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Abstract

As distributed systems increase in complexity, scope, and ubiq-
uity, the contexts in which they are applied become more open-
ended and dynamic. For example, an important and growing
class of distributed applications, such as interface browsers,
network managers, distributed debugging and visualization
tools, and scripting languages, require flexible middleware
support where statically typed knowledge of all possible oper-
ation names and signatures at compile-time is overly restric-
tive. Supporting these types of applications effectively requires
some form of dynamic typing that enables the discovery of op-
eration names and parameter types at run-time.

This paper provides two contributions to the study of dy-
namically typed middleware. First, it outlines the key design
challenges faced when adding dynamic typing capability to
CORBA middleware. Second, it describes how these design
challenges were resolved via the systematic application of pat-
terns and object-oriented design techniques. This work was
done in the context of the ADAPTIVE Communication En-
vironment (ACE), which is an object-oriented toolkit for de-
veloping networked application software, and The ACE ORB
(TAO), which is an open-source and widely adopted OMG
CORBA object request broker (ORB) that is implemented us-
ing frameworks in ACE.

1 Introduction

Emerging trends. Distributed object computing (DOC)
middleware, such as CORBA, COM+, and Java RMI, is an
advanced, mature, and field-tested paradigm that supports the
composition of software objects that can be distributed or col-
located throughout networked environments [1]. DOC mid-
dleware enables clients to invoke operations on target objects
to perform interactions and invoke functionality needed to
achieve application goals without hard-coding dependencies
on the location, programming language, OS platform, com-
munication protocols and interconnects, and hardware. In ad-
dition, DOC middleware simplifies distributed application de-
velopment by automating key quality of service (QoS) proper-
ties, such as security, fault tolerance, and transactional seman-
tics.

DOC middleware has matured to encompass a wide range
of architectural styles (such as client/server and peer-to-peer)
and application domains (such as e-commerce, process au-
tomation, aerospace, and telecommunications). Consequently,
the environments in which distributed applications must oper-
ate – along with the demands made on applications by these
environments – are now considerably more complex, hetero-
geneous, and dynamic. In particular, clients must increasingly
interact with objects whose interfaces were unknown or per-
haps did not even exist when the application was compiled or
deployed [2]. The need for this capability has also grown due
to recent standardization of the interaction between DOC mid-
dleware and scripting languages, such as Python [3] and Cor-
baScript [4], that require dynamic typing capabilities in the
underlying DOC middleware.
Alternative middleware type systems. Developers of dis-
tributed applications that use statically typed programming
languages, such as C, C++, and Java, are generally quite fa-
miliar with the statically typed capabilities provided by DOC
middleware. They are often much less familiar, however, with
the dynamically typed capabilities provided by DOC middle-
ware. Sidebar 1 on page 2 briefly describes the differences
between static and dynamic typing support for middleware.

Statically typed DOC middleware features generally yield
high performance since efficient marshaling and demarshaling
object code exists for even the most complex types. However,
this performance is achieved at the expense of decreased flex-
ibility and increased memory footprint. Applications that use
statically typed middleware are less flexible since they cannot
handle types not anticipated in the generated code. For exam-
ple, any new interface or operation, even a change in a single
operation parameter, triggers recompilation and relinking.

Conversely, dynamically typed middleware is often less ef-
ficient than static typing due to the extra overhead incurred by
the dynamic type discovery and manipulation activities. How-
ever, dynamic typing’s slower performance may be offset by
its reduced footprint in the application, due to the replacement
of compiled application-specific code by generic interpreted
middleware code. In addition, the development cycle-time of
applications that use dynamically typed middleware features
can be reduced significantly for the following reasons:

� Scripting languages can be integrated with dynamically
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Sidebar 1: Static vs. Dynamic Typing for DOC
Middleware

A typecan be defined anabstractlyas a set (e.g., an Integer type
could be the set of all integers [5]) orconcretelyas a rule for inter-
preting a sequence of bits starting at some address in memory [6].
A type system[7] is a collection of rules for type equivalence, type
checking, and type inference, along with methods to construct new
types. DOC middleware type systems can be classified into two
general forms:

� Static typing, which binds objects to their types at compile-
time. Code for boilerplate activities, such as marshal-
ing/demarshaling and operation dispatching, can be gener-
ated automatically since statically typed DOC middleware
requires compile-time knowledge of all operation names and
signatures.

� Dynamic typing, which binds objects to their types at run-
time. Dynamically typed DOC middleware requires the ex-
plicit discovery and manipulation of operation names and sig-
natures at run-time.

typed middleware, providing a way for developers to (1)
create applications quickly and (2) modify the applica-
tions flexibly at run-time.

� New interfaces and operations can be introduced readily,
without triggering recompilation and relinking.

The more a distributed system’s topology resembles a star
(i.e., a central server and peripheral clients that do not talk di-
rectly to each other), the more likely a large amount of gener-
ated code will exist at the server location, since the server must
then have knowledge of multiple, mostly disjoint, sets of oper-
ations. A dynamically typed implementation of such a topol-
ogy need not include statically compiled code for each poten-
tial client, and can therefore handle a potentially unbounded
number of unique operations and operation signatures.
R&D challenges. The work described in this paper was
done in the context of The ACE ORB (TAO) [8], which is a
widely adopted open-source implementation of CORBA. Our
prior work on TAO has explored many dimensions of high-
performance and real-time ORB design and performance, in-
cluding scalable event processing [9], request demultiplex-
ing [10], I/O subsystem [11] and protocol [12] integration,
connection architectures [13], asynchronous [14] and syn-
chronous [15] concurrent request processing, adaptive load
balancing [16], meta-programming mechanisms [17], and IDL
stub/skeleton optimizations [18].

Since its inception in 1996, the primary focus of research
with TAO has been on high performance and predictable be-
havior in distributed real-time and embedded (DRE) systems,
where statically typed applications have predominanted. What
focus there has been on dynamic typing scenarios has been

motivated by the intention to point out the performance penal-
ties incurred by certain requirements of the OMG specifica-
tion [19]. This paper extends our earlier work on statically
typed DOC middleware by focusing on patterns and design
techniques that address the following challenges of dynami-
cally typed DOC middleware:

� Devising efficient and persistent techniques for dynami-
cally storing and retrieving descriptions of interfaces and
operations.

� Minimize the increase in footprint associated with
CORBA dynamic typing capabilities.

� Assuring that applications that do not use dynamically
typed middleware features do not incur time/space over-
heads.

Paper organization. The remainder of this paper is orga-
nized as follows. Section 2 describes the design of each dy-
namic CORBA feature in TAO, ranging from the most basic to
the most advanced; Section 3 evaluates the dynamic CORBA
capabilities provided by TAO and summarizes lessons learned
from our experiences; Section 4 discusses other middleware
research that is related to our work described in this paper;
Section 5 summarizes areas of future work; Section 6 contains
concluding remarks; and Section 7 expresses acknowledge-
ments. For completeness, Appendix A provides details of the
underlying data structures used to store dynamic type informa-
tion in TAO.

2 The Design of Dynamic CORBA Ca-
pabilities

2.1 Overview of Dynamic CORBA

This section describes dynamic CORBA features and the de-
sign of dynamic typing capabilities provided by TAO. Figure 1
illustrates the key features that comprise dynamic CORBA.
As shown in this figure, dynamic CORBA consists of the (1)
TypeCode, which provides a structural type representation,
(2) Any, which represents a value in dynamic CORBA appli-
cations, (3) NamedValue/NVList, which provide a dynamic
representation of operation arguments and signatures, (4) Dy-
namic Invocation Interface (DII), which defines the client-side
interface for dynamic CORBA applications, (5) the Dynamic
Skeleton Interface (DSI), which is the server-side counterpart
to the DII, (6) TypeCodeFactory, which is used to create types
dynamically, (7) Dynamic Any, which is used to create and
examine values in dynamic CORBA applications, (8) the In-
terface Repository (IFR), which is a distributed service that
provides run-time access to CORBA type information, and (9)
the IFR loader, which populates the Interface Repository with
entries that correspond to IDL declarations.
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Figure 1: Features in Dynamic CORBA

The preceding synopsis outlines the features in dynamic
CORBA, but does not explain what these features do in de-
tail. More importantly, there is no motivation forwhy these
features are important for middleware applications. The re-
mainder of this section therefore explains why these features
are needed in dynamic CORBA by explaining the key software
development problems they solve, which include:

1. Representing type information at run-time
2. Defining a container for a value of any type
3. Assembling an operation’s parameter list at run-time
4. Constructing a request at run-time
5. Handling a request of unknown signature
6. Creating new type representations at run-time
7. Composing and decomposing values of unknown type
8. Implementing run-time type discovery
9. Managing type information storage

Sidebar 2 presents the IDL example we use throughout this
section to illustrate the use and interaction of the various dy-
namic CORBA features. We begin with the lowest level of
dynamic CORBA features and proceed to the most advance
dynamic CORBA features, each level building upon and sub-
suming the capabilities provided in the previous ones. This
sequence matches the chronology shown in Figure 2. The
item at left, labeled below the timeline, represents the dynamic
CORBA features added to TAO by previous researchers in the
DOC group. The items labeled above the timeline represent
the contributions of the work described in this paper. The
rightmost item in the figure refers to a topic of future research,
which is discussed in Section 5.5.1.

