
A Pattern Language for Efficient, Predictable,
and Scalable Dispatching Components

Irfan Pyarali and Carlos O’Ryan Douglas C. Schmidt
firfan,coryang@cs.wustl.edu d.schmidt@vanderbilt.edu

Department of Computer Science, Washington University Electrical Engineering & Computer Science Dept.
St. Louis, MO 63130, USA Vanderbilt University, Nashville, TN�

Abstract

In an increasing number of application domains, dispatch-
ing components are responsible for delivering upcalls to one
or more application objects when events or requests arrive
in a system. Implementing efficient, predictable, and scal-
able dispatching components is hard and implementing them
for multi-threaded systems is even harder. In particular, dis-
patching components must be prepared to deliver upcalls to
multiple objects, to handle recursive requests originated from
application-provided upcalls, and often must collaborate with
applications to control object life-cycles.

In our distributed object computing (DOC) middleware re-
search, we have implemented many dispatching components
that apply common solutions repeatedly to solve the chal-
lenges outlined above. Moreover, we have discovered that
the forces constraining dispatching components often differ
slightly, thereby requiring alternative solution strategies. This
paper presents two contributions to the design and implemen-
tation of efficient, predictable, scalable, and flexible dispatch-
ing components. First, it shows how patterns can be applied to
capture key design and performance characteristics of proven
dispatching components. Second, it presents a pattern lan-
guage that describes a series of solutions that resolve key dis-
patching challenges arising in various DOC middleware and
applications for distributed real-time and embedded systems.

1 Introduction

Dispatching components are a core feature of many systems,
such as distributed object computing (DOC) middleware. For
instance, the dispatching components in a CORBA Object Re-
quest Broker (ORB) are responsible for delivering incoming
client eventsor requeststo other (1) ORB components and
(2) the application-level objects that implement application-
defined behavior. In general, dispatching components must

�This work was funded in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, and Siemens CT.

handle a variety of tasks, such as (1) dispatching multiple re-
quests simultaneously, (2) handling recursive dispatches from
within application-provided upcalls, (3) dispatching the same
upcall to multiple objects efficiently, and (4) adding and re-
moving objects in dispatching tables while upcalls are in
progress.

This paper presents a pattern language used to develop ef-
ficient, predictable, and scalable dispatching components in
a variety of application domains, an example of which is
shown in Figure 1. These domains include the TAO Real-

REPLICATION

SERVICE

OBJECT REQUEST BROKER

1: SENSORS

GENERATE

DATA

FLIRGPS IFF

3:PUSH (EVENTS)

2: SENSOR PROXIES DEMARSHAL DATA

& PASS TO EVENT CHANNEL

3:PUSH (EVENTS)

EVENT

CHANNEL

HUD Nav
Air

Frame
WTS

4: PULL(DATA)

Figure 1: Multiple Dispatching Components in DOC Middle-
ware

Time CORBA [1] ORB [2], real-time avionics mission com-
puting with strict periodic deadline requirements [3, 4, 5],
and distributed interactive simulations with high scalability re-
quirements [6, 7]. In addition, various dispatching-oriented
framework components, such as Reactors and Proactors [8],

1

Observers [9], and Model-View-Controllers [10] are imple-
mented using these patterns.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the context in which dispatching components
are used and identifies common requirements for several typ-
ical use cases; Section 3 presents the pattern language used
to implement efficient, predictable, scalable, and flexible dis-
patching components for both single and multiple targets; and
Section 4 presents concluding remarks.

2 An Overview of Dispatching Compo-
nents and Pattern Languages

This section summarizes the functionality and requirements of
two common use cases that illustrate the challenges associated
with developing dispatching components. The first example is
the Object Adapter [11] component in a standard CORBA [12]
ORB. The second example is a event channel in a standard
CORBA Event Service [13] or Notification Service [14].

Object Adapter dispatching components. The core re-
sponsibilities of a CORBA Object Adapter include (1) gen-
erating identifiers for objects that are exported to clients and
(2) mapping subsequent client requests to the appropriate ob-
ject implementations, which CORBA callsservants. Figure 2
illustrates the general structure and interactions of a CORBA
Object Adapter.

