutions.
Solution approach → An open tool integration framework. Our approach for in-
tegrating CoSMIC and Cadena is based on the Open Tool Integration Framework
(OTIF) [25] developed by the Institute for Software Integrated Systems (ISIS)
at Vanderbilt University. OTIF consists of a backplane, an integration repository,
application-specific tool adapters, and semantic translators. The backplane provides
a communication and subscription/notification mechanism for other tools. The back-
plane also acts as a common integration repository for the data stored in a canonical
syntactical format, but which may have different semantics. OTIF’s tool integration
repository stores data in a format understood by at least one of the communicating
tools. Custom semantic translators and tool adaptors can then be plugged into the
OTIF backplane and used to (1) automatically convert data in a format understood
by one tool into of data for another tool and (2) communicate between the tools.

A novel aspect of OTIF is its ability to integrate MDD tools that were not initially
intended to interoperate, which is why we selected it for our CoSMIC↔Cadena in-
tegration. Figure 4 illustrates the interworking of CoSMIC and Cadena via the OTIF
backplane. The OTIF backplane supports standard CORBA [26] communication ca-

Fig. 4. CoSMIC↔Cadena Interoperability via OTIF

pabilities using TAO [5], thereby allowing distributed interoperability, as well as
platform-independent interoperability. Custom tool-specific adapters must be written
by developers who wish to export desired tool-specific data to the backplane. Other
tools that want to interoperate with this tool must provide an adapter that converts
data on the backplane to the format it desires. We have developed appropriate tool
adapters for CoSMIC and Cadena, along with semantic translators that help these
two toolsuites interoperate via the OTIF backplane.



MDD Environment for DRE Systems 13

Challenge 2: Devising Effective Communication Protocols and Data
Interchange Formats

Context. An important concern for tool interoperability is ensuring that the tools
understand each other’s data formats and their semantics. What is needed is a mech-
anism that allows exporting and importing tool-specific data using a tool integration
framework, such as OTIF.
Problems. There is often minimal overlap between tools, other than some common
aspects pertaining to DRE systems. For example, the common information in CoS-
MIC and Cadena is restricted to the fact that both tools are tailored to support DRE
systems build using the CORBA Component Model (CCM) [7]. These common-
alities are localized in certain artifacts, such as the IDL descriptions and assembly
information of CCM components.

The same problem seen from another perspective is that when tools are inte-
grated, they capture and contain in their model document two types of properties: (1)
shared properties, i.e., properties being captured also by other tools being integrated
and (2) unique properties, i.e., properties not captured by any of the other tools being
integrated. Shared properties must often be transferred to other tools to synchronize
the state amongst the tools. In contrast, unique properties cannot reasonably be trans-
ferred to another tool since they would not be understood.

The distinction between shared and unique properties implies a separation of
concerns that should be enforced by the two groups of tool properties. This, in turn,
implies the following four problems:

1. The complexity of splitting properties in two groups (i.e., shared vs unique)
2. The task of transferring the shared group to remote tools
3. The choice of a common syntactical (not semantic) format for performing the

communication and
4. The complexity of semantically merging the transferred information into the

information already present in the destination tool.

Problem 4 is the hardest since it requires the creation of semantic translators that can
understand the formats of both tools to enable integration.
Solution approach → Minimizing inter-tool information exchange. Problems 1 and
4 are interrelated (1 being easier to solve than 4). These were resolved together using
semantic translators and a merging algorithm, as described in Challenge 3 below.

We resolved problem 3 by identifying an information model based on XML for
the data that is needed for the Cadena and CoSMIC tools. For example, CoSMIC
generates information captured by the *.scenario model document in the form
of XML descriptors and then creates a plug-in to import this XML format into Ca-
dena. The reverse direction for this format incorporates the changes suggested by the
Cadena analysis tools into the CoSMIC models.

Problem 2 is more complex than problem 3, so we resolved it using OTIF, which
allowed us to work at a significantly higher level of abstraction. For example, OTIF
relieved us from many low-level details, such as the complexity of handling a com-
munication among multiple tools. Each tool can be started and shut down at any



14 Gabriele Trombetti et. al.

time, can run in multiple instances, and might need to search for other tools and
(re-)establish connections to them at any time.

To function properly, OTIF requires support for document creation, persistence,
and navigation to make data interchange seamless. OTIF thus supports a Univer-
sal Data Model (UDM) [27] interface to access and manipulate data on the OTIF
backplane. UDM provides a development process and set of tools that generate C++
interfaces from data structures described using UML class diagrams. These inter-
faces and the underlying C++ libraries enable convenient programmatic access and
automatically configured persistence services for data structures described via UML
diagrams. We leverage these UDM capabilities for the data exchange between CoS-
MIC and Cadena.

The modeling paradigms, such as CoSMIC’s PICML, built using GME were ex-
plicitly developed to expose a UDM interface. The Eclipse framework used by Ca-
dena, however, does not support UDM natively, so we created a UML class diagram
that described the Cadena models.

Challenge 3: Achieving Lossless Semantic Transfers of Data

Context. For any successful tool interoperability comprising data interchange, it is
important that the exchanged data be transferred without loss of essential semantic
information.
Problems. Lossless semantic transfers of tool-specific data is hard since different
tools address different aspects of DRE systems and therefore deal with different types
of data, with their own semantics and representation. It is therefore possible (and
common) for mismatches to arise between data supported by individual tools and
how they are managed by the tool. For example, we outline the differences between
CoSMIC and Cadena formats below:

• Cadena *.scenario files support properties on connections (such as event
sources/sinks and invoke connections), whereas CoSMIC’s PICML does not.

• Both PICML and Cadena support CCM connections types, such as emit, publish
and invoke, but PICML provides specialized connector types for each of these in
its CCM component assembly metamodel, whereas Cadena infers the connector
types from the port types.

• PICML supports QoS requirements on connections that are passed to the de-
ployment run-time for validity checks and potential optimizations at deployment
stage, whereas Cadena does not support this capability.

• PICML provides a specialized connector for a publisher/subscriber connection
involving multiple publishers and multiple receivers, whereas Cadena uses mulit-
ple connections for this case.

• Cadena supports the STRING, INT, and BOOLEAN attribute types, whereas
PICML supports Boolean, Byte, ShortInteger, LongInteger, Real-
Number, String, GenericObject, GenericValueObject, Generic-
Value, TypeEncoding, and TypeKind.



MDD Environment for DRE Systems 15

Given these constraints, it is straightforward to create simple lossy export and
import algorithms that would lose information not captured by one toolsuite vs. the
other. This design, however, would force users to reenter information twice for each
toolsuite, thereby increasing effort and the chance of inconsistencies in information
maintained across the tools. What was desired, instead, is a write-once approach,
whereby once information was entered using either CoSMIC or Cadena tools, the
data transfer algorithm would preserve the data and its semantics for all but a few
exceptionally rare circumstances.