2.2 Representing Type Information at Run-
time

Context. An application that needs to be able to introspect
on the types of its objects in order to function correctly.

Sidebar 2: IDL Example

The following OMG IDL is representative of an online music e-
commerce system. We use it throughout this section to illustrate
the use and interaction of various dynamic CORBA features.

interface Warehouse
{

exception NotCarried {};
struct format_info {

float price;
boolean in_stock;

};
struct title_info {

format_info cd;
format_info cassette;

};
typedef unsigned long sales_rank;
title_info GetInfo (in string artist,

inout string title,
out sales_rank rank)

raises (NotCarried);
};

1/99
1/98 3/03

1/00 1/01 1/02 1/03

3/98
TypeCode, Any
NVList, DII, DSI

10/98
Dynamic Any
(CORBA 2.2)

4/00
TypeCodeFactory

6/00
Interface Repository

1/01
IFR Loader

6/01
Dynamic Any

revised
(CORBA 2.4.2)

TODAY

1/03
CCM Tools

(in progress)

Figure 2: Timeline of Dynamic CORBA Features in TAO

Problem. While statically typed applications may occasion-
ally require a way to represent a type at run-time, dynamically
typed applications have no compile-time knowledge of at least
some of the types it encounters. A dynamic CORBA imple-
mentation must therefore have a way to represent a type and
to extract information from it at run-time.
Dynamic CORBA solution ! TypeCode. Define aType-
Codethat represents the structure of an IDL type. In dynamic
CORBA, a TypeCode keeps track of the type of a value and
a set (possibly empty) of parameters associated with that par-
ticular type. For example, the TypeCode fortitle_info
in our example IDL file is shown in Figure 3. The left side
of the figure shows the abstract representation of the Type-
Code, with its type format and associated parameters. The
right side of the figure shows the concrete representation, with
the actual values corresponding to the associated IDL declara-
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Figure 3: TypeCode

tions filled in. TypeCode constants for the built-in IDL types
(such asshort , long , anddouble ) are generated by the
ORB at startup. TypeCodes for user-defined static types (such
as structs and unions ) are generated by an IDL com-
piler [20] when it parses a file containing interface definitions.

Implementing the solution in TAO. In TAO, the
TypeCode class stores the structural information in a
buffer that is encoded using theCommon Data Representation
(CDR) format defined by theInternet Interoperable Protocol
(IIOP) [20] required of all compliant ORBs. Class members
holding the data in more accessible form, such as a list of
member names or list of member types, are computed as
necessary.

2.3 Defining a Container for a Value of Any
Type

Context. An application that needs to be able to handle data
whose type is known only at run-time.

Problem. Dynamically typed applications often encounter
unknown types at run-time when they process constants or

variables. In such cases, this unknown type will have an as-
sociated value. A dynamic CORBA implementation must be
able to manipulate,e.g., copy, compare, or pass as an argu-
ment, values whose type is unknown at compile-time.

Dynamic CORBA solution ! Any. Define anAny as a
generic container for a value of any type. In dynamic CORBA,
an Any consists of a TypeCode and an opaque value of a type
described by the TypeCode, as shown in Figure 4. The actual

TypeCode

Value

Any

Figure 4: Any

representation of the value in memory can be left to the discre-
tion of the ORB implementor, but it must be general enough
to represent any type whatsoevere.g., in C/C++ a likely can-
didate would be avoid pointer. Dynamic CORBA provides
standard operations to insert and access both the TypeCode
and the value. Insertion and extraction of the value is accom-
plished by means of overloaded operators, which are provided
by the ORB for the basic types. Like the TypeCode, an Any
may be used by a statically typed application, and in such cases
the IDL compiler generates the insertion and extraction oper-
ators for application-defined IDL types.

Implementing the solution in TAO. Anys in TAO are opti-
mized in various ways. For example, when an Any is used in
a statically typed application, the insertion operator generated
by the IDL compiler for Anys of some aggregate type passes
in a type-specific destructor for that type, eliminating the need
for the Any to refer to its TypeCode when destroying its value.
In addition, an Any in TAO may store its value either encoded
in CDR form, as with the TypeCode, or as avoid pointer,
depending on the circumstances under which its value is in-
serted.

2.4 Assembling an Operation’s Parameter List
at Run-time

Context. A dynamic CORBA client application that needs
to be able to pass parameters to an operation whose signature
it does not know at compile-time.

Problem. If a dynamically typed application assigns a value
to an operation parameter, the Any that might contain that
value lacks a local name (such as ”artist” in our e-commerce
example) and a direction (such asin , out , or inout ) that a
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CORBA operation argument has in addition to type and value.
Every operation will have a well-defined set of these parame-
ters. A dynamic CORBA implementation must therefore have
a way to generically represent both a single operation param-
eter and an entire operation signature.

Dynamic CORBA solution ! NamedValue and NVList.
Define aNamedValuethat represents an operation argument
and anNVList that represents an entire operation signature. In
dynamic CORBA, a NamedValue is a datatype consisting of
an Any, a string name, and a flag indicating the direction, as
shown in Figure 5. An NVList is a list of NamedValues, as

Name

NamedValue

Direction

TypeCode

Value

Any

Figure 5: NamedValue

shown in Figure 6. The types and order of the parameters are

.

.

.

NVList

Name

NamedValue

Direction

TypeCode

Value

Any

Name

NamedValue

Direction

TypeCode

Value

Any

Name

NamedValue

Direction

TypeCode

Value

Any

Figure 6: NVList

sufficient conditions for completely specifying the signature
of an operation. It is therefore acceptable that the string name

in a NamedValue be null. When a NamedValue is used to rep-
resent the return type of an operation, the direction and name
are ignored. As shown in Section 2.5, an NVList can be used
to construct the argument list of an operation incrementally at
run-time.
Implementing the solution in TAO. In TAO, some NVList
methods can be passed a “lazy evaluation” parameter to opti-
mize for cases where the list is empty or all the NamedValues
contain Anys that store their values as avoid pointer.

2.5 Constructing a Request at Run-time

Context. A dynamic client application that must invoke op-
erations on objects whose IDL interfaces are not known until
run-time.
Problem. Without compile-time knowledge of an IDL in-
terface’s operations and their signatures, a dynamically typed
application must explicitly construct and invoke a request at
run-time [2]. A dynamic CORBA implementation must there-
fore be able to encapsulate information about a request and
add to this information incrementally at run-time.
Dynamic CORBA solution ! Dynamic Invocation Inter-
face. Define aDynamic Invocation Interface (DII)that en-
ables a client to make a remote request on a target object for
which no generated stub code exists. In dynamic CORBA, this
interface is embodied in theRequestobject, which contains
the target object reference, the operation name, an NVList
containing the argument values, a NamedValue for the return
value, and a list (if it is known at run-time) of possible user-
defined exceptions that the operation may throw. All these en-
tities are shown in Figure reffig:request. TheRequest object
also provides methods for explicit invocation and for recov-
ery of the return value, and the values of anyinout or out
arguments that may have been passed.

Using our music e-commerce example from Sidebar 2 on
page 3, the following C++ code constructs and invokes a DII
request, then extracts the results.

CORBA::Object_var target_obj = ...
// get object reference from command line,
// file, web page, etc.

CORBA::Request_var req =
target_obj->_request ("GetInfo");

req->set_return_type (
Warehouse::_tc_title_info

);
req->add_in_arg ("artist") <<= "The Beatles";
req->add_in_arg ("title") <<= "Abbey Road";
CORBA::Any any (Warehouse::_tc_sales_rank);
req->arguments ()->add_value ("rank",

any,
CORBA::ARG_OUT);

req->exceptions ()->add (
Warehouse::_tc_NotCarried

);
req->invoke ();
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const Warehouse::title_info *info;
req->return_value () >>= info;
CORBA::Any_ptr out_value =

req->arguments ()->item (2)->value ();
CORBA::ULong sales_rank;
(*out_value) >>= sales_rank;

Identifiers prefixed with_tc_ refer to TypeCodes, which are
used to set the return type and to create theout argument,
since the client does not assign values to these parameters.

Implementing the solution in TAO. A DII request can be
sent asynchronously,i.e., where the client does not block wait-
ing for the reply. In such a case, the TAORequest object
delegates this job to aReply Dispatcherclass, which is re-
sponsible for notifying theRequest object when the reply
has been received. Sidebar 3 describes the performance impli-
cations of DII verses the CORBA Static Invocation Interface
(SII).

2.6 Handling a Request of Unknown Signature

Context. A dynamic CORBA server application that needs
to be able to handle requests whose signatures are not known
at compile-time.