OBJECTOBJECT ADAPTERADAPTER

II//OO SUBSYSTEMSUBSYSTEM

ORB CORB COREORE

SERVANTSSERVANTS

SERVANTSSERVANTS

RootRoot

POAPOA
ACTIVEACTIVE OBJECTOBJECT MAPMAP

SERVANTSSERVANTS

OOBJECTBJECT IDID

OOBJECTBJECT IDID

OOBJECTBJECT IDID

PERSISTENTPERSISTENT

POAPOA

OBJECT ID

OBJECT ID

SERVANTS

SERVANTS

Figure 2: Object Adapter Structure and Interactions

In addition to its core responsibilities, a CORBA Object
Adapter must handle the following situations correctly, ro-
bustly, and efficiently:

� Non-existent objects. Clients may invoke requests on
“stale” identifiers,i.e., on objects that have been deactivated
from the Object Adapter. In this case, the Object Adapter
should not use the stale object because it may have been
deleted by the application. Instead, it must propagate an ap-
propriate exception back to the client.

� Unusual object activation/deactivation use cases.Ob-
ject Adapters are responsible for activating and deactivating
objects on-demand. Moreover, server application objects can
activate or deactivate other objects in response to client re-
quests. An object can even deactivate itself while in its own
upcall,e.g., if the request is a “shut yourself down” message.

� Multi-threading hazards. Implementing an Object
Adapter that works correctly and efficiently in a multi-
threaded environment is hard. For instance, there are many op-
portunities for deadlock, unduly reduced concurrency, and pri-
ority inversion that may arise from recursive calls to an Object
Adapter while it is dispatching requests. Likewise, excessive
synchronization overhead may arise from locking performed
on a dispatching table.

Event channel dispatching components. The CORBA
Event and Notification Services define participants that pro-
vide a more asynchronous and decoupled type of communica-
tion service that alleviates some restrictions [15] with the stan-
dard synchronous CORBA ORB operation invocation models.
As shown in Figure 3suppliersgenerate events andconsumers

SUPPLIER

SUPPLIER

CONSUMER

CONSUMER

CONSUMER

EVENT

CHANNEL

PUSH

PUSH PUSH

PUSH

PUSH

Figure 3: Participants in the COS Event and Notivation Ser-
vice Architecture

process events received from suppliers. This figure also il-
lustrates theevent channel, which is a mediator [9] that dis-
patches events to consumers on behalf of suppliers. By using
an event channel, a supplier can deliver events to one or more
consumers without requiring any of these participants to know
about each other explicitly.

To perform its core responsibilities, a CORBA event chan-
nel must address the following aspects:

� Dynamic consumer subscriptions. A robust imple-
mentation of an event channel must support the addition of

2

new consumers while dispatching is in progress. Likewise,
it must support the removal of existing consumers before all
active dispatching operations complete. In multi-threaded en-
vironments, it is possible for multiple threads (potentially run-
ning at different priorities) to iterate over the dispatching table
concurrently. Some consumers may trigger further updates,
which also must be handled properly and efficiently.

Näive implementations, such as copying the complete set
of consumers before starting the iteration, may fail if one con-
sumer is destroyed as a side-effect of the upcall on another
consumer. In multi-threaded implementations, this problem is
exacerbated because separate threads may remove and destroy
consumers in the table concurrently.

� Variable dispatching times. Dispatching events re-
quires an event channel to iterate over its set of consumers.
However, iterators make it even harder to provide predictable
implementations because the number of consumers may vary.
Some type of synchronization is therefore required during the
dispatching process.

Implementations of the Observer pattern [9] must also con-
tend with problems similar to those faced in the CORBA Event
Service. The Observer pattern propagates updates emanating
from one or more suppliers to multiple consumers,i.e., ob-
servers. An implementation of this pattern must iterate over
the set of consumers and disseminate the update to each one
of them. As with the event channel, subscriptions may change
dynamically while updates are being dispatched.

Historically, a variety ofad hocstrategies have emerged to
address the dispatching challenges outlined above. No one
strategy is optimal for all application domains or use cases,
however. For instance, real-time implementations may impose
too much overhead for high-performance, “best-effort” sys-
tems. Likewise, implementations tailored for multi-threading
may impose excessive locking overhead for single-threaded
reactive systems. In addition, strategies that support recur-
sive access can incur excessive overhead if all upcalls are dis-
patched to separate threads or remote servers. Thus, what is
required are strategies and methodologies that systematically
capture the range of possible solutions that arise in the design
space of dispatching components. One family of these strate-
gies is described in the Section 3.