One approach to handle these issues is to merge the different data handled by in-
dividual tools to form a superset that is maintained by the OTIF backplane. Transfer-
ring the complete set of information between the tools is not maintainable, however,
since whenever a feature should be added in any one of the tools being integrated,
the set of information being transferred across all tools would change. At that point,
all the semantic translators that convert documents from/to any two tools would need
to be updated to support the enlarged information set.
Solution approach → A graph-based diff-merge algorithm. Our solution uses in-
formation captured by individual MDD tools, focusing on the features that can map
between the tools, and applying graph transformation algorithms to attain the desired
interoperability. The information we transferred was contained in the CCM compo-
nent assembly view of CoSMIC/PICML and in the *.scenario and *.profile
files from Cadena, as well as the information conveyed in IDL3 files.

In the transformation algorithm, the information from PICML is matched against
the corresponding information in Cadena. Differences are detected and then de-
pending on the direction of communication (PICML→Cadena or Cadena→PICML),
such differences are imported into the destination tool, replacing earlier informa-
tion that was outdated. This approach resembles a diff-merge algorithm (web.umr.
edu/˜gnudoc/single/emacs1934/ediff.html), thought it is performed
on data from MDD tools that were stored as a graph of interconnected information
rather than sequential text. We therefore call our approach a graph diff-merge algo-
rithm.

The graph diff-merge algorithm for exporting PICML data to Cadena follows the
steps described below (Sidebar 1 explains the CCM terminology used in these steps).

1. Every CCM component assembly generates a separate *.scenario file. The
full path name of the assembly from the RootFolder is encapsulated in a property
called PICML pathname, which is stored by Cadena and eventually returned to
PICML unchanged. This property is needed to match the same source CCM
component assembly on the PICML side when reimporting.

2. CCM component assembly-level properties are transferred to Cadena as scenario-
level properties if the type is supported by Cadena, otherwise they are retained
on the PICML side.

3. All the PublishConnectors are checked and the newly created ones are flagged
with a unique ConnectorID, which is in a DeployRequirement having a magic
name that is disregarded by the DAnCE D&C run-time system provided by
CIAO.



16 Gabriele Trombetti et. al.

Sidebar 1: CCM as Captured in CoSMIC and Cadena

This sidebar explains key CCM concepts and terminology, and then shows how they
are supported by CoSMIC and Cadena when diverging from each other or from the
CCM specifications.

CCM components model units of software and contain ports for communicating
with other components. Ports are divided into (1) asynchronous event-based ports
(EventSources and EventSinks) and (2) synchronous operation-based ports (Facets
and Receptacles), which can be connected together with Invoke connections (for
operation-based ports) and Emit or Publish connections (for event-based ports).

Publish connections originating from an EventSource need to pass through a
PublishConnector element in PICML before reaching any EventSink port, whereas
Cadena has no concept of PublishConnector. Emit connections can only connect
one EventSource to one EventSink, while Publish connections can be many-to-many.
The explicit distinction between Publish and Emit connections, however, only exists
in PICML, whereas in Cadena both are mapped to a generic EventSource-to-Sink
connection.

Properties are name/type/value triplets that can belong to Components or to
Requirements in PICML, whereas in Cadena they can belong to Components and
to Connections between ports. Requirements (a.k.a. Deploy Requirements, PICML
only) are contained in Components and PublishConnectors and serve to hold con-
straints (defined as a set of Properties) specifying where a Component or Publish-
Connector can be deployed.

An Assembly (PICML only) holds Components, connections between their
ports, PublishConnectors, Requirements associated to Components or PublishCon-
nectors, and Properties associated to Components. The correspondent of an Assem-
bly in Cadena is the Scenario, which contains Components, Connections between
their ports, and Properties associated to these Components and Connections. In
PICML and Cadena there can be multiple Assemblies/Scenarios distinguished by
a different path from a so-called RootFolder.

4. All PublishConnectors are checked for the presence of a Requirement with an-
other magic name called CadenaProperties. If found, all the properties encap-
sulated inside such a requirement are output as properties on the EventSource-
to-Sink corresponding connection in Cadena, which compensates for the lack of
properties on connectors on the PICML side.

5. All Components that have an output Emit or an Invocation connection are
checked for a property with a magic name: CadenaEIProperties (where EI
stands for “Emit-Invoke”). This property contains a string that is the dump of an
XML file containing multiple properties for each Receptacle-to-Facet or Event
Source-to-Sink Emit connection output from that component. The embedded file
is parsed and the contained information is extracted and sent to Cadena, which
accounts for the lack of properties on emit and invoke connections on the PICML
side.



MDD Environment for DRE Systems 17

6. All component instances are browsed and their name and type are transferred
to Cadena. The attached properties are transferred to Cadena only if they are a
type supported by Cadena, otherwise they are retained on the PICML side. For
all components, each connection to a remote port or to a PublishConnector is
passed to Cadena.

At this point, the XML file containing the information about the scenario (and im-
plicitly about the profile) is sent to the OTIF backplane. On the Cadena side it is
fetched, de-encapsulated from XML, and dumped to disk, possibly overwriting a
preexisting version.

During Cadena export to PICML, the transfer across the OTIF backplane acts in
the reverse way. The key points of the graph diff-merge algorithm on the PICML
side are as follows:

1. Using the PICML pathname information, the same CCM component assembly
of the export is matched so that the modifications can be performed in the correct
place.

2. Based on the names of the component instance, the components are matched.
3. Based on the ConnectorIDs, the PublishConnectors are matched. On the PICML

side, the components and the PublishConnectors that have no match on the Ca-
dena side are considered deleted by the Cadena user and thus get destroyed on
the PICML side. The properties and requirement that only refer to those are also
destroyed.

4. The Components and PublishConnectors on the Cadena side that are unmatched
on the PICML side are considered newly created and thus created on the PICML
side.

5. All the emit and invoke connections at the PICML side are deleted, and are
recreated new from the information on the Cadena side.

6. All the properties on PICML components and at the component assembly-level
are browsed. For those where the type could have been passed to the Cadena
side, a match to the properties on the Cadena side is attempted. If the match
fails, those PICML properties are considered to be deleted by the Cadena user,
so they are destroyed on the PICML side.

7. For all properties on Components on the Cadena side, a match is attempted on
the PICML side. If the match succeeds, the value is updated on the PICML side,
otherwise this is considered a new property created by the Cadena user so a new
property gets created on the PICML side.