Problem. DII provides the means to assemble and invoke a
request dynamically, and is therefore useful only to a client.
A server in a dynamically typed application will need similar

Sidebar 3: Performance Implications of DII

The extra overhead of request creation, plus addition of return
type, arguments, and possibly exceptions results in a performance
penalty. The following figure compares the throughput for regular
SII CORBA requests and DII requests (the test was performed us-
ing TAO version 1.2.3, running on Windows 2000, and compiled
by Visual Studio version 6.0).
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The number of calls-per-second were computed by timing 250
roundtrip requests for each data type, in which the servant calcu-
lates the return value by cubing the input argument, or each ele-
ment of the input argument if it is a sequence. Sequence lengths
were set to 16 for octets and 4 for longs, to give an overall size
of 16 bytes for small sequences. For large sequences, the length
was set to 4096 for octets and 1024 for longs, to give an overall
size of 4096 bytes. The figure above shows the greatest difference
in performance for small request payloads, and more comparable
performance as the request payload becomes larger. The overhead
for marshaling and demarshaling is therefore more significant com-
pared to the overhead for creating and populating the DII request.

functionality in order to do its job. A dynamic CORBA imple-
mentation must provide a way to receive and handle requests
without compile-time knowledge of operations or their signa-
tures.

Dynamic CORBA solution! Dynamic Skeleton Interface.
Define aDynamic Skeleton Interfaceto provide functional-
ity to a server that corresponds to what DII provides for a
client. In dynamic CORBA, DSI takes the form of a pure vir-
tual Dynamic Implementation Routine(DIR), defined in the
ORB and overridden by the application. One of the DIR ar-
guments is an instance of the classServerRequest , which
contains methods to demarshal the request arguments into the
NamedValue andNVList containers described above, and
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to marshal the reply.

Implementing the solution in TAO. When the
ServerRequest class was first added to TAO, it han-
dled both static and dynamic invocations, despite of the fact
that the DSI functionality of the class was not needed for the
static case. This class was later factored into two parts:

� The originalServerRequest class, which now con-
tained only DSI functionality, and

� A lightweightTAO_ServerRequest class.

Instances of this new class are now created by the un-
derlying ORB transport on the server as (1) a stand-alone
class to handle invocations statically and (2) a member of
a ServerRequest instance to handle invocations dynam-
ically.

2.7 Creating New Type Representations at
Run-time

Context. A CORBA service or dynamic CORBA applica-
tion that needs to create a type that was not known at compile-
time.

Problem. A dynamic CORBA implementation must have
the ability to create TypeCodes at run-time. Section 2.5 de-
scribes how to use a TypeCode to marshal and demarshal a
value of unknown type. We have not yet addressed the issue
of how TypeCodes may be created dynamically,i.e., outside
the aegis of an IDL compiler.

Dynamic CORBA solution ! TypeCodeFactory. Define
a TypeCodeFactorythat bundles TypeCode creation methods
for each IDL type into a single interface. Since there are many
common use cases where dynamic typing (and therefore Type-
Code creation) are not required, this interface can be compiled
into a separate library that can be linked optionally by the ap-
plication.

Implementing the solution in TAO. The OMG CORBA
specification defines TypeCode creation methods in the
CORBA::ORB interface. Whether TypeCode creation is re-
quired or not, these methods must still be declared and the
linker must be satisfied. In TAO, we want to meet these re-
quirements in all use cases without adding unnecessary size
to the ORB when TypeCode creation is not used. These
forces were resolved in TAO by using the Adapter pattern [21].
Rather than delegating the TypeCode creation call to the Type-
CodeFactory directly, we delegate to an adapter class instead.

TypeCodeFactory_Adapter is an abstract class in-
cluded in the compilation of the ORB. It contains pure virtual
methods corresponding to each TypeCode creation method in
CORBA::ORB. The TypeCodeFactory library contains a con-
crete class derived fromTypeCodeFactory_Adapter

that makes the actual call on theTypeCodeFactory in-
terface. An instantiation of the Component Configurator pat-
tern [22] is then used to load CORBA dynamic typing libraries
at run-time. Figure 8 shows schematically how the component

class TypeCodeFactory_Adapter
{
    virtual TypeCode create_xx_tc ( ) = 0;
};

class TypeCodeFactory_Adapter_Impl
{
    virtual TypeCode create_xx_tc ( )
    {
        ...........
    }
};

class Component_Configurator<TYPE>
{
    static TYPE *instance (char *name);
};

class IFR_Client_Adapter
{
    virtual xxx func ( ) = 0;
};

class IFR_Client_Adapter_Impl
{
    virtual xxx func ( )
    {
        .............
    }
};

ORB

TypeCodeFactory (optional)

IFR_Client (optional)

Figure 8: Component Configurator and Adapter

configurator works with an adapter by parametrizing it, and
how the adapter makes it possible to add functionality to the
ORB, yet only penalize applications that do not use this func-
tionality with the addition of a few pure virtual functions.

The component configurator and adapter, as well as an ab-
stract factory [21] work together to:

� Encapsulate TypeCode creation so it can be used by the
ORB or other tools and optionally linked by the applica-
tion

� Break the ORB dependencies on the TypeCode creation
methods to avoid penalizing applications that do not re-
quire that functionality with additional ORB footprint
and

� Load dynamic typing libraries on demand.

Although we have avoided a memory footprint penalty for
applications that do not require a TypeCodeFactory, we would
still like to minimize the added footprint for applications
which do require it. By making the TypeCodeFactory inter-
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face local in the OMG IDL specification, the size of the gen-
erated code for TypeCodeFactory is greatly reduced, as shown
in Sidebar 4.

Sidebar 4: Adding Locality Constraints

A Dynamic Any is intended to be a temporary entity, used for
the sole purpose of composing or decomposing a standard Any
when no static type information is available [23]. As such, it need
not support remote creation, remote operation calls, export to a
process other than the one in which it was created, creation of
a stringified Interoperable Object Reference (IOR) or any of the
common operations it inherits from theCORBA::Object inter-
face. The CORBA specification prohibits Dynamic Anys from do-
ing all these things, and specifies the exceptions to be raised if any
of them are attempted [20]. Moreover, TypeCodeFactory is not
useful to a remote ORB, which can call its own TypeCode creation
methods. Consequently, the TypeCodeFactory and Dynamic Any
classes have been implemented aslocal interfaces.

If an IDL interface is declared with the extra keywordlocal ,
none of its operations can be accessed remotely. In such cases, the
IDL compiler does not generate a server class, and the application’s
implementation class inherits instead directly from the client-side
generated class, as shown in the following figure.

local interface foo
{
    void op ( );
};

class foo
{
    virtual void op ( ) = 0;
};

IDL compiler

class foo_i
  : public virtual foo
{
    virtual void op ( )
    {
        ....
    }
};

interface foo
{
    void op ( );
};

class foo
{
    virtual void op ( )
    {
        ....
    }
};

class POA_foo
{
    virtual void op ( ) = 0;
    static void op_skel ( )
    {
        ....
    }
};

class foo_i
  : public virtual POA_foo
{
    virtual void op ( )
    {
        ....
    }
};

IDL compiler

IDL file

Generated
Code

Application
Code

Using local interfaces for Dynamic Any in TAO resulted in
a significant footprint reduction in the generated code, compared
to what would be generated by the IDL compiler for non-local in-
terfaces, as shown in the following figure.

0

0.2

0.4

0.6

0.8

1

1.2

TypeCodeFactory Dynamic Any

relative 
size
of

generated
code

non-local interfaces

local inerfaces

2.8 Composing and Decomposing Values of Un-
known Type

Context. A dynamic CORBA application that needs to (1)
assign a value to a variable of a type unknown at compile-time
or (2) examine the contents of such an existing value.
Problem. When CORBA middleware uses static typing,
there are overloaded Any insertion and extraction operators
available for each known type. These operators insert or
extract values all at once,e.g., the insertion operator for a
struct inserts the values of each member automatically and
in order since the member insertion operators have already
been defined and generated by the IDL compiler. With dy-
namic typing, however, the insertion or extraction of the value
of an aggregate type must be recursively decomposed into ba-
sic types so the basic operators defined in the ORB can be used
since generated specialized operators may not be available.

To support dynamic typing, incremental insertion or extrac-
tion is required. The logic of incremental Any insertion and
extraction is the same as that for interpretive marshaling and
demarshaling (see Section 4.5) and for some ORB implemen-
tations the same code may even be reused. Requiring an ap-
plication to use such code adds to accidental complexity, how-
ever, and makes the application development process more te-
dious and error-prone. An application using dynamic typing
should therefore be able to compose and decompose Any val-
ues incrementally, without being exposed to low-level ORB
internals or implementation details.
Dynamic CORBA solution!Dynamic Any. Define aDy-
namic Anyhierarchy of types using the Facade pattern [21] to
provide a consistent and portable interface for dynamic man-
agement of Any values while hiding the underlying ORB de-
tails from applications. An empty Dynamic Any may be cre-
ated for composition by passing the appropriate TypeCode to
an instance ofDynAnyFactory, while for decomposition, the
appropriate Any is passed to the factory.

Using Dynamic Anys, we can now expand our online music
e-commerce example to include TypeCode creation and man-
agement of the Any values, both before and after the DII re-
quest, without recourse to the generated operators. First, we
initialize an ORB and create TypeCodes for the exception and
the typedef.