3 A Pattern Language for Dispatching
Components

Certain patterns, such as Strategized Locking [8] or Strat-
egy [9] address some of the challenges associated with devel-
oping efficient, predictable, scalable, and flexible dispatching
components. In other cases, however, the relationships and
collaborations between dispatching components require more

specialized solutions. Moreover, as noted in Section 2, no sin-
gle pattern or strategy alone resolves all the forces faced by
developers of complex dispatching components. Therefore,
this section presentspatternsthat addresses the challenges for
dispatching components outlined in Section 2.

A pattern is a recurring solution to a standard problem
within a particular context [9]. When related patterns are wo-
ven together they form a “language” [16] that provides a pro-
cess for the orderly resolution of software development prob-
lems. Pattern languages are not formal languages or program-
ming languages, but rather a collection of interrelated patterns
that provide a vocabulary for solving particular problems [10].
Both patterns and pattern languages help developers commu-
nicate architectural knowledge, help developers learn a new
design paradigm or architectural style, and help new develop-
ers avoid traps and pitfalls that have traditionally been learned
only by costly experience.

Each pattern in our dispatching mechanism pattern lan-
guage resolves a particular set of forces, with varying con-
sequences on performance, functionality, and flexibility. In
general, simpler solutions result in better performance, but do
not resolve all the forces that more complex dispatching com-
ponents can handle. Application developers should not dis-
regard simpler patterns, however. Instead, they should apply
the patterns that are most appropriate for the problem at hand,
balancing the need to support advanced features with the per-
formance and flexibility requirements of their applications.

3.1 Dispatching to a Single Object

This subsection focuses on patterns for components where
events or requests are dispatched to a single target object. Sec-
tion 3.2 then describes patterns that are suitable for dispatching
to multiple objects. The initial patterns are relatively straight-
forward and are intended for less complex systems. The latter
patterns are more intricate and address more complex require-
ments for efficiency, predictability, scalability, and flexibility.

3.1.1 Serialized Dispatching

Context. Dispatching components are vital in DOC middle-
ware and applications. They typically contain a collection of
target objects that reside in one or more dispatching tables.
These tables are used to select appropriate objects based upon
identifiers contained in incoming requests. For example, as
outlined in Section 2, the CORBA architecture [12] defines an
Object Adapter [11] that (1) maps client requests to objects
supplied by server applications and (2) helps dispatch opera-
tions on server objects.

Problem. Multi-threaded applications must serialize access
to their dispatching table to prevent data corruption.

3

Forces. Serialization mechanisms, such as mutexes or
semaphores, should be used carefully to avoid excessive lock-
ing, priority inversion, and non-determinism. Distributed real-
time and embedded systems can maximize parallelism by min-
imizing serialization. However, application correctness cannot
be sacrificed to improve performance,e.g., a multi-threaded
application should be able to add and remove objects reg-
istered with the dispatching table efficiently during run-time
without corrupting the dispatching table.

Solution. Serialize dispatching of requests by using the
Monitor Object pattern [8] where a single monitor lock seri-
alizes access to the entire dispatching table, as shown in Fig-
ure 4. The monitor lock is held both while (1) searching the

MONITOR LOCK

DISPATCHING TABLE

UPCALL

THREAD

WAITING

THREADS

Figure 4: Serialized Dispatching with a Monitor Lock

table to locate the object and (2) dispatching the appropriate
operation call on the application-provided code. In addition,
the same monitor lock is used when inserting and removing
entries from the table.

Consequences. A regular monitor lock is sufficient to
achieve the level of serialization necessary for this dispatch-
ing component. Serialization overhead is minimal since only
one set of acquire/release calls are made on the lock during
an upcall. Thus, this design is appropriate when there is little
or no contention for the dispatching table or when upcalls to
application code are short-lived.

A simple protocol can control the life-cycle of objects regis-
tered with the dispatching component. For instance, an object
cannot be destroyed while it is still registered in the dispatch-
ing table. Since the table’s monitor lock is used both for dis-
patching and modifying the table, other threads cannot delete
an object that is in the midst of being dispatched.

Note, however, that this pattern may be inadequate for sys-
tems with stringent real-time requirements. In particular, the
monitor lock is held during the execution of application code,
which makes it hard for the dispatching component to predict
how long it will take to release the monitor lock. Likewise,
this pattern does not work well when there is significant con-
tention for the dispatching table. For instance, if two requests
arrive simultaneously for different target objects in the same

dispatching table, only one of them can be dispatched at a
time.