8. Steps 7 and 8 are repeated again for properties on PublishConnectors, with
the difference that the match is attempted inside the Requirement called Ca-
denaProperties, if it exists. The newly created properties are also created there
(if a requirement with such a name does not exist, it is created and attached to
the PublishConnector).

9. Steps 7 and 8 are also repeated again for the properties on EmitConnector and
PublishConnector, but this time the match is attempted on the XML content of
the magic property CadenaEIProperties on the component that has the outgoing
emit or invoke connection, which is created if needed.



18 Gabriele Trombetti et. al.

To perform these steps for the two directions of communication, we used the
GReAT (Graph Rewriting And Transformation) [28] tool. GReAT is a GME-based
MDD tool that can be used to visually define graph transformation among networks
of objects that are accessible with UDM. GReAT shortened our development time
significantly since it is much more readable and maintainable than using a third-
generation programming language, such as C++ or Java. Both GME project files and
XML files whose schema can be defined with an UML diagram can be accessed via
UDM.

A GReAT transformation can be run interpretatively during development and de-
bugging. It can also be used to generate C++ header and implementation files that
can be compiled for a release version of the transformation. The current version of
the CoSMIC↔Cadena import/export transformation contains more than 2,000 ele-
ments (graph pattern nodes) and 13,500 lines of C++ code. Figure 4 illustrates the
architecture of this transformation process, where a bidirectional GReAT-based tool
adapter and semantic translator converts PICML assemblies to/from XML files con-
forming to the adopted interchange schema, which was chosen to conform to the se-
mantics of Cadena *.scenario and *.profile files. The schema, known to the
OTIF backplane, is used to read and validate the XML file upon arrival on the back-
plane. At every upload of a new interchange XML file onto the backplane, the tool
adapters are notified of the availability of such new CCM component assembly and
are prompted for the download. On the Cadena side, a simpler Java-based Cadena
tool adapter converts the XML to *.scenario and *.profile files and vice
versa. Our graph diff-merge algorithm is activated during the backplane-to-PICML
import and is implemented inside the GReAT-based PICML tool adapter and seman-
tic translator.

4 Demonstrating Integrated CoSMIC↔Cadena Capabilities via
a Robot Assembly Case Study

This section describes a case study of a robot assembly application we developed in
conjunction with colleagues at Lockheed Martin. This application is representative
of DRE systems in the process control domain, i.e., it defines an assembly line with
robots creating various types of goods, which in our case study are wrist watches
assembled by robots. We describe the robot assembly application below to illustrate
the benefits of integrating and applying the CoSMIC and Cadena MDD toolsuites, as
described in Sections 2 and 3. In particular, this case study illustrates how developers
of the robot assembly application required multiple MDD tools, each providing dif-
ferent capabilities, such as configuration, deployment, schedulability analysis, and
model checking. The source code and integrated MDD tools for this example are
available in the CIAO release from www.dre.vanderbilt.edu/CIAO.



MDD Environment for DRE Systems 19

4.1 Structure and Functionality of the Robot Assembly Application

Figure 5 illustrates the five core components in the robot assembly application:
ManagementWorkInstruction, WatchSettingManager, HumanMach-
ineInterface, PalletConveyorManager, and RobotManager, each of

�����

����	
���

��	��

��������������

���������������

������	�

������

�����	�

������

������	�

���	����	

�����

�����������

 �����

������	

������	�

 	���	�

��������	�

������

�	������

�����	�

��!���

�����	�

���	��

����	
���

�����	�

����	
���

����	�

�
��	�

���	�

�	�	��

���	�

�	�	��	

������"���

#��!�	
$���

"���

#��!�	

 ����	�	�

%��	�!�


%�	�

���������

����������

%����

��!������

�����

%�	�

Fig. 5. Robot Assembly Model

which are implemented as CCM components using CIAO. These individual CCM
components can be interconnected together to form CCM component assemblies and
ultimately deployed using DAnCE to create complete applications.

Figure 6 depicts a sequence diagram for the robot assembly production pro-
cess. The ManagementWorkInstruction and HumanMachineInterface
components interact with humans, whereas the PalletConveyorManager and
RobotManager components interact with the pallet moving and assembling tools
hardware devices, respectively. The normal operation of the robot assembly applica-
tion involves the following steps:

1. The ManagementWorkInstruction asks for a watch to be produced by
sending an event to the WatchSettingManager.

2. The WatchSettingManager emits an event to the HumanMachineInter-
face asking to validate the order. The HumanMachineInterface accepts
the order by invoking an operation on a CCM facet belonging to the Watch-
SettingManager.

3. The WatchSettingManager uses a different event to notify the Manage-
mentWorkInstruction that the order was accepted and then displays the
work on the HumanMachineInterface.



20 Gabriele Trombetti et. al.

MWI WSM HMI PCM
<hw>
Discrete RM

Production
work Order

Display work order

Accept work order

Move pallet to work area
Pallet in
position

Pallet ready

Display ready to produce

Proceed

<hw>
Robot

Process pallet

Pallet complete

Move pallet to finishing area Release
pallet

Pallet not
in position

Pallet moved

Accept key

Display work update

Produce key

Display processing complete
Accept key

Work order complete

Management
Work
Instructions

Robot
Manager

Pallet
Conveyer
Manager

Human
Machine
Interface

Watch
Setting
Manager

<hw>
keyboard

Processing accepted

Production
order
accepted

Fig. 6. Robot Assembly Production Sequence

4. The WatchSettingManager emits an event to the PalletConveyor-
Manager to move the pallet into position. The PalletConveyorManager
then responds with another event acknowledging the status of good positioning
on the pallet. This event includes an enumerated type indicating status, such as
acceptance, rejection, completion, failure, and/or cancellation.

5. The WatchSettingManager again emits an event to the HumanMachine-
Interface asking for confirmation to perform a production step. The Human-
MachineInterface accepts by invoking an operation on a facet.

6. The WatchSettingManager emits an event to the RobotManager asking
it to process the pallet. The RobotManager performs the job and then responds
via an event acknowledging the success (or failure) of the assembling operation.

7. The WatchSettingManager displays the completed work to HumanMac-
hineInterface via an event. The HumanMachineInterface validates
the work via a facet operation call (same as in bullet 1).

8. The WatchSettingManager sends an event asking the PalletConveyor-
Manager to move the pallet out of the working area and into a finishing area.
The PalletConveyorManager notifies the status of the operation back to
the WatchSettingManager with the acknowledgment event already dis-
cussed. Steps 2-7 can be repeated if there are additional pallets to process.

9. The WatchSettingManager sends an event to the ManagementWork-
Instruction notifying it that the requested job has been completed.