CORBA::ORB_var orb =
CORBA::ORB_init (/* suitable args */);

CORBA::StructMemberSeq members;
members.length (0);
CORBA::TypeCode_var _tc_NotCarried =

orb->create_exception_tc (
"IDL:Warehouse/NotCarried:1.0",
"NotCarried",
members

);
CORBA::TypeCode_var _tc_sales_rank =

orb->create_alias_tc (
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"IDL:Warehouse/sales_rank:1.0",
"sales_rank",
CORBA::_tc_ulong

);

Next we begin creation of the TypeCode for the complex re-
turn type. First, we create the TypeCode for the member type.

members.length (2);
members[0].name = CORBA::string_dup ("price");
members[0].type =

CORBA::TypeCode::_duplicate (
CORBA::_tc_float

);
members[0].type_def = CORBA::IDLType::_nil ();
members[1].name =

CORBA::string_dup ("in_stock");
members[1].type =

CORBA::TypeCode::_duplicate (
CORBA::_tc_boolean

);
members[1].type_def = CORBA::IDLType::_nil ();
CORBA::TypeCode_var _tc_format_info =

orb->create_struct_tc (
"IDL:Warehouse/format_info:1.0",
"format_info",
members

);

Now we use the member TypeCode to create the Typecode for
the entire return type.

members[0].name = CORBA::string_dup ("cd");
members[0].type =

CORBA::TypeCode::_duplicate (
_tc_format_info.in ()

);
members[1].name =

CORBA::string_dup ("cassette");
members[1].type =

CORBA::TypeCode:_duplicate (
_tc_format_info.in ()

);
CORBA::TypeCode_var _tc_title_info =

orb->create_struct_tc (
"IDL:Warehouse/title_info:1.0"
"title_info"
members

);

As in the previous version, we must nest get the target object
reference, create the DII request, and set the return type.

CORBA::Object_var target_obj = ...
// get object reference from command line,
// file, web page, etc.

CORBA::Request_var req =
target_obj->_request ("GetInfo");

req->set_return_type (_tc_title_info.in ());

Instead of using Any insertion operators to add arguments to
the request, however, we use Dynamic Anys.

obj =
orb->resolve_initial_references (

"DynAnyFactory"
);

DynamicAny::DynAnyFactory_var factory =
DynamicAny::DynAnyFactory::_narrow (

obj.in ()
);

DynamicAny::DynAny_var da =
factory->create_dyn_any_from_type_code (

CORBA::_tc_string
);

da->insert_string ("The Beatles");
CORBA::Any_var string_any = da->to_any ();
req->arguments ()->add_value ("artist",

string_any.in (),
CORBA::ARG_IN);

Once a Dynamic Any is created, the type it contains cannot
change, but it can be assigned another value of the same type.

da->insert_string ("Abbey Road");
string_any = da->to_any ();
req->arguments ()->add_value ("title",

string_any.in ()
CORBA:ARG_IN);

A Dynamic Any created by the DynAnyFactory must be de-
stroyed when it has served its purpose.

da->destroy ();

Since anout argument is not assigned a value before invoca-
tion, we can add it using only the TypeCode.

CORBA::Any alias_any (_tc_sales_rank.in ());
req->arguments ()->add_value ("rank",

alias_any,
CORBA::ARG_OUT);

As before, we add the exception to the request and invoke it.

req->exceptions ()->add (_tc_NotCarried.in ());
req->invoke ();

Now we extract the return value, but this time we do it incre-
mentally using Dynamic Anys. First we create a Dynamic Any
from the Any return value of the request.

DynamicAny::DynAny_var da_retval =
factory->create_dyn_any (

req->return_value ()
);

DynamicAny::DynStruct_var ds_retval =
DynamicAny::DynStruct::_narrow (

da_retval.in ()
);

Then we extract the first member and access its values.
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DynamicAny::DynAny_var da_member =
ds_retval->current_component ();

DynamicAny::DynStruct_var ds_member =
DynamicAny::DynStruct::_narrow (

da_member.in ()
);

CORBA::Float cd_price =
ds_member->get_float ();

CORBA::Boolean cd_in_stock = 0;
if (ds_member->next ()) {

cd_in_stock = ds_member->get_boolean ();
}

Finally, we advance to the second member and repeat the pro-
cess.

CORBA::Float cassette_price = 0;
CORBA::Boolean cassette_in_stock = 0;
if (ds_retval->next ()) {

da_member = ds_retval->current_component ();
ds_member =

DynamicAny::DynStruct::_narrow (
da_member.in ()

);
cassette_price = ds_member->get_float ();
cassette_in_stock =

ds_member->get_boolean ();
}
da_retval->destroy ();

We also use a Dynamic Any to extract the value of theout
argument.

DynamicAny::DynAny_var da_out =
factory->create_dyn_any (

*req->arguments ()->item (2)->value ()
);

CORBA::ULong sales_rank = da_out->get_ulong ();
da_out->destroy ();

Implementing the solution in TAO. The TAO implementa-
tion of Dynamic Any uses the Composite pattern [21] to facil-
itate incremental composition and decomposition of Dynamic
Anys. This implementation requires that any member of a Dy-
namic Any containing a non-basic type itself be a Dynamic
Any. As with TypeCodeFactory, the TAO Dynamic Any im-
plementation is contained in a separate library that can be op-
tionally compiled and linked.

As shown in Figure 2, some time after the original imple-
mentation of Dynamic Any in TAO, a large number of changes
in the CORBA specification of Dynamic Any necessitated an
extensive reimplementation. At this time, we reduced the size
of the Dynamic Any library considerably by modifying the in-
heritance structure. The upper diagram in Figure 9 shows the
original inheritance structure of the implementation classes,
while the bottom diagram shows the modified version, which
uses an intermediate non-instantiated class to contain common
code. In Figure 10, we see that the size of the Dynamic Any
library was reduced by over 40% as a result of the modified

DynAny

DynUnionDynStructDynSequenceDynEnumDynArray

DynAny_i

DynArray_i DynEnum_i DynSequence_i DynStruct_i DynUnion_i

DynAny

DynArray

DynEnum

DynSequence

DynStruct

DynUnion

DynCommon

DynAny_i

DynArray_i

DynEnum_i

DynSequence_i

DynStruct_i

DynUnion_i

Figure 9: Dynamic Any Inheritance Alternatives
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Figure 10: Dynamic Any Footprint Reduction

class inheritance structure. The size of the Dynamic Any li-
brary was further reduced by adding locality constraints to the
IDL interfaces, as shown in Sidebar 4 on page 8.
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2.9 Implementing Run-time Type Discovery

Context. An application that needs information about the
operations of some object reference.
Problem. Section 2.8 showed how the TypeCodeFactory can
be used to create a TypeCode for any legal IDL type, and also
showed how Dynamic Anys can be used to compose or decom-
pose a regular Any that corresponds to that type. Likewise,
Section 2.5 showed how DII can be used to create and execute
an invocation of any signature legal for an IDL operation. It is
rarely useful, however, to create types, typed values, or oper-
ation signatures without guidance from any external informa-
tion. Moreover, as useful as Anys are as generic containers,
they create a potential problem by allowing the possibility of
bypassing a compiler’s built-in type checking and enforcement
mechanisms.

To solve these problems, some way of obtaining external
type information is required. There are several possible ways
to get such information, ranging from a translation table that
uses rules to map one type system to another, from an event
channel that carries type information about its clients (such as
the CORBA Notification Service), or from a repository [23].
Such a repository should be persistent, updateable, and located
at a well-known address.
Dynamic CORBA solution ! A Repository For Type In-
formation. Define anInterface Repository(IFR) service that
provides CORBA type information at run-time. The location
of a CORBA IFR can be resolved by the ORB in a manner
similar to other CORBA services,e.g., via a Naming Service
or Trading Service. It stores its information in the form ofIn-
terface Repository Objects(IR Objects) that derive directly or
indirectly from the abstract base classCORBA::IRObject ,
which is derived fromCORBA::Object . The operations de-
fined in the various concrete IR Object classes are the means
by which the repository can be queried and updated. The
repository itself is also an IR Object.

Using the CORBA Interface Repository, we can now up-
date our online music e-commerce example to be completely
free of reliance on outside knowledge, other than that obtained
from the Interface Repository. After initializing the ORB, we
resolve the IFR just as we did with DynAnyFactory.

CORBA::Object_var repo_obj =
orb->resolve_initial_references (

"InterfaceRepository"
);

CORBA::Repository_var repo =
CORBA::Repository::_narrow (repo_obj.in ());

We then get the repository id of the target object, and use it to
look up the target object definition in the repository.1

1Naturally, CORBA programmers should always check if the result of a
_narrow() operation is 0, but we leave such things out in this example in
the interest of brevity.

const char *repo_id =
target_obj->_interface_repository_id ();

CORBA::Contained_var contained =
repo->lookup_id (repo_id);

CORBA::InterfaceDef_var obj_def =
CORBA::InterfaceDef::_narrow (

contained.in ()
);

Alternatively, we can try to get the interface definition from
the target object directly by replacing the above lines with

CORBA::InterfaceDef_var obj_def =
target_obj->_get_interface ();

Next we want to get a list of the interface’s operations, so we
call for its contents and limit the resulting list to operations
only.

CORBA::ContainedSeq_var operations =
obj_def->contents (CORBA::dk_Operation,

0);

The second argument tocontents indicates that we are not
excluding inherited operations in our list. Now that we have a
list of our target object’s operations, we must have some crite-
ria to tell us which operation is the one we want. We assume
that such criteria are in place in the application, and iterate
over the operation list.