3.1.2 Serialized Dispatching with a Recursive Mutex

Context. Assume the dispatching component outlined in
Section 3.1.1 is being implemented in multi-threaded appli-
cations.

Problem. Monitor locks are not recursive on many OS plat-
forms. When using non-recursive locks, attempts to query or
modify the dispatch table while holding the lock will cause
deadlock. Thus application code cannot query or modify the
dispatch table since it is called while the lock is held.

Forces. A monitor lock cannot be released before dispatch-
ing the application upcall because another thread could re-
move and destroy the object while it is still being dispatched.

Solution. Serialize dispatching of requests by using arecur-
sive monitor lock [17]. A recursive lock allows the calling
thread to re-acquire the lock if that thread already owns it. The
structure of this solution is identical to the one shown in Fig-
ure 4, except that a recursive monitor lock is used in lieu of a
non-recursive lock.

Consequences. As before, the monitor lock serializes con-
current access to avoid corruption of the dispatching table.
Unlike the Serialized Dispatching pattern outlined in Sec-
tion 3.1.1, however, application upcalls can modify the dis-
patching table or dispatch new upcalls.

Unfortunately, this solution does not resolve the concur-
rency and predictability problems since the monitor is held
through the upcall. In particular, it is (1) still hard for the
dispatching component to predict how long the monitor lock
must be handle and (2) the component does not allow multi-
ple requests to be dispatched simultaneously. Moreover, re-
cursive monitor locks are usually more expensive than their
non-recursive counterparts [18].

3.1.3 Dispatching with a Readers/Writer Lock

Context. In complex DOC middleware and applications,
events and requests often occur simultaneously. Unless ap-
plication upcalls are sharing resources that must be serialized,
these operations should be dispatched and executed concur-
rently. Even if hardware support is not available for parallel
execution, it may be possible to execute events and requests
concurrently by overlapping CPU-intensive operations with
I/O-intensive operations.

Problem. Serialized Dispatching patterns are inefficient for
implementing concurrent dispatching upcalls since they do not
distinguish between read and write operations, and thus seri-
alize all operations on the dispatching table.

4

Forces. Although dispatching table modifications typically
require exclusive access, dispatching operations do not modify
the table. However, the dispatching component must ensure
that the table is not modified while a thread is performing a
lookup operation on it.

Solution. Use a readers/writer lock to serialize access to the
dispatching table. The critical path,i.e., looking up the target
object and invoking an operation on it, does not modify the
table. Therefore, aread lock will suffice for this path. Op-
erations that modify the dispatching table, such as adding or
removing objects from it, require exclusive access, however.
Therefore, awrite lock is required for these operations. Fig-
ure 5 illustrates the structure of this solution, where multiple
reader threads can dispatch operations concurrently, whereas
writer threads are serialized.

MONITOR R/W LOCK

DISPATCHING TABLE

UPCALL

READ

THREADS

WAITING

WRITER

THREADS

Figure 5: Dispatching with a Readers/Writer Lock

Consequences. Readers/writer locks allow multiple readers
to access a shared resource simultaneously, while only allow-
ing one writer to access the shared resource at a time. Thus, the
solution described above allows multiple concurrent dispatch
calls.

Some DOC middleware executes the upcall in a separate
thread in the same process or on a remote object. Other mid-
dleware executes the upcall in the same thread after releasing
the read lock. Thus, this readers/writer locking pattern [17]
can be applied to such systems without any risk of deadlocks.
However, this solution is not applicable to systems that execute
an upcall while holding theread lock. In that case, chang-
ing the table from within an upcall would require upgrading
the readers/writer lock from aread lock to awrite lock.
Unfortunately, standard readers/writer lock implementations,
such as Solaris/UI threads, do not support upgradable locks.
Even when this support exists, lock upgrades will not succeed
if multiple threads require simultaneous upgrades.

Note that applications using readers/writer locks become re-
sponsible for providing appropriate serialization of their data
structures since they cannot rely on the dispatching compo-
nent itself to serialize upcalls. As with recursive locks, the

serialization overhead of readers/writer locks may be higher
compared to regular locks [18] when little or no contention
occurs on the dispatching table.

