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Event Services

operation()operation()
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CLIENT SERVER

� Standard CORBA method invocations re-
sult in synchronous execution of an oper-
ation provided by an object

{ Both requestor (client) and provider (server)

must be present

{ Client blocks until operation returns

{ Only supports uni-cast communication
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OMG Event Services

� For many applications, a more decoupled
communication model between objects is
required

{ i.e., asynchronous communication with multi-

ple suppliers and consumers

� OMG de�nes a set of event service inter-

faces that enable decoupled, asynchronous

communication between objects

� The OMG model is based on the \pub-
lish/subscribe" paradigm

{ The basic model is also useful for more sophis-
ticated types of event services

� e.g., �ltering and event correlation
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Common Event Service

Collaborations
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� Note: no (implicit) responses

4



Bene�ts of the OMG Event

Service

� Anonymous consumers/suppliers

{ Publish and subscribe model

� Group communication

{ Supplier(s) to consumer(s)

� Decoupled communication

{ Asynchronous delivery

� Abstraction for distribution

{ Can help draw the lines of distribution in the
system

� Abstraction for concurrency

{ Can facilitate concurrent event handling
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Event Service Participants

� The OMG event service de�nes three roles

1. The Supplier role

{ Suppliers generate event data

2. The Consumer role

{ Consumers process event data

3. Event Channel

{ A \mediator" that encapsulates the queue-

ing and propagation semantics

� Event data are communicated between sup-
pliers and consumers by issuing standard
CORBA (twoway) requests

{ Standard CORBA naming and object activa-
tion mechanisms can also be used
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Structure and Interaction Among

Participants
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Channel
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Consumer

� Note both Push and Pullmodels supported
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The Push and Pull Models

� There are two general approaches for initi-
ating event communication between sup-
pliers and consumers

1. The push model

{ The push model allows a supplier of events
to initiate the transfer of the event data to

consumers

{ Note the supplier takes the initiative in the

push model

2. The pull model

{ The pull model allows a consumer of events

to request event data from a supplier

{ Note the consumer takes the initiative in the

pull model
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The Push Model
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The Pull Model
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Communication Models for Event

Channels
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Generic and Typed Event

Communication

� There are two orthogonal approaches that
OMG event-based communication may take:

1. Generic

{ All communication is by means of generic
push or pull operations

{ These operations involve single parameters

or return values that package all the events

into a generic CORBA any data structure

2. Typed

{ In the typed case, communication is via op-

erations de�ned in OMG IDL

{ Event data is passed by means of typed pa-
rameters, which can be de�ned in any de-

sired manner
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Event Service Class Structure
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The EventComm Module

� The event communication module EventComm

illustrated below de�nes a set of CORBA

interfaces for event-style communication

module CosEventComm {

exception Disconnected {};

interface PushConsumer {

void push (in any data) raises (Disconnected);

void disconnect_push_consumer ();

};

interface PushSupplier {

void disconnect_push_supplier ();

};

interface PullSupplier {

any pull() raises (Disconnected);

any try_pull() (out boolean has_event)

raises (Disconnected);

void disconnect_pull_supplier ();

};

interface PullConsumer {

void disconnect_pull_consumer ();

};
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The PushConsumer Interface

� A push consumer implements the PushConsumer

interface to receive event data from a sup-

plier

interface PushConsumer

{

void push (in any data) raises (Disconnected);

void disconnect_push_consumer ();

};

� A supplier communicates event data to

the consumer by invoking the push oper-

ation on an object reference and passing

the event data as a parameter

� The disconnect push consumer operation ter-

minates the event communication and re-

leases resources
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The PushSupplier Interface

� A push supplier implements the PushSupplier

interface to disconnect from a supplier

interface PushSupplier

{

void disconnect_push_supplier ();

};

� The disconnect push supplier operation ter-

minates the event communication and re-

leases resources
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The PullSupplier Interface