CORBA::ULong length = operations->length ();
CORBA::OperationDef_var target_op;
for (CORBA::ULong i = 0; i < length; ++i) {

if (/* criteria are satisfied */) {
target_op =

CORBA::OperationDef::_narrow (
operations[i].in ()

);
break;

}
}

Now we can create a DII request, using the operation’s name.

CORBA::String_var op_name =
target_op->name ();

CORBA::Request_var req =
target_obj->_request (op_name.in ());

We can also set the return type and populate the request’s ex-
ception list. The Interface Repository creates the TypeCode by
calling the TypeCodeFactory.

CORBA::TypeCode_var rettype =
target_op->result ();

req->set_return_type (rettype.in ());
CORBA::ExceptionDefSeq_var op_excepts =

target_op->exceptions ();
length = op_excepts.length ();
CORBA::TypeCode_var except_type;
for (CORBA::ULong j = 0; j < length; ++j) {

except_type = op_excepts[i].type ();
req->exceptions ()->add (except_type.in ());

}
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Next we query the operation definition for the parameter list.

CORBA::ParDescriptionSeq_var op_params =
target_op->params ();

The typeParDescriptionSeq is a sequence of structs,
each containing the parameter’s description,e.g., its name,
type, and direction. From this information, we can create a
Dynamic Any for each argument and assign the value as we
saw in the previous version of our example. We can find out
more about the operation’s return type as follows:

CORBA::IDLType_var ret_def =
target_op->result_def ();

Likewise, we can further queryret_def for its structure to
assist in incrementally extracting the member values of the
complex return type in our example. Note that the code exam-
ple is now free of the arbitrary, hard-coded values and actions
that it contained in the previous two versions.

Figure 11 shows a UML sequence diagram of a distributed
scenario consisting of a client, a server, an interface repos-
itory, and an interface repository loader (with an associated
IDL file), all remote from each other. Although this scenario
is only one of several possible configurations and action se-
quences, it serves to show how all the dynamic typing capabil-
ities work together. The object name boxes at the top of each
lifeline are color coded, with objects of like color being neces-
sarily collocated. TypeCodes and Anys are also objects in this
scenario, but since no calls are made on any of their methods,
they are not given lifelines of their own.

Note that the client creates the DII request while the inter-
face repository is being updated. It is shown this way in the
figure to save space, and in an actual execution would cause no
problem, as long as the update is completed before the client
queries the repository. In the interest of brevity, the complete
set of calls to the Interface Repository and to Dynamic Anys
has been collapsed, and the extraction of the return value has
been omitted.
Implementing the solution in TAO. The TAO IFR imple-
mentation is a large and complex piece of software, with the
source code generated from the OMG IDL specification alone
totaling over 100,000 lines. Below, we present the design chal-
lenges encountered in the design and implementation of the
TAO IFR and explain how these challenges were met.
� IFR design challenges. Like TypeCodes and Dynamic

Anys, the Interface Repository must be able to deal with com-
posite types that may be deeply nested and complex. The op-
erations that retrieve items from the repository and create new
entries in the repository both have CORBA objects as their end
products. The repository may be required to have a long life-
time, longer than that of an ORB or an application process.
The design of the Interface Repository therefore requires the
resolution of the following forces:

� Efficient storage and retrieval of complex nested types

� OO database characteristics

� Persistent storage option

Since IR Objects contain information about the definition
of other objects, they may be viewed as meta-objects that con-
tain the information in their state. The Memento pattern was
used to externalize and record this state without violating en-
capsulation [21]. This pattern also allows restoration of the
meta-object from its recorded state, reversibility of transac-
tions, and the storage of incremental changes in state. The
underlying container of the repository uses hash tables for ef-
ficient retrieval of the meta-object state, and a memory map
for persistence. The globally unique repository id that every
IDL named type declaration has can be used, if is known, as a
key for storage in a special index section for increased lookup
efficiency.

� IFR underlying container data structures. To mimic
the nested structure of the data contained by Interface Repos-
itory, its underlying container takes the form of a tree-like hi-
erarchy of hash tables. Each table can contain both values
(stored as integers, strings or binary chunks of specified size),
and other tables (stored as string key names) calledsections,
each of which is the root of a subtree, as shown in Figure 12.

subtree string integer binary

Figure 12: Underlying Container Structure

� Request dispatching. The CORBA Portable Object
Adapter (POA) is a server-side entity that matches requests to
servants. There may be several POAs in a server process, each
with one or more servants that are registered with it, and each
created with zero or more policy values that govern facets of
its behavior. When the Interface Repository service starts up,
a POA is created to manage it. This POA is created with the
PERSISTENTpolicy, which enables the use of a backing store
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Figure 11: Client Request Using Dynamic Typing

to aid in restoration of state in the event of a server crash. An-
other POA is created to manage the contents of the repository.
It also has thePERSISTENTpolicy, as well as three others:

� USER ID—When an object is registered with its POA, the
POA requires the ObjectId portion of the IOR to be exter-
nally supplied instead of being created by the ORB. We
will see how this ObjectId is used to create servants and
to locate an entry in the repository.

� USE SERVANT MANAGER—The POA does not dispatch
to a servant already in its object table, but instead creates
a servant. The servant may be created once for the life-
time of the POA (this option is calledServant Manager)
or created and destroyed for each request (this options is
calledServant Locator).

� NON RETAIN—Selects the Servant Locator option above.

�Servant creation and lifecycle The Servant Locator op-
tion creates a servant for each method invocation, by subclass-
ing PortableServer::ServantLocator and overrid-
ing its methodspreinvoke andpostinvoke . Below is a
simplified version of the override in our implementation.

class IFR_ServantLocator
: public PortableServer::ServantLocator

{
public:

virtual PortableServer::Servant preinvoke (
const PortableServer::ObjectId &oid,
PortableServer::POA_ptr poa

)
{

CORBA::String_var s =
PortableServer::ObjectId_to_string (oid);

ACE_Configuration_Section_Key root_key =
this->repo_->root_key ();

ACE_Configuration_Section_Key servant_key;
ACE_Configuration *config =

this->repo_->config ();
config->expand_path (root_key,

s.in (),
servant_key);

IFR_Servant_Factory *factory =
this->repo_->servant_factory ();

PortableServer::Servant servant =
factory->create_servant (servant_key,

poa);
return servant;

}
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virtual void postinvoke (
PortableServer::Servant servant

)
{

delete servant;
}

private:
TAO_Repository_i *repo_;

};

The ObjectId of a repository entry is composed from its IDL
scoped name, using backslashes for separators. In our online
music e-commerce example, the IR Object corresponding to
the operationGetInfo() would have an ObjectId formed
by the following:

PortableServer::ObjectId *oid =
PortableServer::string_to_ObjectId (

"Warehouse\GetInfo"
);

There is a one-to-one mapping between an entry’s scoped
name and the path name from the repository root to the entry’s
location, and we can convert in either direction using a string
like the one above as an intermediate. The repository con-
tainer methodexpand path takes the string and returns the
internal key corresponding to the entry’s location. Appendix A
contains more extensive coverage of the Interface Repository’s
internal structure and layout.

After we have the entry key, we pass it to a servant fac-
tory, which reads theCORBA::DefinitionKind value
(see Appendix A) stored in the section corresponding to the
key. The servant factory then creates an instance of the appro-
priate class based on theDefinitionKind , passing in the
key as state. The resulting servant now represents the reposi-
tory entry and is ready for the upcall.
� IR object creation and lifecycle A reference to an IR

Object may be obtained by creating a new entry in the repos-
itory (in which case a reference to the new entry will be re-
turned to the caller) or by querying an existing IR Object refer-
ence. The IR Object reference obtained by either method will
be valid until the Interface Repository service is shut down or
until the repository contents are modified in a way that changes
the path in the repository tree from the root to the entry cor-
responding to the IR Object. If this happens, the path string
constituting the ObjectId is no longer valid, and a fresh object
reference must be obtained.

2.10 Managing Run-time Type Information

Context. Any domain where an Interface Repository will be
used to provide interface definition information.
Problem. An Interface Repository must have associated
with it one or more mechanisms to add, remove, and update
its contents. Although there may be many sources for the

information that resides in an Interface Repository, the most
common source of input is conversion from IDL declarations.
An Interface Repository loader that accomplishes such con-
versions would need to parse these declarations in the man-
ner of an IDL compiler, although its subsequent actions would
be quite different. When processing IDL declarations, such a
mechanism should reuse the parsing engine of the IDL com-
piler.

Dynamic CORBA solution! IFR Loader. Create anIFR
loaderthat translates the contents of an IDL file into Interface
Repository entries.

Implementing the solution in TAO. The TAO IFR loader
shares an IDL parsing engine with the TAO IDL compiler. To
reuse the IDL compiler’s parsing engine, it was first necessary
to modify the IDL compiler itself, which had previously been
compiled and linked as a monolithically program. To improve
its flexibility, it was refactored [24] into three components:

� Front-end (FE) library , which is resuable software for
validing grammar and syntax, and for building the AST.

� Back-end (BE) library , which is a pluggable library for
specialized functions,e.g., code generation or Interface
Repository management.

� Top-level executable, which is a thin layer for prepro-
cessing, parsing command line arguments, initialization,
and execution. This component can vary with the back-
end library since it must be aware of the command-line
arguments recognized by the particular back-end that is
used.