Implementors of this pattern must analyze their dispatching
component carefully to identify operations that require only a
read lock versus those that require awrite lock. For exam-
ple, the CORBA Object Adapter supports activation of objects
within upcalls. Thus, when a dispatch lookup is initiated, the
Object Adapter cannot be certain whether the upcall will mod-
ify the dispatching table. Note that acquiring awrite lock a
priori is self-defeating since it may impede concurrent access
to the table unnecessarily.

Finally, this solution does not resolve the predictability
problem. In particular, unbounded priority inversion may oc-
cur when high-priority writer threads are suspended waiting
for low-priority reader threads to complete dispatching up-
calls.

3.1.4 Reference Counting During Dispatch

Context. As before, a multi-threaded system is using the dis-
patching component. However, assume the system has strin-
gent QoS requirements that demand predictable and efficient
behavior from the dispatching component.

Problem. To be predictable, the system must eliminate all
unbounded priority inversions. In addition, system effiency
should be maximized by reducing bounded priority inversions.

Forces. During an upcall, an application can invoke opera-
tions that modify the dispatching table. In addition, the dis-
patching component must be efficient and scalable, maximiz-
ing concurrency whenever possible.

Solution. Reference count the entries of the dispatching ta-
ble during dispatch by using a single lock to serialize (1)
changes to the referenced count and (2) modifications to the
table. As shown in Figure 6, the lock is acquired during the

MONITOR LOCK

DISPATCHING TABLE

UPCALL &

MODIFICATION

THREADS

1 2 10 0 0 000

Figure 6: Dispatching with a Reference Counted Table Entries

upcall, the appropriate entry is located, its reference count in-
creased, and the lock is released before performing the ap-

5

plication upcall. Once the upcall completes, the lock is re-
acquired, the reference count on the entry is decremented, and
the lock is released.

As long as the reference count on the entry remains greater
than zero, the entry is not removed and the corresponding ob-
ject is not destroyed. Concurrency hazards are avoided, there-
fore, because the reference count is always greater than zero
while a thread is processing an upcall for that entry. If an ob-
ject is “logically” removed from the dispatching table, its en-
try is not “physically” removed immediately since outstanding
upcalls may still be pending. Instead, the thread that brings the
reference count to zero is responsible for deleting this “par-
tially” removed entry from the table.

In programming languages, such as C and C++, that lack
built-in garbage collection, the dispatching table must collab-
orate with the application to control the objects’ life-cycle. In
this case, objects are usually reference counted1. For example,
the reference count is usually incremented when the object is
registered with the dispatching table and decremented when
the object is removed from the dispatching table.

Consequences. This pattern supports multiple simultaneous
upcalls since the lock is not held during the upcall. For the
same reason, this model also supports recursive calls . An
important benefit of this pattern is that the level of priority
inversion does not depend on the duration of the upcall. In
fact, priority inversion can be calculated as a function of the
time needed to search the dispatching table. Our previous re-
search [19] has shown that very low and bounded search times
can be achieved using techniques like active demultiplexing
and perfect hashing. Implementations that use these tech-
niques in conjunction with the serialization pattern described
here can achieve predictable dispatching with bounded prior-
ity inversions.

A disadvantage of this pattern, however, is that it acquires
and releases the locktwiceper upcall. In practice, this usually
does not exceed the cost of a single recursive monitor lock or
a single readers/writer monitor lock [18]. This solution does,
however, warrant extra care in the following special circum-
stances:

� Accessing “logically deleted” objects– A new request
arrives for an object that has been logically, but not phys-
ically removed from the dispatching table. Additional
state can be used to record that this object has been re-
moved and should therefore receive no new requests.

� Activating “partially removed” objects– An implemen-
tation must handle the case where an object has been par-
tially removed (as described above) and a client appli-
cation requests a new object to be inserted for the same

1Note that this reference count is different from the per-entry reference
count described above.

identifier as the partially removed object. Typically, the
new insertion must block until upcalls on the old object
complete and the old object is physically removed from
the dispatching table.

Table 1 summaries the different patterns for dispatching to a
single object and compares their relative strengths and weak-
nesses.