MDD Environment for DRE Systems 21

4.2 Key Capabilities Provided by CoSMIC and Cadena Integration for the
Robot Assembly Application

Section 4.1 described the structure and functionality of the robot assembly applica-
tion. We now illustrate the key challenges encountered when integrating the CoSMIC
and Cadena MDD toolsuites and applying them to the robot assembly case study.

Capability 1: Choosing appropriate communication mechanisms.

Developers of large-scale component-based DRE systems must determine which
communication mechanisms their components should use to interact. A key design
decision is whether to use CCM facets and receptacles, which can perform point-
to-point synchronous operation invocations between components, or event sources
and sinks, which can exchange typed messages asynchronously with one or more
components. Applying an MDD tool like PICML (Section 2.1) can help developers
reason more effectively about which communication mechanism to select. Below,
we demonstrate how our MDD tools help developers make better design choices.

Fig. 7. Robot Assembly CCM Component Assembly Visio Drawing

Figure 7 shows a Visio drawing of the robot assembly component interaction. We
used this informal drawing to guide our subsequent formal modeling and analysis of
the robot assembly application. In particular, we created a model of the CCM com-
ponent assembly in PICML and then used Cadena to analye, validate, and refine this
model. After validation by Cadena, we used the CoSMIC toolsuite to deploy, config-
ure and run the robot assembly application. Figure 8 (without the connection pointed
by the arrow) represents the PICML model that captures the application represented
by the Visio drawing in Figure 7.



22 Gabriele Trombetti et. al.

Fig. 8. Erroneous Robot Assembly PICML Model

Unlike the informal Visio drawing, the PICML model is semantically navigable,
down to the data types and events exchanged by every operation and event com-
munication. By inspecting the PICML model, we can quickly spot design fallacies
and/or vulnerabilities, e.g., the return value of the facet invocation for the response
of HumanMachineInterface to WatchSettingManager (Section 4.1) is
void and there are no out or inout parameters, yet the operation is not defined as a
CORBA oneway.

Further analysis indicates that a more appropriate choice for this communication
would be an asynchronous connection (event) rather than a facet/receptacle. This
analysis thus reveals a design mistake made by the developers at the components
(IDL) modeling stage. Such mistakes are less common when working with visual
modeling environments due to the visual feedback developers receive continuously.
There is still a possibility of errors due to the fact that at component (IDL) model-
ing stage the view of the CCM component assembly providing the “big picture” is
not yet available. At the time the component assembly is also modeled, however, the
presence of a navigable visual model significantly helps developers spot such prob-
lems, compared with reading hundreds of lines of CORBA IDL code. In addition,
refinement cycles for correcting such errors in the IDL and then adjusting the com-
ponent assembly accordingly are much faster to perform with a visual modeler than
when dealing with low-level source code.

Capability 2: Detecting type mismatches at design-time vs. run-time.

As mentioned in Section 1, a key goal of MDD is achieving “correct by construc-
tion” programs. In particular, MDD tools should allow only correct choices and/or
detect maximum number of errors at design-time rather than run-time. Constraining
a correct choice or performing an early detection of mistakes significantly reduces
the time needed for fixes.

To evaluate how effectively our integrated CoSMIC and Cadena tools described
in Section 3 work in the context of our robot assembly application, we deliberately
tried to introduce a mistake in our component assembly by connecting an additional
port to a destination port of the wrong type. This mistake is detected by PICML’s



MDD Environment for DRE Systems 23

constraint checker because the two ends are not of the same type, and thus disallowed
by the PICML paradigm. It would not be desirable, however, to have trivial human
mistakes detected by only one tool (e.g., PICML), as this would defer the detection
significantly when users work for long period of time on other tool(s) (e.g., Cadena)
before going back to PICML.

Cadena (described in Section 2.2) also immediately detects a set of potential
human mistakes, including connections with mismatched endpoints and mismatched
type for properties on components. These checks are performed both at modeling
time and model-import time and can be verified, e.g., by importing into Cadena an
erroneous model produced by a tool that has weaker validation support. In our case,
PICML is (currently) the only other tool, so testing this feature required manually
disabling PICML’s constraint checker, manual creation of an invalid connection, and
then exporting the result to Cadena.

For this example, we chose to connect the analysis receptacle of the Watch-
SettingManager to the controller facet of PalletConveyorManager,
as shown in Figure 8 with a block arrow. Figure 9 shows how Cadena detected the
wrong connection, and printed an error message. Early (possibly immediate) detec-
tion of user mistakes, even when limited to simple ones, is important since it reduces
the work that must be undone to roll back to a valid project state when a mistake is
detected.

Fig. 9. Error Detected by Robot Assembly Cadena Model



24 Gabriele Trombetti et. al.

Capability 3: Advanced model checking of component assemblies.

Another important capability provided by MDD tools is advanced model checking,
such as Cadena’s feature that detects cyclic call chains and event feedbacks and can
be used to reason about the possible deadlocks that may occur in a concurrent sys-
tem. Since all robot assembly components only interact with the WatchSetting-
Manager, any possible cycle must pass through that component. Right clicking the
WatchSettingManager component in the graphical scenario view of Cadena
and selecting the “cycle check” feature highlights two components of the assembly
– the HumanMachineInterface and the WatchSettingManager – which
form a cycle, as shown in Figure 10. The cycle detection stops after the first detection,

Fig. 10. Robot Assembly Modeless Cycle Detection in Cadena

which is why only two components are highlighted (darker colors) in the figure. If we
disconnect those two components and repeat the cycle check, however, other com-
ponents will be highlighted. The WatchSettingManager affects and is affected
by every other component, so eventually every component is in the downstream path
of every other component in the component assembly.

Since we have at least one cycle we cannot be certain that deadlocks do not oc-
cur. Deadlocks for such a model are thus “implementation defined,” which means
that they might or might not be avoided with a more sophisticated implementation,



MDD Environment for DRE Systems 25

e.g., one that handles assumptions that cannot be (or are not) modeled. The system
therefore cannot be validated from a modeling perspective. Examining the produc-
tion sequence diagram in Figure 6 above, however, clearly shows that no deadlock
can occur, at least during the normal production use case. This information clashes
with the analysis from Cadena, due to the fact that we have not yet specified modal
information in our components, i.e., component operational modes specifying inter-
actions between input and output ports of the same component (intra-component in-
teractions). Specifying modal information allows a more precise detection of cycles
and potential deadlocks.