� A pull supplier implements the PullSupplier

interface to transmit event data to a con-

sumer

interface PullSupplier {

any pull() raises (Disconnected);

any try_pull() (out boolean has_event)

raises (Disconnected);

void disconnect_pull_supplier ();

};

� A consumer requests event data from the

supplier by invoking either the pull oper-

ation (blocking) or the try pull operation

(non-blocking) on the supplier

� The disconnect pull supplier operation ter-

minates event communication and releases

resources
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The PullConsumer Interface

� A pull consumer implements the PullConsumer

interface to disconnect from a consumer

interface PullConsumer

{

void disconnect_pull_consumer ();

};

� The disconnect pull consumer operation ter-

minates the event communication and re-

leases resources

18

Event Channel Overview

� In addition to consumers and suppliers,
OMG event services also have the notion
of an event channel

{ An event channel is an object that allows mul-
tiple suppliers to communicate with multiple

consumers in a highly decoupled, asynchronous

manner

� An event channel is both a consumer and
supplier of event data that it receives

{ In its simplest form, an event channel acts as

\broadcast repeater"
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Event Channel Overview (cont'd)

� Event channels are standard CORBA ob-

jects, and communication with an event

channel is accomplished using standard CORBA

requests

� However, an event channel need not sup-
ply the incoming event data to its con-
sumer(s) at the same time it consumes
data from its supplier(s)

{ i.e., it may bu�er data
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Event Channel Use-case
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Push-Style Communication with

an Event Channel

� The supplier pushes event data to an event

channel

� The event channel, in turn, pushes event
data to all consumers

{ Note that an event channel need not make any

complex routing decision, e.g., it can simply
deliver the data to all consumers

{ More complex semantics are also possible, of

course
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Pull-Style Communication with an

Event Channel

� The consumer pulls event data from the

event channel

� The event channel, in turn, pulls event
data from the suppliers

{ This can be optimized by adding a queueing

mechanism in the Event Channel
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Multiple Consumers and Multiple

Suppliers

� An event channel may provide many-to-

many communication

� The channel consumes events from one or

more suppliers, and supplies events to one

or more consumers

� Subject to the quality of service of a par-

ticular implementation, an event channel

provides an event to all consumers

� An event channel can support consumers

and suppliers that use di�erent communi-

cation models
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Mixed-style Communication with

an Event Channel

� An event channel can communicate with a

supplier using one style of communication,

and communicate with a consumer using

a di�erent style of communication

� Note that how long an event channel must

bu�er events is de�ned as a \quality of

implementation" issue
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Event Channel Administration

� An event channel is built up incrementally

{ i.e., when a channel is created no suppliers or

consumers are connected

� An EventChannelFactory object is used to

return an object reference that supports

the EventChannel interface

� The EventChannel interface de�nes three
administrative operations:

1. ConsumerAdmin ! a factory for adding con-

sumers

2. SupplierAdmin ! a factory for adding suppli-

ers

3. An operation for destroying the channel
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Event Channel Administration

(cont'd)

� The ConsumerAdmin factory operation re-
turns a proxy supplier

{ A proxy supplier is similar to a normal supplier

(in fact, it inherits the supplier interface)

{ However, it includes a method for connecting

a consumer to the proxy supplier

� The SupplierAdmin factory operation re-
turns a proxy consumer

{ A proxy consumer is similar to a normal con-

sumer (in fact it inherits the interface of a con-
sumer)

{ However, it includes an additional method for

connecting a supplier to the proxy consumer
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Event Channel Administration

(cont'd)

� Registering a supplier with an event chan-
nel is a two-step process

1. An event-generating application �rst obtains a

proxy consumer from a channel

2. It then \connects" to the proxy consumer by

providing it with a supplier object reference

� Likewise, registering a consumer with an
event channel is also a two-step process

1. An event-receiving application �rst obtains a
proxy supplier from a channel

2. It then \connects" to the proxy supplier by pro-

viding it with a consumer object reference
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Event Channel Administration

(cont'd)

� The reason for the two-step registration

process is to support composing event chan-

nels created by an external agent

� Such an agent would compose two chan-

nels by obtaining a proxy supplier from one

(via the channel's SupplierAdmin factory)