Pattern Times lock Nested Priority Appropriate
acquired upcalls Inversion when

Serialized 1 No Unbounded Little or
dispatching no contention

Short-lived
upcalls

Recursive 1 Yes Unbounded Same as above
mutex
Readers / 1 Limited Unbounded Concurrent
Writer lock upcalls
Reference 2 Yes Bounded Predictable
counting behavior

Table 1: Summary of Dispatching to Single Object

3.2 Dispatching to Multiple Objects

This section focuses on patterns for dispatching components
where events or requests are delivered to multiple target ob-
jects. Sending the same event to multiple target objects adds
another level of complexity to dispatching component imple-
mentations. For instance, an implementation may need to iter-
ate over the collection of potential targets and invoke upcalls
on a subset of the objects in the dispatching table.

In many use cases, modifications to the collection invalidate
any iterators for that collection [20], even for single-threaded
configurations. In general, an implementation must ensure that
no modifications are performed while a thread is iterating over
the dispatching table. For distributed real-tim and embedded
systems, moreover, simple serialization components, such as
conventional mutexes, can result in unbounded priority inver-
sion if higher priority threads wait for lower priority threads to
finish iterating.

Interestingly, the most sophisticated pattern for dispatching
to a single target object (which was presented in Section 3.1.4)
is not suitable for dispatching to multiple targets. In particular,
its lock would have to be acquired for the entire iteration and
upcall cycle, thereby worsening priority inversion problems.
If the lock was released, it could lead to an inconsistent view
of the dispatching table. Below, we present a successive series
of patterns that address these problems.

6

3.2.1 Copy-then-Dispatch

Context. An event or request must be dispatched to multiple
objects concurrently.

Problem. The challenge is how to optimize throughput
while minimizing contention and serialization overhead.

Forces. Modifications to the dispatching table are common
during the dispatch loop. The dispatching table does not pro-
vide robust iterators [20] or the iterators are not thread-safe.
There are no stringent real-time requirements.

Solution. Make a copy of the entire dispatching table before
initiating the iteration, as shown in Figure 7. Although some

ORIGINAL DISPATCHING

TABLE

MODIFICATION

THREAD

DISPATCHING TABLE COPY

UPCALL THREAD

DISPATCHING TABLE COPY

UPCALL THREAD

Figure 7: Copy-then-Dispatch

serialization mechanism must be used during the copy, its cost
is relatively low since it is outside the critical path. As an
optimization, the dispatching component can acquire the lock,
copy only the target objects that are interested in the event, and
then release the lock. At this point, the dispatching component
iterates over the smaller set of interested target objects and
dispatches upcalls.

To apply this pattern, applications must collaborate with
the dispatching component to control object life-cycle. For
example, an object cannot be destroyed simply because it
was removed successfully from the dispatching table. Other
threads may still be dispatching events on an older copy of
the dispatching table, and thus still have a reference to the ob-
ject. Therefore, objects in the dispatching table copy must be
marked “in use” until all dispatching loops using it complete.

Consequences. This pattern allows multiple events or re-
quests to be dispatched concurrently. In addition, it permits
recursive operations from within application upcalls that can
modify the dispatching table, either by inserting or removing
objects.

However, making copies of the dispatching table does not
scale well, when (1) the table is large, (2) memory alloca-
tion is expensive, or (3) object life-cycle management is costly.

In this case, other patterns, such as the Thread-Specific Stor-
age [8] that eliminates locking overhead, can be used to mini-
mize these costs, thereby making the Copy-then-Dispatch pat-
tern applicable for systems that have small dispatching tables.

3.2.2 Copy-On-Demand

Context. As in Section 3.2.1, an event or request must be
dispatched to multiple objects concurrently.

Problem. Making copies of the dispatching table is expen-
sive and non-scalable.

Forces. Changes to the dispatching table are infrequent. The
dispatching table does not provide robust iterators [20] or the
iterators are not thread-safe. In addition, there are no stringent
real-time requirements.

Solution. Copy the table on-demand, as shown in Figure 8.
When starting an iteration, a counter flag is incremented to in-

ORIGINAL DISPATCHING

TABLE

UPCALL

 THREADS

DISPATCHING TABLE COPY

MODIFICATION

THREAD

Figure 8: Copy-On-Demand

dicate that a thread is using the table. If a thread wishes to
modify the table it mustatomically(1) make a copy of the dis-
patching table, (2) make the modification on the copy, and (3)
replace the reference to the old table with a reference to the
new one. When the last thread using the original dispatching
table finishes its iteration, the table must be deallocated. In
programming languages that lack garbage collection, a simple
reference count can be used to accomplish this memory allo-
cation strategy.