For the semantics shown in Figure 6’s production sequence diagram, most
components can remain stateless. At least two components require state, however,
the WatchSettingManager and the HumanMachineInterface. For the
WatchSettingManager, the sequence diagram in Figure 6 implicitly defines
the following seven states: (1) WaitingWorkOrder, (2) WaitingAcceptWorkOrder, (3)
WaitingPalletReady, (4) WaitingProceed, (5) WaitingPalletComplete, (6) WaitingPal-
letMoved, and (7) WaitingProcessingAccepted. In each state, no more than one input
port affects an output port, and not all the output ports are affected (in facts, no more
than three are affected for each mode). The other input and output ports behave as if
they were disconnected.

For the HumanMachineInterface, we need to specify that a Display-
WorkUpdate cannot trigger an AcceptWorkOrder. Otherwise, a feedback cycle with
the WatchSettingManagerwill arise. At least two states are needed, though it is
better to specify all four semantically detectable states: (1) WaitingNewWorkOrder,
(2) WaitingDisplayWorkUpdate, (3) WaitingReadyToProduce, and (4) WaitingDis-
playProcessingComplete.

The behaviors of the WatchSettingManager and the HumanMachine-
Interface components outlined above can be captured in the Cadena property
specification (*.cps) file shown below:

module RobotAssembly {
component WatchSettingManager {
mode status of {

WaitingWorkOrder,
WaitingAcceptWorkOrder,
WaitingPalletReady,
WaitingProceed,
WaitingPalletComplete,
WaitingPalletMoved,
WaitingProcessingAccepted

}
init status.WaitingWorkOrder;

dependencydefault: none;
dependencies {

case status of {
WaitingWorkOrder:

WorkOrder -> Display;
WaitingAcceptWorkOrder:

DisplayResponse.WorkOrderResponse ->
MovePallet, Display,



26 Gabriele Trombetti et. al.

ProductionReport;
WaitingPalletReady:

PalletStatus -> ProductionReport;
WaitingProceed:

DisplayResponse.ProductionReport ->
MovePallet;

WaitingPalletComplete:
ProcessingStatus -> MovePallet;

WaitingPalletMoved:
PalletStatus -> Display;

WaitingProcessingAccepted:
DisplayResponse.ProductionReadyResponse ->
ProductionReport, MovePallet;

}
}

}
component HumanMachineInterface
{
mode status of
{

WaitingNewWorkOrder,
WaitingDisplayWorkUpdate,
WaitingReadyToProduce,
WaitingDisplayProcessingComplete

}
init status.WaitingNewWorkOrder;
dependencydefault: none;
dependencies {

case status of {
WaitingNewWorkOrder:

WorkDisplayUpdate ->
HumanResponse.WorkOrderResponse;

WaitingDisplayWorkUpdate:
WorkDisplayUpdate -> ;

WaitingReadyToProduce:
WorkDisplayUpdate ->
HumanResponse.ProductionReadyResponse;

WaitingDisplayProcessingComplete:
WorkDisplayUpdate ->
HumanResponse.PalletInspectionResponse;

}
}

}
}

The Cadena *.cps file shown above sets our modal specifications for the
robot assembly project. The remainder of this section refers to the modal view of
the scenario illustrated in Figure 11. The two components for which we have de-
fined the states must be set to a globally consistent state, i.e., we cannot set the
WatchSettingManager in the WaitingPalletComplete state while the Human-
MachineInterface is in the WaitingNewWorkOrder state. We therefore set the
WatchSettingManager in the WaitingAcceptWorkOrder state and the
HumanMachineInterface in the WaitingDisplayWorkUpdate state. As
a result, only the connections that belong to the current mode will be shown (see



MDD Environment for DRE Systems 27

Fig. 11. Robot Assembly: Modal View in Cadena

Figure 11). Since the cycle analysis will detect any cycles in any of the modes, the
current model can be analyzed to detect deadlocks.

For contrast, we also show a variation of the robot assembly CCM component
assembly that is in fact not deadlock-proof and hence cannot be validated. This
variation consists of adding the connection from the WatchSettingManger/-
Analysis receptacle to the RobotManager/Analysis facet.6 We do not have
any semantic or behavioral specifications for these analysis ports. We must there-
fore assume that (1) operation calls on the facets can affect any analysis receptacle
on the same component and (2) this behavior can happen in any mode of the three
components. To reflect this scenario we add the following lines for the Watch-
SettingManager into the *.cps file shown below:

...
dependencies {

AnalysisOne.CallingBackTwo
-> Analysis.CicrleCallOne,

Analysis.CallingBackOne;
AnalysisTwo.CircleCallThree

-> Analysis.CicrleCallOne,
Analysis.CallingBackOne;

case status of
...

}

6 Figure 7 shows that the following two CCM ports were already connected: (1) Robot-
Manager/CircleAnalysis receptacle to PalletConveyorManager/Circle-
Analysis facet and (2) PalletConveyorManager/AnalysisTwo receptacle to
WatchSettingManager/AnalysisTwo facet.



28 Gabriele Trombetti et. al.

The resulting scenario shows a cycle (illustrated in Figure 12) in at least one
mode (and in this particular case, in all the modes). Armed with this knowledge,

Fig. 12. Robot Assembly: Cadena Model After Circle Analysis

therefore, any deadlock avoidance must be at the implementation level, i.e., this
model cannot be validated against deadlocks without further knowledge of the se-
mantics at the modal level.

4.3 Summary of the Robot Assembly Case Study

This section used a robot assembly application case study we developed with our
colleagues at Lockheed Martin to showcase our integration of CoSMIC and Cadena.
The case study shows how semantic validation of models can help detect problems
earlier in the software lifecycle, e.g., immediately after the planning of the inter-
faces, but before implementing the business logic. In our experience, early detection
of defects yielded fewer code revisions, lower development costs, and shorter time
to market. This “correct by construction” paradigm and the ongoing checking for
human mistakes made by CoSMIC and Cadena helped ensure proper execution in
mission-critical contexts, where run-time error-detection and debugging alone was
insufficient.

In particular, the CoSMIC PICML MDD tool helped developers formally define
CCM component assemblies, while allowing better visualization and easier naviga-
tion that can be useful to improve design, spot errors more easily, and in general
work at a higher level of abstraction and be more productive. The Cadena environ-
ment, likewise, provided powerful analysis and validation features, which were syn-
ergistic with those of PICML. In Cadena, a relatively straightforward declarative



MDD Environment for DRE Systems 29

language was used to define high-level behavioral specifications for components.
These specifications were then used for analysis and validation purposes, such as
component-dependencies traversal and ensuring the robot assembly application was
free of deadlocks.