� It would then obtain a proxy consumer

from the other channel (via the channel's

ConsumerAdmin factory)

� Finally, it would pass each of the proxy

object references to the other channel as

part of their connection procedure
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The EventChannelAdmin Module

� The EventChannelAdmin module de�nes the

interfaces for making connections between

suppliers and consumers

#include "EventComm.idl"

module CosEventChannelAdmin {

exception AlreadyConnected {};

exception TypeError {};

interface ProxyPushConsumer

: CosEventComm::PushConsumer

{

void connect_push_supplier

(in CosEventComm::PushSupplier push_supplier)

raises (AlreadyConnected);

};

interface ProxyPullSupplier

: CosEventComm::PullSupplier

{

void connect_pull_consumer

(in CosEventComm::PullConsumer pull_consumer)

raises (AlreadyConnected);

};
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The EventChannelAdmin Module

(cont'd)

� interface EventChannelAdmin (cont'd)

interface ProxyPullConsumer

: CosEventComm::PullConsumer

{

void connect_pull_consumer

(in CosEventComm::PullSupplier pull_supplier)

raises (AlreadyConnected, TypeError);

};

interface ProxyPushSupplier

: CosEventComm::PushSupplier

{

void connect_push_consumer

(in CosEventComm::PushConsumer push_consumer)

raises (AlreadyConnected, TypeError);

};
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The EventChannelAdmin Module

(cont'd)

� interface EventChannelAdmin (cont'd)

interface ConsumerAdmin {

ProxyPushSupplier obtain_push_supplier ();

ProxyPullSupplier obtain_pull_supplier ();

};

interface SupplierAdmin {

ProxyPushConsumer obtain_push_consumer ();

ProxyPullConsumer obtain_pull_consumer ();

};

interface EventChannel {

ConsumerAdmin for_consumers ();

SupplierAdmin for_suppliers ();

void destroy ();

};

};
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The EventChannel Interface

� The EventChannel interface de�nes three
administrative operations

1. Adding consumers

2. Adding suppliers

3. Destroying the channel

� e.g.,

interface EventChannel {

ConsumerAdmin for_consumers ();

SupplierAdmin for_suppliers ();

void destroy ();

};
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The EventChannel Interface

(cont'd)

� Consumer administration and supplier ad-
ministration are de�ned as separate ob-
jects so that the creator of the channel
can control the addition of suppliers and
consumers, e.g.,

{ An event channel creator might wish to be the

sole supplier of event data, but might allow

many consumers to be connected to the chan-

nel

{ In this case, the creater would simply export

the ConsumerAdmin object

interface Document

{

ConsumerAdmin title_changed ();

};
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The EventChannel Interface

(cont'd)

� Any object that possesses an object refer-
ence that supports the EventChannel inter-
face can perform the following operations

{ The ConsumerAdmin interface allows consumers
to be connected to an event channel

� The for consumers operation returns an

object reference that supports the ConsumerAdmin
interface

{ The SupplierAdmin interface allows suppliers

to be connected to an event channel

� The for suppliers operation returns an

object reference that supports the SupplierAdmin
interface

{ The destroy operation destroys the event chan-
nel
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The ConsumerAdmin Interface

� The ConsumerAdmin interface de�nes the
�rst step for connecting consumers to an
event channel

{ Clients use this interface to obtain proxy sup-

pliers

interface ConsumerAdmin {

ProxyPushSupplier obtain_push_supplier ();

ProxyPullSupplier obtain_pull_supplier ();

};

� The obtain push supplier operation returns

a ProxyPushSupplier object that may be

used to connect a push-style consumer

� The obtain pull supplier operation returns

a ProxyPullSupplier object that may be

used to connect a pull-style consumer

36



The SupplierAdmin Interface

� The SupplierAdmin interface de�nes the
�rst step for connecting suppliers to an
event channel

{ Servers use it to obtain proxy consumers

interface SupplierAdmin {

ProxyPushConsumer obtain_push_consumer ();