Consequences. Since the solution does not copy the dis-
patching table when initiating the dispatch loop, the Copy-On-
Demand pattern improves the dispatch latency when compared
to Copy-then-Dispatch pattern described in Section 3.2.1.
Note that locks are not held while executing the upcalls. Thus,
an application upcall can invoke recursive operations without
risking deadlock.

One downside with this pattern is that it acquires the lock
at least twice. The first acquisition occurs when the table state
is updated to indicate the start of an iteration. The second

7

acquisition indicates the end of the same iteration. Thus, when
there is little or no contention, this solution is slightly more
expensive than simply holding a lock over the entire dispatch
loop.

Moreover, when threads contend to initiate a dispatch itera-
tion, some priority inversion may occur. Since the lock is held
for a short and fixed period of time, however, the priority in-
version is bounded. In contrast, when a thread makes changes
to the dispatching table, the amount of time for which it holds
the lock depends on the size of the table, which may result in
longer priority inversions. Thus, this pattern may be unsuitable
for distributed real-time and embedded systems with stringent
timing requirements.

3.2.3 Asynchronous-Change Commands

Context. An application with stringent real-time require-
ments where events or requests must be dispatched to multiple
objects concurrently.

Problem. Modifications to the dispatching table must be se-
rialized. However, the amount of time locks are held must be
bounded to minimize priority inversions.

Forces. Upcalls are executed in the same thread that dis-
patches the event. The application can add and remove objects
from the dispatching table dynamically.

Solution. Postpone changes to the dispatching table while
threads are dispatching upcalls. Before iterating over the dis-
patching table, the dispatching thread atomically increments
a counter that indicates the number of threads iterating over
the dispatching table currently. When an iteration completes,
it decrements the counter atomically. If a change is requested
while the dispatching table is “busy,” the request is converted
into a Command Object [9], as shown in Figure 9, and queued

DISPATCHING

TABLE

UPCALL

 THREADS

MODIFICATION

THREAD

C
H

A
N

G
E

C
O

M
M

A
N

D
S

Figure 9: Asynchronous-Change Commands

to be executed when the dispatching table becomes “idle,”i.e.,
when no more dispatching threads are iterating over the table.

Consequences. Queueing a change to the dispatching ta-
ble requires a bounded amount of time, thus preventing un-
bounded priority inversions. For similar reasons, this solution

does not deadlock when upcalls request modifications since
they are simply queued.

There is, however, a more subtle priority inversion in this
Asynchronous-Change Command pattern implementation. A
high-priority thread can request a modification, but the modifi-
cation will not occur until the potentially lower priority threads
have finished dispatching events. In many systems this is an
acceptable tradeoff since priority inversions must be avoided
in the critical path,i.e., the dispatching path.

In addition, it is hard to ascertain when requested modifi-
cations actually occur because they execute asynchronously.
Likewise, it is hard to report errors when executing change re-
quests because the thread requesting the change does not wait
for operations to complete.

Table 2 summaries the different patterns for dispatching
to multiple objects and compares their relative strengths and
weaknesses.

Pattern Times lock Nested Priority Appropriate
acquired upcalls Inversion when

Copy-then 2 Yes Unbounded Small dispatch
Dispatch table
Copy-on 2 Yes Unbounded Rare table
Demand modifications
Asynchronous- 2 Yes Bounded Predictable
Changes behavior

Table 2: Summary of Dispatching to Single Object

4 Concluding Remarks

This paper describes a pattern language for developing and
selecting appropriate solutions to common problems encoun-
tered when developing efficient, scalable, predictable, and
flexible dispatching components. This pattern language is part
of ongoing efforts [10, 8, 21, 22] to develop a handbook of pat-
terns for developing DOC middleware for distributed real-time
and embedded (DRE) systems. Patterns help middleware re-
searchers and developers reuse successful strategies and prac-
tices. Moreover, they help developers communicate and rea-
son more effectively about what they do and why they use par-
ticular designs and implementations. In addition, patterns are
a step towards an engineering handbook for DOC middleware.

The pattern language presented in this paper has been
applied to the TAO real-time ORB [2] on a range of
DRE systems, including the Boeing Bold Stroke avion-
ics mission computing system [15, 23, 24, 4, 5], and the
SAIC Run Time Infrastructure (RTI) implementation [6, 7]
for the Defense Modeling and Simulation Organization’s
(DMSO) High Level Architecture (HLA) [25]. The source
code and documentation for the TAO ORB and its Event

8

and Notification Services are freely available from URL
www.dre.vanderbilt.edu/TAO .