5 Related Work

Model-driven development (MDD) technologies are used in a variety of contexts
and domains. For example, the OMG’s Model Driven Architecture (MDA) [29] and
Microsoft’s Software Factories [12] focus mainly on enterprise business applica-
tions. Other MDD technologies, such as Model-Integrated Computing (MIC) [30],
focus on embedded systems. More recently, MDD technologies are aligning [31] to
add QoS capabilities necessary to support DRE systems in domains ranging from
aerospace [32] to telecommunications [33] and industrial process control [34]. This
section describes compares our research on MDD technologies with related work.

Our work on MDD technologies extends earlier work on MIC [11, 35, 36, 37]
that focused on modeling and synthesizing embedded software. Examples of MIC
technology used today include GME [18] and Ptolemy [38] (used primarily in the
real-time and embedded domain) and MDA [10] based on UML [39] and XML [40]
(which have been used primarily in the business domain). Previous efforts using MIC
technologies for QoS adaptation have been applied to embedded systems comprising
digital signal processors or signal detection systems [41, 42], which have a small
number of fairly static QoS requirements. In contrast, our research on integrating
CoSMIC and Cadena focuses on enhancing and applying MIC technologies at a
much broader level, i.e., modeling and controlling much larger scale DRE systems
with multi-dimensional simultaneous QoS requirements.

Other related MDD tools are the Virginia Embedded System Toolkit (VEST) [43]
and Automatic Integration of Reusable Embedded Systems (AIRES) [44]. VEST
is an embedded system composition tool based on GME [18] that (1) enables the
composition of reliable and configurable systems from COTS component libraries
and (2) checks whether certain real-time, memory, power, and cost constraints of
real-time and embedded applications are satisfied. AIRES provides the means to
map design time models of component composition with real-time requirements to
run-time models weaving timing and scheduling attributes within the run-time mod-
els. Although VEST and AIRES provide modeling and analysis tools for real-time
scheduling and resource usage, they have not been applied to QoS-enabled compo-
nent middleware, which is characterized by complex interactions between compo-
nents, their containers and the provisioned services, and across distributed compo-
nents via real-time event communication or request/response. Moreover, our research
on the integration of CoSMIC and Cadena involves whole-system global analysis of
large-scale DRE system for end-to-end timing constraints, as well as configuration
and deployment.

Another project aimed at tool integration is the Open Tool Integration Frame-
work (OTIF) [25], which was developed by the Institute for Software Integrated



30 Gabriele Trombetti et. al.

Systems (ISIS) at Vanderbilt University. As opposed to our approach – where most
features of Cadena and CoSMIC were developed separately and with no initial idea
of subsequent integration – OTIF explicitly provides a framework for integrating
tools developed as part of the DARPA MoBIES project [24]. The MoBIES work-
flows are fairly complex and allow interoperations in multiple directions among the
tools. These flows are not lossless in most cases, however, so they were able to ob-
tain seamless round-trip interoperability in only one case, i.e., between the ESML
and OEP Configuration formats, inside the ESML workflow.

OTIF provides a communication framework with facilities for storing various
versions of the same set of data written in different formats, subscription/notify
mechanism, and automatic triggering of application-specific translators when certain
data format are submitted to the backplane (data repository). OTIF requires, how-
ever, that the actual (application-specific) semantic translators and the (application-
specific) tool adapters for actually performing the communication and the translation
be provided by the user. Our work with CoSMIC and Cadena helps improve upon
earlier uses of OTIF by selecting interchange formats and transformation semantics
that can accomplish more effective round-trip interoperability and lossless commu-
nication between the two MDD development environments.

6 Concluding Remarks

Model-driven development (MDD) of software engineering processes is emerging
as an effective paradigm for addressing the challenges of distributed real-time and
embedded (DRE) systems. MDD is a software development paradigm that systemat-
ically applies domain-specific modeling languages to engineer computing systems. It
is therefore a key step towards converting the art of programming into an engineering
process that will industrialize the software industry.

This chapter showed how we have integrated (1) CoSMIC, which is an MDD
toolsuite consisting of modeling, analysis, and synthesis tools that address key life-
cycle challenges of component-based DRE systems with (2) Cadena, which is an
MDD toolsuite for modeling and model checking component-based DRE systems.
We demonstrated how CoSMIC can leveraged Cadena/Bogor’s model checking and
verification capabilities to raise the reliability of component-based DRE systems sig-
nificantly, while also reducing development time and effort. We also showed how the
capabilities provided by CoSMIC and Cadena are complementary and can help de-
velopers of component-based DRE system middleware and applications view and
analyze models from different perspectives.

The novelty of our approach focuses on exchanging a minimal set of data be-
tween interacting tools, namely the common subset of properties captured by the
tools. Modifications on a project made by CoSMIC tools can thus be transferred to
Cadena tools and merged into the model document of the destination tools and vice
versa. Modifications performed on properties captured uniquely by CoSMIC tools
need not be transferred to Cadena tools and vice versa. Depending on the tools being



MDD Environment for DRE Systems 31

integrated, the merging of modifications into a tool’s model document can be per-
formed automatically by semantic translators (which keep state in this case) or tool
adapters (which can access the internal state of the tool). In either case, our general
approach can greatly simplify the integration of various external MDD tools, e.g., to
provide model checking, schedulability, and stability analysis.

Section 3 describes a graph diff-merge algorithm that transfers modifications into
a destination tool’s model document and semantic translators that convert between
the formats understood by various CoSMIC and Cadena MDD tools. Graph trans-
formation is used to define algorithms for semantic translation and merging directly
at the metamodel level, i.e., at a higher level of abstraction than provided by third-
generation programming languages. This approach (1) reduces the time needed to
develop semantic translators, compared with manually writing a backtracking en-
gine to match entire graphs, (2) reduces sporadic and hard-to-track errors that stem
from manually manipulating pointers, allocate resources, and handling exceptions,
and (3) increases the readability and maintainability of the algorithms, compared
with conventional hand-written code in third-generation languages.

The lessons learned by applying our integrated CoSMIC and Cadena toolsuite to
the robot assembly case study described in Section 4 illustrated that:

• Not every MDD tool offers the same capabilities, but a collection of these is
needed to develop DRE systems, which is why interoperability between the tools
is necessary. For example, CoSMIC and Cadena have different modeling capabil-
ities and validation functionalities that we combined to provide a broader range
of capabilities for DRE system developers.

• Although partial, user-assisted interoperability is easier to realize, it does not
prevent human mistakes when exporting model documents from one tool and
importing them into another. It is therefore essential to automate the communi-
cation process as much as possible to ensure consistency. For example, our use of
the Open Tool Integration Framework (OTIF) [25] helped minimize the number
of steps needed for users to transfer the robot assembly project between the CoS-
MIC and Cadena tools. We also carefully crafted the graph diff-merge algorithm
to avoid manual replication of information.