ProxyPullConsumer obtain_pull_consumer ();

};

� The obtain push consumer operation returns

a ProxyPushConsumer object that may be

used to connect a push-style supplier

� The obtain pull consumer operation returns

a ProxyPullConsumer object that may be

used to connect a pull-style supplier
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The ProxyPushConsumer

Interface

� The ProxyPushConsumer interface de�nes the

second step for connecting push suppliers

to an event channel

interface ProxyPushConsumer

: CosEventComm::PushConsumer

{

void connect_push_supplier

(in CosEventComm::PushSupplier push_supplier)

raises (AlreadyConnected);

};
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The ProxyPushConsumer

Interface (cont'd)

� A nil object reference may be passed to
the connect push supplier operation

{ If so, a channel can't call disconnect push supplier
on the supplier

{ Therefore, the supplier may be disconnected
from the channel without being informed

� If the ProxyPushConsumer is already con-

nected to a PushSupplier, then the excep-

tion AlreadyConnected is raised
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The ProxyPullSupplier Interface

� The ProxyPullSupplier interface de�nes the

second step for connecting pull consumers

to an event channel

interface ProxyPullSupplier

: CosEventComm::PullSupplier

{

void connect_pull_consumer

(in CosEventComm::PullConsumer pull_consumer)

raises (AlreadyConnected);

};

40



The ProxyPullSupplier Interface

(cont'd)

� A nil object reference may be passed to
the connect pull consumer operation; if so
a channel can't call disconnect pull consumer
on the consumer

{ Therefore, the consumer may be disconnected

from the channel without being informed

� If the ProxyPullSupplier is already con-

nected to a PullConsumer, then the excep-

tion AlreadyConnected is raised
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The ProxyPullConsumer Interface

� The ProxyPullConsumer interface de�nes the

second step for connecting pull suppliers

to an event channel

interface ProxyPullConsumer

: CosEventComm::PullConsumer

{

void connect_pull_consumer

(in CosEventComm::PullSupplier pull_supplier)

raises (AlreadyConnected, TypeError);

};
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The ProxyPullConsumer Interface

(cont'd)

� Implementations should raise the standard

BAD PARAM exception if a nil object ref-

erence is passed to connect pull supplier

� If the ProxyPullConsumer is already con-

nected to a PullSupplier, then the excep-

tion AlreadyConnected is raised

� An implementation of a ProxyPullConsumer
may put additional requirements on the
interface supported by the pull supplier

{ If the pull supplier does not meet those require-
ments, the ProxyPullConsumer raises the ex-

ception TypeError
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The ProxyPushSupplier Interface

� The ProxyPushSupplier interface de�nes the

second step for connecting push consumers

to the event channel

interface ProxyPushSupplier

: CosEventComm::PushSupplier

{

void connect_push_consumer

(in CosEventComm::PushConsumer push_consumer)

raises (AlreadyConnected, TypeError);

};
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Connecting a Consumer to an

Event Channel
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The ProxyPushSupplier Interface

(cont'd)

� Implementations should raise the standard

BAD PARAM exception if a nil object ref-

erence is passed to connect push supplier

� If the ProxyPushSupplier is already con-

nected to a PullConsumer, then the excep-

tion AlreadyConnected is raised

� An implementation of a ProxyPushSupplier
may put additional requirements on the
interface supported by the push consumer

{ If the push consumer does not meet those re-
quirements, the ProxyPushSupplier raises the
TypeError exception
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Typed Event Communication

� The preceeding discussion of OMG event
services utilizes the properties of the CORBA
any type to enable generic communication
of event data

{ The any type supports extremely exible mod-
els of interworking

struct any {

typeCode *_type;

void *_value;

// ...