References
[1] Object Management Group,Real-time CORBA Specification, OMG

Document formal/02-08-02 ed., Aug. 2002.

[2] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[3] D. C. Schmidt and C. O’Ryan, “Patterns and Performance of Real-time
Publisher/Subscriber Architectures,”Journal of Systems and Software,
Special Issue on Software Architecture - Engineering Quality
Attributes, 2002.

[4] D. C. Sharp and W. C. Roll, “Model-Based Integration of Reusable
Component-Based Avionics System,” inProceedings of the Workshop
on Model-Driven Embedded Systems in RTAS 2003, May 2003.

[5] W. Roll, “Towards Model-Based and CCM-Based Applications for
Real-Time Systems,” inProceedings of the International Symposium
on Object-Oriented Real-time Distributed Computing (ISORC),
(Hakodate, Hokkaido, Japan), IEEE/IFIP, May 2003.

[6] C. O’Ryan, D. C. Schmidt, D. Levine, and R. Noseworthy, “Applying a
Scalable CORBA Events Service to Large-scale Distributed Interactive
Simulations,” inProceedings of the5th Workshop on Object-oriented
Real-time Dependable Systems, (Montery, CA), IEEE, Nov. 1999.

[7] R. Noseworthy, “IKE 2 – Implementing the Stateful Distributed Object
Paradigm ,” in5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2002), (Washington, DC),
IEEE, Apr. 2002.

[8] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. New York: Wiley & Sons, 2000.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture—A System of Patterns. New
York: Wiley & Sons, 1996.

[11] I. Pyarali and D. C. Schmidt, “An Overview of the CORBA Portable
Object Adapter,”ACM StandardView, vol. 6, Mar. 1998.

[12] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 3.0.2 ed., Dec. 2002.

[13] Object Management Group,Event Service Specification Version 1.1,
OMG Document formal/01-03-01 ed., Mar. 2001.

[14] Object Management Group,Notification Service Specification. Object
Management Group, OMG Document formal/2002-08-04 ed., Aug.
2002.

[15] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), pp. 184–199, ACM, Oct. 1997.

[16] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel,A Pattern Language. New York, NY:
Oxford University Press, 1977.

[17] Paul E. McKinney, “Selecting Locking Designs for Parallel Programs,”
in Pattern Languages of Program Design 2(J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, Massachusetts: Addison-Wesley, 1996.

[18] D. C. Schmidt, “An OO Encapsulation of Lightweight OS Concurrency
Mechanisms in the ACE Toolkit,” Tech. Rep. WUCS-95-31,
Washington University, St. Louis, Sept. 1995.

[19] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Applying Optimization Patterns to the Design of
Real-time ORBs,” inProceedings of the5th Conference on
Object-Oriented Technologies and Systems, (San Diego, CA),
pp. 145–159, USENIX, May 1999.

[20] T. Kofler, “Robust Iterators for ET++,”Structured Programming,
vol. 14, no. 2, pp. 62–85, 1993.

[21] M. Kircher and P. Jain,Pattern-Oriented Software Architecture, Volume
3: Patterns for Resource Management. Wiley and sons, 2004.

[22] C. Gill and L. DiPippo,Design Patterns for Distributed Real-Time
Systems. Norwell, Massachusetts: Kluwer Academic Publishers, 2005
(to appear).

[23] Christopher D. Gill et al., “Applying Adaptive Real-time Middleware
to Address Grand Challenges of COTS-based Mission-Critical
Real-Time Systems,” inProceedings of the 1st IEEE International
Workshop on Real-Time Mission-Critical Systems: Grand Challenge
Problems, Nov. 1999.

[24] B. S. Doerr, T. Venturella, R. Jha, C. D. Gill, and D. C. Schmidt,
“Adaptive Scheduling for Real-time, Embedded Information Systems,”
in Proceedings of the 18th IEEE/AIAA Digital Avionics Systems
Conference (DASC), Oct. 1999.

[25] F. Kuhl, R. Weatherly, and J. Dahmann,Creating Computer Simulation
Systems. Upper Saddle River, New Jersey: Prentice Hall PTR, 1999.

9