• Bidirectional communication among MDD tools is the most effective way to en-
able users to edit models locally on whichever tool is in use, while maintaining
the ability to transfer changes to other tools automatically, thus enhancing consis-
tency. For example, when developing the communication between CoSMIC and
Cadena, we allowed developers to use the tools in any semantically valid order,
and did not constrain the actions that could be performed while working with any
compatible tools.

• When achieving tool integration, key issues to consider are the communication
model, data interchange format, and algorithms for lossless data transforms. Our
CoSMIC↔Cadena integration focused on these three points and applied tools
that could help reduce our development time. For example, we used OTIF to
provide communication features, document storage on the backplane, and auto-
matic notification of availability of new documents to connected tools. We used



32 Gabriele Trombetti et. al.

XML/UDM to interchange the syntactic and semantic formats of CoSMIC and
Cadena model documents. We used GReAT for our graph diff-merge algorithms
to reduce development time and detect/merge variations of graph-based data for-
mats. These tools allowed us to complete our robot assembly development and
validation tasks correctly in a relatively short time.

• Complex transformation algorithms become more manageable when working at
the meta-level. In particular, several hundred well-structured graphical transfor-
mation rules are faster to write and easier to read and maintain than thousands
of lines of equivalent C++ code. For example, we leveraged the GReAT tool to
graphically define graph transformations.

• To define transformations at the meta level requires access to the metamodels
(represented as graph structures) of both the source and destination semantic for-
mats. If any of such metamodels are not available, an alternative is to use an XML
format defined with a UML diagram (i.e., the metamodel) acting as a proxy for
the source or destination format. For example, the metamodel of Cadena internal
document format was not available, so we used GME to define an XML rep-
resentation of it in UML. We could then use GReAT to define transformations
between the CoSMIC metamodel and the newly defined XML format, the latter
acting as a proxy for Cadena format.

• The message flow in our robot assembly case study is largely asynchronous and
most communication is performed via events, though some callbacks are per-
formed via invocations on facet operations. It is hard to recognize this message
flow from the production sequence diagram in Figure 6, but MDD tools, such as
PICML in CoSMIC and the Cadena’s Scenario graphical view, can show which
communications are performed through event emissions and which are invoca-
tion on operations. MDD tools also enable more efficient browsing through com-
ponents and interfaces to indicate visually which data types are exchanged.

• Behavioral specifications of components can be used to perform dependency
checks and stability analysis in a component-based distributed application. Un-
derspecifying the behavior of such components might prevent a complete valida-
tion, as happened with the connection of circle analysis port in our robot assem-
bly application.

• When solving new problems, the time needed to learn new MDD tools appropri-
ate for the solution must be considered. For example, we used GME interpreters,
GReAT, UDM, and OTIF for our robot assembly application. Acquiring exper-
tise with these tools occupied roughly one third of the total development time. It
is therefore essential to factor the time and effort needed to learn multiple MDDs
tools to avoid underestimating overall development costs.

Acknowledgments

The authors would like to acknowledge our collaborators Sylvester Fernandez, Dave
Bailey, Chris Andrews, Bob Parkhill, and Theckla Louchios from Lockheed Martin,
Eagan and Dallas for their help with the CoSMIC↔Cadena integration.



MDD Environment for DRE Systems 33

References

1. Wendy Roll, “Towards Model-Based and CCM-Based Applications for Real-Time
Systems,” in Proceedings of the International Symposium on Object-Oriented Real-time
Distributed Computing (ISORC), Hakodate, Hokkaido, Japan, May 2003, IEEE/IFIP.

2. David C. Sharp and Wendy C. Roll, “Model-Based Integration of Reusable
Component-Based Avionics System,” in Proceedings of the Workshop on Model-Driven
Embedded Systems in RTAS 2003, May 2003.

3. Richard E. Schantz and Douglas C. Schmidt, “Middleware for Distributed Systems:
Evolving the Common Structure for Network-centric Applications,” in Encyclopedia of
Software Engineering, John Marciniak and George Telecki, Eds. Wiley & Sons, New
York, 2002.

4. Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig Rodrigues,
Balachandran Natarajan, Joseph P. Loyall, Richard E. Schantz, and Christopher D. Gill,
“QoS-enabled Middleware,” in Middleware for Communications, Qusay Mahmoud, Ed.
Wiley and Sons, New York, 2003.

5. Douglas C. Schmidt, David L. Levine, and Sumedh Mungee, “The Design and
Performance of Real-Time Object Request Brokers,” Computer Communications, vol.
21, no. 4, pp. 294–324, Apr. 1998.

6. Object Management Group, Real-Time CORBA Specification, 1.1 edition, Aug. 2002.
7. Object Management Group, CORBA Components, OMG Document formal/2002-06-65

edition, June 2002.
8. Nanbor Wang and Christopher Gill, “Improving Real-Time System Configuration via a

QoS-aware CORBA Component Model,” in Hawaii International Conference on System
Sciences, Software Technology Track, Distributed Object and Component-based
Software Systems Minitrack, HICSS 2003, Honolulu, HW, Jan. 2003, HICSS.

9. Nanbor Wang, Chris Gill, Douglas C. Schmidt, and Venkita Subramonian, “Configuring
Real-time Aspects in Component Middleware,” in Proceedings of the International
Symposium on Distributed Objects and Applications (DOA’04), Agia Napa, Cyprus, Oct.
2004.

10. Object Management Group, Model Driven Architecture (MDA), OMG Document
ormsc/2001-07-01 edition, July 2001.

11. Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty, “Model-Integrated
Development of Embedded Software,” Proceedings of the IEEE, vol. 91, no. 1, pp.
145–164, Jan. 2003.

12. Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools, John Wiley &
Sons, New York, 2004.

13. Aniruddha Gokhale, Krishnakumar Balasubramanian, Jaiganesh Balasubramanian,
Arvind S. Krishna, George T. Edwards, Gan Deng, Emre Turkay, Jeffrey Parsons, and
Douglas C. Schmidt, “Model Driven Middleware: A New Paradigm for Deploying and
Provisioning Distributed Real-time and Embedded Applications,” The Journal of
Science of Computer Programming: Special Issue on Model Driven Architecture, 2004.

14. John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, and Venkatesh Prasad,
“Cadena: An Integrated Development, Analysis, and Verification Environment for
Component-based Systems,” in Proceedings of the 25th International Conference on
Software Engineering, Portland, OR, May 2003.

15. Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Aniruddha
Gokhale, and Douglas C. Schmidt, “A Platform-Independent Component Modeling



34 Gabriele Trombetti et. al.

Language for Distributed Real-time and Embedded Systems,” in Proceedings of the 11th
IEEE Real-Time and Embedded Technology and Applications Symposium, San
Francisco, CA, Mar. 2005.