};

� However, it may be inconvenient or inef-
�cient for use any in certain types of ap-
plications

{ In many applications, it is more appropriate
to use typed communication between suppli-

ers and consumers

{ Therefore, OMG also provides a parallel set of

TypedEventComm and TypedEventChannelAdmin
interfaces
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Composing Event Channels and

Filtering

� The event channel administration opera-
tions de�ned in the EventChannelAdmin in-
terface support the composition of event
channels

{ i.e., one event channel can consume events
supplied by another

� This architecture allows the implementa-
tion of an event channel that �lters the
events supplied by another

{ e.g., �ltering based on event type
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Policies for Finding Event

Channels

� The OMG event service does not establish
policies for locating event channels

{ Finding a service is orthogonal to using the

service

� Higher levels of software may de�ne poli-
cies for locating and using event channels

{ i.e., higher layers will dictate when an event

channel is created and how references to the
event channel are obtained

� By representing the event channel as a
CORBA object, it has all of the properties
that apply to objects

{ i.e., name servers, object locator mechanisms,

marshalling, etc.
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Example
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� Distributed logging facility
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Application Logger Interface

� Module specifying interface for client ap-

plication logging

module Logger {

enum Log_Priority {

LOG_DEBUG, // Debugging messages

LOG_WARNING, // Warning messages

LOG_ERROR, // Errors

LOG_EMERG, // A panic condition

};

struct Log_Record {

Log_Priority type;// Type of logging record

long time_stamp; // Time logging record generated

long pid; // Application process id

string msg_data; // Log record data

};
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Application Logger Interface

(cont'd)

� Logging interface (cont'd)

exception Invalid_Record { };

interface Log

{

// Main method for logging a Log_Record

void log (in Log_Record log_rec)

raises (Invalid_Record);

};

};
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Client Application Logging

� Client application obtains object reference

to Logger object and performs logging calls

using namespace Logger;

// Find any Logger implementation.

Log_var logger =

bind_service<Log> ("Logger");

Log_Record log_rec;

// Initialize the log_record

log_rec.type = Logger::LOG_DEBUG;

log_rec.time_stamp = ::time (0);

// ...

try {

logger->log (log_rec);

}

catch (Logger::Invalid_Record &) {

// ...

}
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Client Logger Interface

� Interface for the Client Logger

interface Client_Logger {

SupplierAdmin for_suppliers ();

};

� The Client logger is typically located on
the same host as the applications

{ It performs a \multiplexing service"

� However, it could also be located on an-

other host within a network

� Regardless of location, the CORBA Name

Service mechanism will �nd the appropri-

ate object reference
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Server Logger Interface

� Interface for the Server Logger

interface Server_Logger {

SupplierAdmin for_suppliers ();

};

� The Server Logger may be located any-
where in a network

{ Including co-located or replicated

� The CORBA locator mechanism is respon-

sible for determining where a Server Log-

ger resides
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Application Logger Interface

Implementation

� Implement client's logging interface

class My_Log : public virtual Logger::LogBOAImpl {

public:

My_Log (void) {

// Locate the Client Logger event channel.

Client_Logger_var cl =

bind_service<Client_Logger> ("Client_Logger");

SupplierAdmin_var supplier_admin =

cl->for_suppliers ();

this->cl_proxy_push_consumer_ =

supplier_admin->obtain_push_consumer ();

// Don't allow two-way communication or disconnects.

this->cl_proxy_push_consumer->

connect_push_supplier (CORBA::nil ());

}

void log (const Logger::Log_Record &log_rec) {

CORBA::any msg (TC_LOG_RECORD, &log_rec);

// Push this to the Client Logger channel.

this->cl_proxy_push_consumer_->push (msg);

}

private:

ProxyPushConsumer_var cl_proxy_push_consumer_;

};
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Server Logger PushConsumer

Implementation

� This is the �nal destination of an applica-

tion's log operation

class My_Logging_Server

: public virtual CosEventComm::PushConsumer {

public:

My_Logging_Server (void):

log_type_ (new CORBA::typeCode (TC_LOG_RECORD)) {}

~My_Logging_Server (void) { delete this->log_type_; }

virtual void push (any *msg) {

if (msg->_type->kind () == tk_struct) {

any *struct_type = msg->_type.parameter (0);

if (struct_type->_type->equal (this->log_type_)) {

Logger::Log_Record *log_rec =

static_cast <Logger::Log_Record *>

(struct_type->_value);

clog << log_rec.msg_data << ....;

return;

}

} // otherwise there's an error...