Figure 13 shows how the IDL compiler has been refactored
and then extended to serve multiple purposes. Like the TAO
IDL compiler, the back-end library of the TAO Interface
Repository loader uses the Visitor pattern [21] to traverse the
AST and perform its actions through the usual scheme of dou-
ble dispatching with virtual methods. The specific action taken
depends on the most derived type of both the AST node and
the visitor.

By default the loader creates entries in the repository corre-
sponding to declarations in the processed IDL file, but it may
also be set by command-line argument to remove the entries,
if they are found in the repository. Managing the contents of
the interface repository in this way enhances the repository’s
built-in error checking, which is defined by CORBA excep-
tions specified for various error cases, but is by no means a
foolproof guard against IDL errors and inconsistencies.

The IDL parser can detect errors within a single IDL file
early, before any remote calls on the repository are made. Us-
ing the create/destroy portion of the CORBA Interface Repos-
itory API in an ad hoc manner, on the other hand, provides
no such early detection of IDL errors, and may necessitate a
transaction reversal in order to keep the repository in a correct
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and consistent state. In any event, if such a transaction rever-
sal does become necessary, the entry-removing option of the
Interface Repository loader makes it a simple matter to back
out of a transaction at the file level.

3 Evaluation and Lessons Learned

This section evaluates the dynamic CORBA capabilities pro-
vided by TAO and summarizes lessons learned from our expe-
riences.

3.1 Evaluation of Dynamic Typing Capabilities

Section 2 presented a wide range of dynamic typing capabili-
ties and demonstrated their use. Based on our experience im-
plementing and using these capabilities, we have observed the
possibilities, tradeoffs, and limitations of dynamic typing ca-
pabilities described below.
Interdependency. The order in which the various dynamic
typing capabilities have been presented in this paper can also
be viewed as a progression of dependency. For example, an
Any cannot exist without a TypeCode, and all the other dy-
namic typing capabilities depend on these two. In some cases,
the dependency is not absolute, but nevertheless imposes sig-
nificant limitations. Dynamic Anys do not depend on DII (or

NamedValue and NVList, on which DII itself depends), but
their use will be circumscribed, since the end product of Dy-
namic Any composition (an Any) can then be used only in a
static invocation. If an application can make a static invocation
with an Any in the argument list, it is likely that the generated
insertion and extraction operators for that Any are present as
well, which would probably eliminate the need for Dynamic
Anys in the first place. Likewise, the Interface Repository does
not depend on DII, but the results of IFR queries are of lim-
ited use unless they are targeted for the assembly of a dynamic
invocation.
Hybrid Applications. Although the examples and compar-
isons in this paper have presented applications as either wholly
statically types or wholly dynamically typed, in a real applica-
tion this need not be the case. An application may use dy-
namic typing in only some areas, or it may use a subset of
dynamic typing capabilities, subject to the dependencies men-
tioned previously. An application may also have some “out-
of-band” source of type information at run-time. This source
may replace one or more dynamic typing capabilities.
Overhead vs. Generality. An application is most adaptable
and flexible when it uses the complete set of dynamic typing
capabilities. As we have seen in Figure 14, this choice may
nearly double the size of the middleware that must be linked
by the application, compared to one that uses static typing. We
have also seen from the example code in Sections 2.5 and 2.8
how the size of the application code itself may grow, as well
as the indirection of function calls. Although minimizing size
and indirection are worthwhile, there are many cases where
their sacrifice is an acceptable tradeoff, when adaptability and
flexibility are the paramount concerns.
Portability. The dynamic typing capabilities mentioned in
this paper have been part of the CORBA specification for some
time. Any CORBA-compliant ORB will provide a complete
set, and applications that run on multiple ORB implementa-
tions should find few if any restrictions in choice of ORB ven-
dor.

3.2 Lessons Learned

Below, we present the key lessons learned from our experi-
ence in the design and use of dynamic typing capabilities in
CORBA.
ORB Footprint Management. Not every ORB or applica-
tion will require all, or even any, of the dynamic typing ca-
pabilities. In such cases, we wish to avoid penalizing an ap-
plication with extra footprint for capabilities it does not use.
The Interface Repository service can be compiled and run in
a separate process, as is the case with other common CORBA
services, but it would be advantageous for the ORB to know
about the client-side portion of the Interface Repository, in
cases where the ORB has no IFR of its own running but wishes
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to connect to a remote IFR. We can have the best of both
worlds by separating the client-side and server-side portions
of the IFR, and compiling the client-side portion in a separate
library, as with TypeCodeFactory and Dynamic Any. An ap-
plication can optionally link only to this library, while the IFR
service must always link to it.

However, there are dependencies between the ORB and the
client-side portion of the IFR that must be circumvented be-
fore this separation of libraries can be achieved. As shown in
Figure 8, the solution for TypeCodeFactory has also been ap-
plied to the IFR client library, with an abstract/concrete set of
adapter classes and a Component Configurator to make sure
that only pure virtual functions are added to the ORB if the
application does not need to use an Interface Repository.

Figure 14 shows the relative sizes of all the dynamic typ-
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Figure 14: Relative Sizes of ORB and Dynamic Typing Capa-
bilities

ing capabilities that have been mentioned so far, along with
the size of the ORB both with and without them. The size
of the ORB without any dynamic typing capabilities has been
normalized to 1.0. The graph shows that the size of the ORB
nearly doubles when all the dynamic typing capabilities are
linked in. By selecting only the subset of capabilities needed,
developers can keep the size of their applications to a mini-
mum.
Software Reuse. It is widely accepted that software reuse
results from the use of design patterns. However, software
reuse may also be accomplished outside the application of any
design pattern. For example, the modularization of the TAO
IDL compiler described in Section 2.10 enabled the reuse of
the code which parses IDL and constructs an AST. This code
now resides in its own library, and is available for use with
code-generating backends targeting other languages, such as
Java or XML.
ORB Subsetting. DII/DSI, TypeCodeFactory, Dynamic
Any and the Interface Repository have all been implemented

in TAO to be compiled into separate libraries. This practice
has been repeated with other components of TAO, and is a
more flexible alternative to the Minimum CORBA specifica-
tion [20]. Subsetting work in TAO is ongoing, and is further
described in Section 5.2.

4 Related Work

This section compares and contrasts our work with represen-
tative related work. Sections 4.1 and 4.2 each describes non-
CORBA research that is a precursor to elements of the OMG
specification related to dynamic typing. Section 4.3 compares
some features of the Interface Repository to a similar entity in
Microsoft COM. Section 4.4 describes a scripting language
that uses the dynamic typing capabilities mentioned in this
paper. Section 4.5 compares the different marshaling mech-
anisms used with static and dynamic typing. Finally, Sec-
tion 4.6 places dynamic typing in a larger context, as one of
a group of meta-programming mechanisms.

4.1 Dynamic Type and Value Representation

The idea of combining an object’s value along with a type de-
scription in a generic type container has been studied for many
years. For example, in 1989, Abadi et al [25] introduced a
data type calledDynamicas an aid to type determination at
run-time. This data type was a two-tuple, consisting of a bi-
nary representation of the data object and a representation of
its type. The Dynamic design was prescient of the CORBA
Any.

4.2 Self-Describing Objects

The virtual method get_interface() defined in
CORBA::Object enables any CORBA object to be queried
about its own definition. The object does not physically
contain the description information, but instead resolves an
interface repository (if one is running that has registered with
the same ORB to which the object’s POA is registered) and
passes in its repository id for lookup.

In [26], Muckelbauer and Russo describe how they de-
veloped theRenaissance Interface Description Language
(RIDL). An RIDL specification is translated into a tar-
get language, such as C++, and then used by an
object to describe itself when its implicitly supported
signature() method is called. TheCORBA::Object::
get_interface() method is much more flexible. Since
get_interface() accesses an interface repository, a
CORBA::InterfaceDef IR Object is returned, which may
in turn be queried to retrieve information about the interface’s
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operations, attributes, typedefs, or other IDL types the inter-
face may contain, as well as a list of ancestors. The query
may also be made with options that mask the type of contents
reported or exclude inherited operations.

4.3 Microsoft COM Automation

Automationis a feature of Microsoft COM [27] that makes
it easier for macro and interpretive languages (usually Vi-
sual Basic or Visual Basic Script) to access COM com-
ponents [28]. To make the access useful, COM Automa-
tion provides run-time type information in atype library.
A type library can be created by calling the COM Au-
tomation methodCreateTypLib and using the resulting
ICreateTypeLib interface to populate the type library.
However, a type library is more often created from an IDL
file by the Microsoft IDL (MIDL) compiler, using Microsoft
extensions to the Distributed Computing Environment (DCE)
specification [29].

The Microsoft COM type library is similar in purpose to
the CORBA Interface Repository, and is likewise populated
with IDL declarations. However, a type library may also uses
Microsoft’s extensions to OMG IDL. These extensions include
the library keyword, which can label sections of an IDL file
for compilation into the type library (unlabeled sections are
excluded) and a provision for including help strings in an IDL
file.