16. Arvind S. Krishna, Emre Turkay, Aniruddha Gokhale, and Douglas C. Schmidt,
“Model-Driven Techniques for Evaluating the QoS of Middleware Configurations for
DRE Systems,” in Proceedings of the 11th IEEE Real-Time and Embedded Technology
and Applications Symposium, San Francisco, CA, Mar. 2005.

17. William Deng, Matthew Dwyer, John Hatcliff, Georg Jung, and Robby,
“Model-checking middleware-based event-driven real-time embedded software,” in
Proceedings of the 1st Internatiuonal Symposium on Formal Methods for Component
and Objects, 2002, vol. 2582 of Lecture Notes in Computer Science, pp. 154–181.

18. Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg Nordstrom, Jonathan
Sprinkle, and Gabor Karsai, “Composing Domain-Specific Design Environments,”
IEEE Computer, Nov. 2001.

19. Object Management Group, Deployment and Configuration Adopted Submission, OMG
Document ptc/03-07-08 edition, July 2003.

20. Jeff Gray and Ted Bapty and Sandeep Neema and Douglas C. Schmidt and Aniruddha
Gokhale and Balachandran Natarajan, “An Approach for Supporting Aspect-Oriented
Domain Modeling,” in Proceedings of the 2nd International Conference on Generative
Programming and Component Engineering (GPCE’03), Erfurt, Germany, Sept. 2003,
ACM, pp. 151–168.

21. Object Management Group, Unified Modeling Language: OCL version 2.0 Final
Adopted Specification, OMG Document ptc/03-10-14 edition, Oct. 2003.

22. Robby and Matthew Dwyer and John Hatcliff, “Bogor: An Extensible and
Highly-Modular Model Checking Framework,” in In the Proceedings of the Fourth Joint
Meeting of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE 2003), Helsinki,
Finland, Sept. 2003, ACM.

23. Gabor Karsai, Sandeep Neema, Arpad Bakay, Akos Ledeczi, Feng Shi, and Aniruddha
Gokhale, “A Model-based Front-end to ACE/TAO: The Embedded System Modeling
Language,” in Proceedings of the Second Annual TAO Workshop, Arlington, VA, July
2002.

24. DARPA Information Exploitation Office, “Model-Based Integration of Embedded
Software (MoBIES),” www.darpa.mil/ixo/mobies.asp.

25. Institute for Software Integrated Systems, “Open Tool Integration Framework,”
www.isis.vanderbilt.edu/Projects/WOTIF/.

26. Object Management Group, The Common Object Request Broker: Architecture and
Specification, 3.0.2 edition, Dec. 2002.

27. E. Magyari and A. Bakay and A. Lang and T. Paka and A. Vizhanyo and A. Agrawal and
G. Karsai, “UDM: An Infrastructure for Implementing Domain-Specific Modeling
Languages,” in The 3rd OOPSLA Workshop on Domain-Specific Modeling, OOPSLA
2003, Anaheim, CA, Oct. 2003, ACM.

28. Karsai G. and Agrawal A. and Shi F. and Sprinkle J., “On the use of Graph
Transformations in the Formal Specification of Computer-Based Systems,” in
Proceedings of IEEE TC-ECBS and IFIP10.1 Joint Workshop on Formal Specifications
of Computer-Based Systems, Huntsville, AL, Apr. 2003, IEEE.

29. David Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing,
John Wiley and Sons, Indianapolis, IN, 2003.

30. Janos Sztipanovits and Gabor Karsai, “Model-Integrated Computing,” IEEE Computer,
vol. 30, no. 4, pp. 110–112, Apr. 1997.



MDD Environment for DRE Systems 35

31. Object Management Group, “Model Integrated Computing PSIG,” http://mic.omg.org.
32. Lockheed Martin Aeronautics, “Lockheed Martin (MDA Success Story),”

www.omg.org/mda/mda_files/LockheedMartin.pdf, Jan. 2003.
33. Looking Glass Networks, “Optical Fiber Metropolitan Network,”

www.omg.org/mda/mda_files/LookingGlassN.pdf, Jan. 2003.
34. Austrian Railways, “Success Story OBB,”

www.omg.org/mda/mda_files/SuccessStory_OeBB.pdf/, Jan. 2003.
35. David Harel and Eran Gery, “Executable Object Modeling with Statecharts,” in

Proceedings of the 18th International Conference on Software Engineering. 1996, pp.
246–257, IEEE Computer Society Press.

36. Man Lin, “Synthesis of Control Software in a Layered Architecture from Hybrid
Automata,” in HSCC, 1999, pp. 152–164.

37. Jeffrey Gray, Ted Bapty, and Sandeep Neema, “Handling Crosscutting Constraints in
Domain-Specific Modeling,” Communications of the ACM, pp. 87–93, Oct. 2001.

38. J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems,” International Journal of
Computer Simulation, Special Issue on Simulation Software Development Component
Development Strategies, vol. 4, Apr. 1994.

39. Object Management Group, Unified Modeling Language (UML) v1.4, OMG Document
formal/2001-09-67 edition, Sept. 2001.

40. “Extensible Markup Language (XML) 1.0 (Second Edition),” www.w3c.org/XML,
Oct. 2000.

41. Sandeep Neema, Ted Bapty, Jeff Gray, and Aniruddha Gokhale, “Generators for
Synthesis of QoS Adaptation in Distributed Real-Time Embedded Systems,” in
Proceedings of the ACM SIGPLAN/SIGSOFT Conference on Generative Programming
and Component Engineering (GPCE’02), Pittsburgh, PA, Oct. 2002.

42. Sherif Abdelwahed, Sandeep Neema, Joseph Loyall, and Richard Shapiro, “Multi-Level
Online Hybrid Control Design for QoS Management,” in Proceedings of the 24th IEEE
International Real-time Systems Symposium (RTSS 2003), Cancun, Mexico, Dec. 2003,
IEEE.

43. John A. Stankovic, Ruiqing Zhu, Ramasubramaniam Poornalingam, Chenyang Lu,
Zhendong Yu, Marty Humphrey, and Brian Ellis, “VEST: An Aspect-based Composition
Tool for Real-time Systems,” in Proceedings of the IEEE Real-time Applications
Symposium, Washington, DC, May 2003, IEEE.

44. Sharath Kodase, Shige Wang, Zonghua Gu, and Kang G. Shin, “Improving Scalability
of Task Allocation and Scheduling in Large Distributed Real-time Systems using Shared
Buffers,” in Proceedings of the 9th Real-time/Embedded Technology and Applications
Symposium (RTAS), Washington, DC, May 2003, IEEE.