}

private:

CORBA::typeCode *log_type_;

57

Client Logger Implementation

� Implementation of the SupplierAdmin fac-

tory

class My_Client_Logger

{

public:

SupplierAdmin_ptr for_suppliers (void) {

make_cl_channel ();

return make_supplier_admin ();

}

void make_cl_channel (void);

SupplierAdmin_ptr make_supplier_admin (void);

private:

// Proxy to our EventChannel.

EventChannel_ptr cl_channel_;

// Proxy to the Server's Event Channel.

Server_Logger_ptr sl_channel_proxy_;

}
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Client Logger Implementation

(cont'd)

� Create the Client Logger's Event Channel

void My_Client_Logger::make_cl_channel (void)

{

// Magically create an EventChannelFactory and

// create our Client_Logger EventChannel.

EventChannelFactory_var factory = ...;

cl_channel_ =

factory->create_event_channel ();

// Get a proxy to the Server Logger.

sl_channel_proxy_ =

bind_service<Server_Logger> ("Server_Logger");

}

� Note that we would probably use a \Fac-

toryFinder" from the COSS Life Cycle spec-

i�cation to obtain our EventChannelFactory
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Client Logger Implementation

(cont'd)

� Return the SupplierAdmin

SupplierAdmin_ptr

My_Client_Logger::make_supplier_admin (void)

{

// Obtain all the necessary proxies.

ConsumerAdmin_var consumer_admin =

cl_channel_->for_consumers ();

ProxyPushSupplier_var app_proxy_push_supplier =

consumer_admin->obtain_push_supplier ();

SupplierAdmin_var supplier_admin =

sl_channel_proxy_->for_suppliers ();

ProxyPushConsumer_var sl_proxy_push_consumer =

supplier_admin->obtain_push_consumer();

// Use double-dispatch to connect everything together.

sl_proxy_push_consumer->

connect_push_supplier (app_proxy_push_supplier);

app_proxy_push_supplier->

connect_push_consumer (sl_proxy_push_consumer);

// Return connected supplier admin.

return cl_channel_->for_suppliers ();

}
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Server Logger Implementation

� Implementation of Server Logger SupplierAdmin

factory

class My_Server_Logger

{

public:

SupplierAdmin_ptr for_suppliers (void) {

make_sl_channel ();

return make_supplier_admin ();

}

void make_sl_channel (void);

SupplierAdmin_ptr make_supplier_admin (void);

private:

// Proxy to our EventChannel.

EventChannel_var sl_channel_;

// Implementation of the actual PushConsumer.

PushConsumer_var server_logger_;

};
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Server Logger Implementation

(cont'd)

� Create the Server Logger's Event Channel

void My_Server_Logger::make_sl_channel (void)

{

// Magically create an EventChannelFactory and

// create our Client_Logger EventChannel.

EventChannelFactory_var factory = ...;

sl_channel_ = factory->create_eventchannel ();

}

� Note that we would probably use a \Fac-

toryFinder" from the COSS Life Cycle spec-

i�cation to obtain our EventChannelFactory
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Server Logger Implementation

(cont'd)

� Return the SupplierAdmin

SupplierAdmin_ptr

My_Server_Logger::make_supplier_admin (void) {

// Obtain proxies to the Supplier/Consumer

// factories and Proxies

SupplierAdmin_var supplier_admin =

sl_channel_->for_suppliers ();

ConsumerAdmin_var consumer_admin =

sl_channel_->for_consumers ();

ProxyPushSupplier_var cl_proxy_push_supplier =

consumer_admin->obtain_push_supplier ();

// Initialize the PushConsumer implementation.

server_logger_ = new My_Logging_Server;

// Double-dispatch to connect everything together.

cl_proxy_push_supplier->

connect_push_supplier (server_logger);

return supplier_admin;

}
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Advanced Event Channel Services

� Note that a simple event channel imple-
mentation contains no real routing intelli-
gence

{ i.e., it simply forwards all events it receives

from supplier to consumer (assuming the push

model is used)

� A more sophisticated event channel imple-
mentation could provide a type of \event
router"

{ This router would selectively decide which event
channel(s) receive which events

� Even more sophisticated schemes could
provide additional semantics

{ e.g., �ltering, correlation, persistence, fault tol-
erance, real-time scheduling, etc.