Microsoft COM type libraries are more limited than the
CORBA Interface Repository in many ways. For example,
each COM type library is populated from the contents of a sin-
gle IDL file, and may not be combined into a larger repository
that can be used as a warehouse of type information. In addi-
tion, the TAO Interface Repository loader has a command-line
option that causes the contents of the IDL file to be removed
from the repository. This option, when used in conjunction
with the normal adding mode, provides a safe way to update
the IFR with a new version of an IDL file.

4.4 CorbaScript

CorbaScript is an object-oriented interpretive language that
can be used to create generic applications whose behavior
can be determined at run-time [30]. It uses Dynamic Anys,
DII/DSI, and the Interface Repository to construct CORBA
clients and servers directly from IDL decarations, without
need for compiled stub and skeleton code. Integrating Cor-
baScript with TAO proved to be an excellent regression test to
detect inconsistencies and incompatibilities with TAO’s Inter-
face Repository and Dynamic Any implementation.

4.5 Compiled vs. Interpretive Marshaling

TAO sends requests statically using a technique calledcom-
piled marshaling[31]. Compiled marshaling is performed
via overloaded operators that are generated by TAO’s IDL
compiler for each new IDL type defined in an application.
Other code generated by the IDL compiler uses these opera-
tors to marshal and demarshal operation parameters automat-
ically. Since both client and server have compiled this gener-
ated code, there is no need for the application to do any type
investigation at run-time, at either endpoint.

The dynamic alternative to compiled marshaling is called
interpretive marshaling. In interpretive marshaling, the ap-
plication uses methods provided by the ORB to traverse the
tree-like structure of a TypeCode at run-time, doing so recur-
sively until basic IDL types are discovered, at which point
the ORB-defined operators for the basic types can be used to
marshal or demarshal the values. This process corresponds to
the IDL compiler’s generation of specialized operators, except
that the IDL compiler traverses part of the Abstract Syntax
Tree (AST), while the generic ORB code traverses the Type-
Code.

Comparison of compiled and interpretive marshaling re-
veals the classic time/space tradeoff. With compiled marshal-
ing, we save the time used for tree traversal by moving it to
compile-time and delegating it to the IDL compiler, and the
price we pay is the extra generated code, which grows with
each new declared data type. Interpretive marshaling, by do-
ing the traversal at run-time, can use one-size-fits-all code that
is centrally located in the ORB and available to any number of
applications [18].

Besides the time/space tradeoff, there is another difference
between compiled and interpretive marshaling, and thus also
between static and dynamic typing – an important difference
that is the primary motivation for the work described in this pa-
per. An application that uses only compiled marshaling must
also use static typing, and cannot therefore handle any oper-
ations that are not defined at compile-time. Conversely, an
application that uses the ORB’s general-purpose code for in-
terpretive marshaling may still limit itself to static typing, but
it need not do so. It may instead use the dynamic typing ca-
pabilities described in Section 2 to handle an unlimited set of
interfaces, parameter types, and operation signatures. Such an
application can adapt, be open-ended, and even evolve over
time.

4.6 Middleware Meta-Programming Mecha-
nisms

The dynamic typing capabilities described in this paper form
part of a larger group of middleware-based meta-programming
mechanisms that improve the adaptability of distributed appli-
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cations. Examples of these meta-programming mechanisms
include [17]:

� Smart proxies, which modify interface behavior without
requiring application re-implementation.

� Portable Interceptors, which are a standard CORBA
feature that can be used at specified points in the end-
to-end invocation path.

� Pluggable protocols, which are used to decouple an
ORB’s transport protocols from its higher-level compo-
nents.

� Bridges, which are used to connect ORBs residing in dif-
ferent domains or systems running different middleware
technologies.

These meta-programming mechanisms can be used by both
static and dynamic CORBA applications. We therefore do not
focus on them in this paper since our emphasis is on dynamic
CORBA features.

5 Future Work

Although the work presented in this paper covers a timespan
of over three years, there are many more R&D issues that re-
main to be addressed, both in the area of dynamic CORBA in
general and in the area of dynamic typing in particular. This
section presents an overview of these topics, and, where pos-
sible, some speculation about fruitful approaches.

5.1 Performance Optimization

As seen in Section 2.9, queries or updates to the TAO Interface
Repository presently use the Servant Locator option to create
temporary servants for each call. Such a scheme is an efficient
way to encapsulate a logical OO database entry on the fly. It
requires that servants be created by a factory, however, where
heap allocation must be used, thereby degrading performance.

Since the set of operations of all IR Object classes is static,
the locations of method implementations in memory could be
stored in a table, and the operations dispatched using a per-
fect hashing scheme [32]. Using this method of operation dis-
patch, one generic servant (whose lifetime parallels that of the
repository) could handle all queries and updates, eliminating
the need for heap or even stack allocations for servant creation
with each call.

As discussed in Section 4.5, interpretive marshaling in an
ORB does not perform as well as compiled marshaling in gen-
erated code. Interpretive marshaling is slower in part due to
the use of certain accessor methods in the TypeCode and Any
interfaces, which must return copies of their member data. The
caller is then responsible for destroying the copy. In an appli-
cation, this type of copying makes sense. However, copying

is rarely warranted with interpretive marshaling since it is en-
tirely internal to the ORB. Alternate methods that do not copy
member data when accessed could be created and used inter-
nally within the ORB.

5.2 Footprint Reduction

The dynamic typing tools whose design and implementation
have been described in this paper have all been created as self-
contained libraries, making the additional compilation time
and the additional footprint from linking completely optional.
However, the most basic CORBA dynamic typing capabilities,
such as TypeCodes, Anys, and the ORB’s interpretive marshal-
ing code, have not yet been separated in this way. Restructur-
ing of ORB code to minimize dependencies plus the use of
the Component Configurator [22] and Adapter [21] patterns,
as described in Sections 2.7 would allow further subsetting of
the ORB, along with reduced footprint and increased config-
urability.

5.3 Interface Repository Scalability

Scalability of the TAO Interface Repository could be increased
in both directions if the repository container class were mod-
ified to allow a size to be passed to the constructor of the un-
derlying hash tables. Currently a default size is used for all
hash table construction. Another approach to increased scala-
bility would be to use real-time hash functions and tables [33],
which amortize their resizing.

5.4 Interface Repository Federation

Although not possible in the current implementation, it is con-
ceivable for an ORB to have access to multiple interface repos-
itories. Federation of repositories could have one of several
motivations, each with its own benefits.

� Reduction of id clashes, since repository ids must be
unique only within a single repository.

� Specialized contents for each repository.

� Different security restrictions for each repository.

5.5 Emerging Technologies

5.5.1 The CORBA Component Model

Several areas of research related to the CORBA Component
Model (CCM) [34] have the potential for cross-fertilization
with dynamic typing and dynamic CORBA. They are de-
scribed in the paragraphs below.
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Component Feature Discovery. Through the
Navigations , Receptacles , and Events inter-
faces, clients may discover the facets, receptacles, and event
sources/sinks supported by a component. CORBA’s dynamic
typing capabilities could facilitate a self-describing capability
in a component. Alternatively, they could work with the CCM
Component Implementation Definition Language (CIDL)
compiler to generate a table of such information to be included
in the component implementation.

Component Configuration. A component-aware Interface
Repository could maintain a dynamic database of informa-
tion to be used interactively by the CCM configuration inter-
facesConfigurator , StandardConfigurator , and
HomeConfiguraion during the configuration and deploy-
ment phases of distributed component application.

IDL Extensions. The import keyword mandated by CCM
will require the IDL compiler to use dynamic typing for its
support. This support could be realized by software that essen-
tially does the reverse of TAO’s Interface Repository loader,
i.e., generates IDL declarations from repository entries. An
interface repository would also be an ideal place for applica-
tions to discover component port information.

5.5.2 Model-Integrated Computing

Model-Integrated Computing (MIC) extends the scope and use
of models with model analyzers and model interpreters so they
can be used in every phase of system development [35].

IFR and Configuration Manager. In a component-based
approach to MIC, a component-aware Interface Repository
could function as a component database for use by the MIC
Configuration Manager [36] in component assembly. This
collaboration would give a system dynamic re-configuration
cabability based on current run-time information.

Component Compatiblity. A Configuration Manager or
other MIC tool may wish to know if two components are com-
patible before connecting them. This decision might be made
on the basis of the components’ ancestry,i.e., whether or not it
inherits from a given IDL interface. This can be discovered by
calling theis_a() method that is inherited by all children of
CORBA::Object . However, with no compiled stub code to
use, the MIC tool would have to compose a DII request, even
though the name and signature of the operation is known,

6 Concluding Remarks

The widespread transition to component models as the
paradigm of choice for distributed application development
is increasing the interest in dynamically typed middleware,
which is an integral part of component-based application de-
velopment [37]. To support changing requirements and con-
ditions late in application lifecycles,i.e., during deployment
and at run-time, DOC middleware must therefore continue
to evolve to support these new requirements. This paper (1)
presents the key design challenges faced when adding dy-
namic typing capabilities to CORBA middleware and (2) de-
scribes how these design challenges were resolved via the
systematic application of patterns and object-oriented design
techniques.

Despite the widespread acceptance of DOC middleware,
such as CORBA, COM+, and J2EE, developers are still faced
with a great deal of diversity and heterogeneity among service
domains when trying to achieve widespread deployment and
use of their applications. For this reason, there is a growing
interest in dynamic applications that can be open-ended and
adaptive. By examining an extensive number of examples,
we have shown that dynamic typing enables applications to
possess these qualities, and therefore can work effectively in
domains where application using statically typed middleware
alone cannot.

By extending previous work on dynamic CORBA in TAO,
we have designed and implemented a complete set of dy-
namic typing capabilities for TAO. By judicious application
of patterns, software reuse, refactoring, and library subsetting,
we have shown that extensive functionality can be added to
an ORB implementation without incurring excessive penal-
ties in performance overhead or memory footprint for applica-
tion that do not use the additional capability. All the dynamic
CORBA capabilities described in this paper are available in
the TAO ORB, which can be downloaded fromdeuce.doc.
wustl.edu/Download.html .
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A Appendix

This section contains the details of how the Memento pattern
was used to externalize the state of the meta-objects (IR Ob-
jects) that describe IDL declarations in the Interface Reposi-
tory. The figures below show the underlying structures in the
Interface Repository container for entries corresponding to the
various IR Object types. As explained in Section 2, internal
IDs of nodes in the tree of hash tables can be of four types -
string, unsigned long, binary chunk (of specified length) or the
root of another subtree.

Figure 15 shows how each of these node types is represented

subtree string unsigned long binary

Figure 15: Node Type Legend

in subsequent figures. The labels shown on each node are the
string names that constitute the external id in the hash table.
Many of these string names are converted from the hexadeci-
mal representation of unsigned long integers. This was done
to preserve the order of declaration when iterating over the

subsections of a ”defns” section, since the available hash ta-
ble iterators do not guarantee to reproduce this order. Nodes
labeled ”<xxxxxxxx>” represent some unsigned long value
in hex converted to a string. Unsigned long values labeled
”count” contain the number of subsection entries in the table.

IR Objects corresponding to typed IDL declarations in-
herit from one or both of the abstract IR Object classes
Container andContained . Figures 16 and 17 show the
node structure common to all IR Object types inheriting from

"<xxxxxxxx>"

"defns"

"count" "00000000" "00000001" "00000002" .   .   .

Figure 16: Container

"<xxxxxxxx>"

"id" "name" "container_id""abs_name""version" "def_kind"

Figure 17: Contained

these base classes. Nodes for specific IR Object types shown
in subsequent figures will exist in addition to those for any
base classes that apply from these two figures. For a complete
description of the inheritance structure of IR Objects, see the
CORBA specification [20].

Figure 18 shows the root of the tree and its children. Subse-

"repo_ids" "defns""pkinds" "strings" "wstrings" "sequences"

"root"

"arrays"

Figure 18: Repository Root

quent figures show expansions of these child nodes.
The subtree shown in Figure 19 is an index section where

repository ids are mapped to strings which are backslash-
separated segments representing the path from the root to the
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"repo_ids"

"<repo_id>" .   .   ."<repo_id>"

Figure 19: Repository ID Index Section

entry corresponding to the repository id. The path string can be
passed to a method in the Interface Repository container class
that returns the external id of the item, if it is in the repository.

Figure 20 shows the expansion of the section that contains

"pkinds"

.   .   ."pk_void""pk_null" "pk_short"

"pkind""def_kind"

"pkind""def_kind"

"pkind""def_kind"

Figure 20: PrimitiveDef Section

IR Objects of type PrimitiveDef, which correspond to the basic
IDL data types.

Figures 21 and 22 show the subtrees that contain entries for

"strings"

"count" "00000000" "00000001" .   .   .

"bound""def_kind" "name"

"bound""def_kind" "name"

Figure 21: StringDef Section

IDL string and wide strings, respectively. The structure of both
subtrees is identical, since IDL strings and wide strings are not
named types, so only the bound is needed to distinguish one
string or wstring from another.

Figures 23 and 24 show the subtrees that contain IDL decla-
rations of sequences and arrays, respectively. Like IDL strings
and wide strings, IDL sequences and arrays are not named
types, so their declarations are collected in these top-level sec-
tions. The rightmost child of the root node in Figure 18 corre-
sponds to the “defns” node seen in Figure 16, since the repos-
itory is itself an IR Object that inherits from Container.

"wstrings"

"count" "00000000" "00000001" .   .   .

"bound""def_kind" "name"

"bound""def_kind" "name"

Figure 22: WstringDef Section

"sequences"

"count" "00000000" "00000001" .   .   .

"bound""def_kind" "name"

"bound""def_kind" "name"

"element_path"

"element_path"

Figure 23: SequenceDef Section

"arrays"

"count" "00000000" "00000001" .   .   .

"length""def_kind" "name"

"length""def_kind" "name"

"element_path"

"element_path"

Figure 24: ArrayDef Section
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The remaining figures in this section show the entry struc-
tures for named IDL types. Figure 25 shows the structure

"<xxxxxxxx>"

"original_type"

Figure 25: AliasDef

for AliasDef, the IR Object type that corresponds to an IDL
typedef declaration. We see that this structure is quite sim-
ple, requiring only a path to the original type, located else-
where in the repository. Figure 26 shows the node structure
corresponding to an IDL interface’s attribute declaration. The

"<xxxxxxxx"

"type_path""name""mode"

Figure 26: AttributeDef

”mode” value tells us whether or not the attribute has been de-
clared as read-only, the ”typepath” string holds the path to the
repository entry for the attribute’s type, and the ”name” string
contains the attribute’s local name in the enclosing interface
declaration.

Figure 27 shows the node structure for ConstantDef. The
size of the stored binary data is determined by the constant’s

"<xxxxxxxx>"

"type_path" "value"

Figure 27: ConstantDef

type, which must be looked up at retrieval time in order to
extract the constant’s value. The path value in ”typepath”
will point either to an entry in one of the top-level sections
”pkinds”, ”strings” or ”wstrings”, or to an EnumDef entry,
whose structure is shown in Figure 28. In an EnumDef en-
try, a ”count” value and hex-to-string subsections are used to
preserve the order of the enum values when a repository query
iterates over them to create a list.

In Figures 29 and 30, we see that the entry structures are
identical, the only difference in the two being in IDL syntax,
where an exception may contain no members while a struct
may not. In the repository, both StructDefs and ExceptionDefs

.   .   .

"<xxxxxxxx>"

"count" "00000000" "00000001"

"name""name"

Figure 28: EnumDef

"<xxxxxxxx>"

"refs"

"count" "00000000" "00000001"

"path""name""path""name"

.   .   .

Figure 29: ExceptionDef

"<xxxxxxxx>"

"refs"

"count" "00000000" "00000001"

"path""name""path""name"

.   .   .

Figure 30: StructDef
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have a ”refs” section, which in turn contains a ”count” value
and hex-to-string subsections, again to preserve the member
order in the event of iteration by a repository query. An Excep-
tionDef in the repository representing an empty IDL exception
would have a ”count” value of 0 under the ”refs” section, and
nothing else.

Figure 31 shows how the entry structure for UnionDef is

"<xxxxxxxx>"

"refs"

"count" "00000000" "00000001"

"path""name""path""name" "label""label"

.   .   .

"disc_path"

Figure 31: UnionDef

similar to that for ExceptionDef and StructDef, with the ad-
dition of a path to the entry for the discriminator type, and a
label value for each member. If a member happens also to be
declared inside the enclosing union, struct or exception, the
”path” string for the member will point to an entry under the
”defns” section of the member’s enclosing scope, since Union-
Def, StructDef and ExceptionDef all inherit from Container.
As explained above, nodes common to all IR Object inheriting
from Container and/or Contained are not shown in every figure
to keep them as uncluttered as possible. The node structure
for InterfaceDef, shown in Figure 32, has a section contain-

"<xxxxxxxx>"

"attrs"

"count" "00000000" "00000001"

"inherited"

"00000000" .   .   .

"ops"

"00000000" "00000001""count"

"00000001"

.   .   .

.   .   .

Figure 32: InterfaceDef

ing a list of parent interfaces, and a section each for attributes
and operations, each of which has a ”count” value and hex-to-
string subsections to preserve the order of declaration.

Figure 33 shows that a repository entry for an IDL native
declaration contains no additional information, which is to

"<xxxxxxxx>"

Figure 33: NativeDef

be expected since the corresponding IDL declaration contains
none. On the other hand, the node structure for an Opera-
tionDef, shown in Figure 34 is the most complex. There is a
”mode” value, which tells us if the IDL operation is declared

.   .   .

"params"

"count" "00000000" "00000001"

"type_path""name"

"type_path""name""mode"

"mode"

"xxxxxxxx"

"mode" "result" "contexts"

"00000000" "00000001"

"excepts"

"00000000" "00000001"

.   .   .

.   .   .

Figure 34: OperationDef

as oneway, and a ”result” value which contains the path to the
repository entry corresponding to the operation’s return type.
The ”contexts” section contains the string names of the oper-
ation’s contexts, if any, and the ”exceptions” section contains
the paths to ExceptionDef entries in the repository for any ex-
ceptions the operation may raise. Finally, the ”params” section
has a ”count” value and hex-to-string subsections to preserve
the order of parameter declaration. Each parameter subsec-
tion is in turn composed of a ”mode” value, which labels the
parameter asin . inout , or out , a string value containing
the parameter’s name, and a string containing the path to the
repository entry corresponding to the parameter’s type.
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