{ See www.cs.wustl.edu/�schmidt/oopsla.ps.gz
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Case Study: Real-time Event

Channels

� Asynchronous messaging and group com-
munication are important for real-time ap-
plications

{ e.g., avionics mission control systems, telecom

gateways, etc.

� The following example presents our OO

architecture for CORBA Real-time Event

Channels

� Focus is on design patterns and reusable

framework components
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Real-time Issues Not Addressed

by COS Event Services

� Deadlines

{ Real-time tasks with data and event dependen-

cies require predictable event noti�cations

� e.g., consumers must receive events in time

to meet deadlines

� Scheduling

{ Real-time systems must guarantee that higher
priority tasks are noti�ed before lower priority

tasks

� e.g., policies for event propagation

� Periodic Tasks

{ Periodic tasks must always run at certain in-

tervals

� e.g., timers and rate groups
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Open vs. Closed Systems

� De�nitions

{ Open systems are systems designed to work

correctly even when they have no idea of all

other components in the system

� e.g., WWW browsers running Java Applets

{ Closed systems are ones that know how all the

other components in the system behave

� e.g., existing RT avionics systems

� Challenge

{ Identify the structure and boundaries of the

open and closed aspects for Real-time avionics

system

{ Central issues are:

� Trust

� Dependencies

� Time to run
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Enhancing COS Event Services

for Real-time Systems

� To enhance the COS Event Services for
Real-time we've de�ned:

1. Real-time scheduling policies

2. Real-time dispatching

3. Quality of Service interfaces

4. Flexible concurrency strategies

5. Event �ltering and correlation

� Goal � \as close to the COS speci�ca-

tion as possible, but no closer"
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RT Event Service Architecture
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Real-time Scheduling Policies

� Problem

{ Order in which events are forwarded by COS
Event Channels is not de�ned by the speci�-

cation

� Solution

{ An RT event channel must integrate with system-
wide scheduling policies

� e.g., rate monotonic

{ Achieving this requires speci�c information from
Suppliers and Consumers

� e.g., period, worst-case execution time, etc.
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Real-time RTEC Scheduler
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Real-time Dispatching

Mechanisms

� Problem

{ To ensure deadlines are met, Event Channel

must always dispatch highest priority event within

a small, bounded amount of time

� Solution

{ Create a Dispatcher Module that maintains a

queue for every Consumer priority level

{ The Dispatcher Module always dispatches events

in higher priority queues before lower priority
queues

{ Various types of preemption are supported
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Real-time Dispatcher
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Quality of Service Interfaces

� Problem

{ Suppliers and Consumers must relay their qual-

ity of service (QoS) requirements to the chan-

nel

{ Event Service mechanisms for coordinating schedul-
ing data should integrate with global schedul-

ing mechanism

� Solution

{ De�ne a system-wide Execution Model that

provides abstractions for obtaining threads of

control and publishing scheduling characteris-

tics

{ All components in the system must either:

� Use the Execution Model directly, or

� Use Adapters to integrate 'o�-the-shelf' toolk-

its into the Execution Model
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Execution Model De�nitions

� Operation ! work that needs to be done
in reponse to an event

{ e.g., I/O, timer, method call

{ Typically encapsulated by an object

� RT Operation � work that needs to be
done with certain scheduling requirements

{ Typically periodic tasks
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Specifying Operation Scheduling

Properties

� Problem

{ Di�erent operation have di�erent scheduling

requirements

{ Operation scheduling properties must be com-
plete

� The system-wide scheduling policy has spe-

ci�c data requirements in order to guarantee
schedulability

{ Operation scheduling properties must be ab-

stract

� Scheduling policies and mechanisms can change
as the project evolves
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Specifying Operation Scheduling

Properties

� Solution

{ De�ne an RT Operation interface

� Must be implemented by all object with schedul-

ing requirements

� Allows RT Operations to share scheduling

properties (e.g., period, priority, etc) with
between operations and other Execution Model

API's

{ RT Operation is integrated into ACE

� Portable to Win32, Solaris, POSIX 1003.1c,

VxWorks, etc.
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The RT Operation Interface

� If objects encapsulate operations with schedul-

ing requirements, then object methods are

the entry points of execution

� Each RT Operation contains an RT Info de-

scriptor:

struct RT_Info

{

Time worst_case_execution_time;

Time typical_execution_time;

Time cached_execution_time;

Period period;

Priority priority;

Time quantum;

sequence <RT_Info> called_tasks;

// ...

};
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Using RT Operation

� A class that implements RT Operation de-

�nes an RT Info descriptor for each method.

� Scheduled Method describes the execution
properties of a single method

{ Execution time ! worst case and average case

method execution times

{ Period ! the rate the method executes

{ Quantum ! max time to run before preempt-

ing for same priority tasks

{ Priority ! allows \clients" to assign levels of

importance

� Not applicable for Rate Monotonic Schedul-
ing
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Advantages to RT Operation

API's

� Scheduling mechanisms acquire operation
scheduling properties via RT Info interfaces

{ Event Channels make scheduling decisions based

on data from Suppliers and Consumers

� Abstract interfaces support changes in schedul-

ing policy

� Facilitates simulation-time logging of schedul-
ing data

{ O�-line proof of schedulability

{ Integration with 3rd party scheduling utilities
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Event Channel Scheduling

Mechanisms

� Problem

{ Event Channels must implement system-wide

scheduling policies during event propogation

� Solution

{ Channels use RT Operation and RT Info in-
terfaces to obtain task scheduling properties

{ Channels can utilize multiple concurrency strate-

gies to implement scheduling policies
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Concurrency Strategies

� Problems

{ The system-wide scheduling policy may require

that Event Channels delegate threads to Sup-

pliers and Consumers

� Real-time threads can guarantee that higher

rate tasks preempt lower rate task in a Rate-

Monotonically scheduled system

� Solution

{ Event Channel push and pull operations can be

entry points for channel-maintained threads

{ A channel's concurrency policy can be decided
by a global scheduling component
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Concurrency Alternatives
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Related Patterns and

Architectures

� Observer (Gamma, Helm, Johnson, Vlis-
sides)

{ \De�ne a one-to-many dependency between

objects so that when one object changes state,
all its dependents are noti�ed and updated au-

tomatically."

� Publisher-Subscriber (Buschmann, Meunier,
Rohnert, Sommerlad, Stal)

{ \Helps to keep the state of cooperating com-

ponents synchronized. To achieve this, it en-

ables one-waypropagation of changes: one pub-
lisher noti�es any number of subscribers about

changes to its state."

� Object Group (Silvano Ma�eis)

{ \Provides a local surrogate for a group of ob-
jects distributed across networked machines."
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Overview of Object Group

Architecture

Object Group
(Server Objects)

Client Application
(Object Reference)

Reliable Multicast

� Based on \Virtual Synchrony"

{ http://www.olsen.ch/~ma�eis/
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Electra Overview
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Summary

� The OMG event services speci�cation de-
�nes a decoupled communication model
between distributed objects

{ This model enables asynchronous communica-

tion between suppliers and consumers

� The OMG event services speci�cation is

useful for devising the basis for a exible

\publish/subscribe" service

� Implementations are slowly coming on line

{ Main problem is lack of standard semantics: : :

� RT Event Service integrated with TAO

{ www.cs.wustl.edu/~schmidt/TAO-obtain.html

87


