
An Overview of OMG CORBA

Event Services

Douglas C. Schmidt

Washington University, St. Louis

http://www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

1

Event Services

operation()operation()

response

request

CLIENT SERVER

� Standard CORBA method invocations re-
sult in synchronous execution of an oper-
ation provided by an object

{ Both requestor (client) and provider (server)

must be present

{ Client blocks until operation returns

{ Only supports uni-cast communication

2

OMG Event Services

� For many applications, a more decoupled
communication model between objects is
required

{ i.e., asynchronous communication with multi-

ple suppliers and consumers

� OMG de�nes a set of event service inter-

faces that enable decoupled, asynchronous

communication between objects

� The OMG model is based on the \pub-
lish/subscribe" paradigm

{ The basic model is also useful for more sophis-
ticated types of event services

� e.g., �ltering and event correlation

3

Common Event Service

Collaborations

push()push()

CONSUMERCONSUMER

CONSUMERCONSUMER

EVENTEVENT

CHANNELCHANNEL

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

push()push()
push()push()

push()push()

push()push()

� Note: no (implicit) responses

4

Bene�ts of the OMG Event

Service

� Anonymous consumers/suppliers

{ Publish and subscribe model

� Group communication

{ Supplier(s) to consumer(s)

� Decoupled communication

{ Asynchronous delivery

� Abstraction for distribution

{ Can help draw the lines of distribution in the
system

� Abstraction for concurrency

{ Can facilitate concurrent event handling

5

Event Service Participants

� The OMG event service de�nes three roles

1. The Supplier role

{ Suppliers generate event data

2. The Consumer role

{ Consumers process event data

3. Event Channel

{ A \mediator" that encapsulates the queue-

ing and propagation semantics

� Event data are communicated between sup-
pliers and consumers by issuing standard
CORBA (twoway) requests

{ Standard CORBA naming and object activa-
tion mechanisms can also be used

6

Structure and Interaction Among

Participants

PUSH

PUSH

PUSH

PULL

PULL

Event
Channel

Consumer

Supplier

Supplier

Consumer

Consumer

� Note both Push and Pullmodels supported

7

The Push and Pull Models

� There are two general approaches for initi-
ating event communication between sup-
pliers and consumers

1. The push model

{ The push model allows a supplier of events
to initiate the transfer of the event data to

consumers

{ Note the supplier takes the initiative in the

push model

2. The pull model

{ The pull model allows a consumer of events

to request event data from a supplier

{ Note the consumer takes the initiative in the

pull model

8

The Push Model

SUPERVISOR

CONSUMER

NETWORKNETWORK

SERVERSERVER
CLIENTCLIENT

HOSTHOST

AA

HOSTHOST

BB
CLIENTCLIENT

EVENT SERVER

SUPPLIER

SUPERVISOR

CONSUMER

PushConsumer::push()

PushConsumer::push()

P
u
sh

S
u
p
p
li
er

P
u
sh

S
u
p
p
li
er

PushSupplier::

PushSupplier::

disconnect_push_supplier()

disconnect_push_supplier()

P
u
sh

C
on

su
m

er

P
u
sh

C
on

su
m

er

TELECOMTELECOM

SWITCHESSWITCHES

9

The Pull Model

NEWS READER

CONSUMER

NETWORKNETWORK

SERVERSERVER
CLIENTCLIENT

HOSTHOST

AA

HOSTHOST

BB
CLIENTCLIENT

NEWS SERVER

SUPPLIER

PullConsumer::

PullConsumer::

disconnect_pull_consumer()

disconnect_pull_consumer()

P
u
ll
C

on
su

m
er

P
u
ll
C

on
su

m
er

PullSupplier::pull()

PullSupplier::pull()

P
u
sh

S
u
p
p
li
er

P
u
sh

S
u
p
p
li
er

NEWS READER

CONSUMER

SERVERSERVER

REMOTEREMOTE

NEWS SERVERSNEWS SERVERS

SERVERSERVER

10

Communication Models for Event

Channels

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

pull()pull()

pull()pull()

pull()pull()

pull()pull()

pull()pull()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

pull()pull()

pull()pull()

push()push()

push()push()

push()push()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

push()push()

push()push()

push()push()

push()push()

push()push()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

push()push()

push()push()

pull()pull()

pull()pull()

pull()pull()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

((DD) T) THEHE HYBRIDHYBRID PULLPULL//PUSHPUSH MODELMODEL

((AA) T) THEHE C CANONICALANONICAL PUSHPUSH MODELMODEL ((BB) T) THEHE C CANONICALANONICAL PULLPULL MODELMODEL

((CC) T) THEHE HYBRIDHYBRID PUSHPUSH//PULLPULL MODELMODEL

EVENTEVENT

CHANNELCHANNEL

((NOTIFIER)

EVENT

CHANNEL

(QUEUE)

EVENT

CHANNEL

(AGENT)

EVENT

CHANNEL

(PROCURER)

11

Generic and Typed Event

Communication

� There are two orthogonal approaches that
OMG event-based communication may take:

1. Generic

{ All communication is by means of generic
push or pull operations

{ These operations involve single parameters

or return values that package all the events

into a generic CORBA any data structure

2. Typed

{ In the typed case, communication is via op-

erations de�ned in OMG IDL

{ Event data is passed by means of typed pa-
rameters, which can be de�ned in any de-

sired manner

12

Event Service Class Structure

EVENTEVENT

 CHANNEL CHANNEL

ADMINADMIN

MODULEMODULE

: Event: Event
ChannelChannel

EVENT COMM MODULEEVENT COMM MODULE

: Supplier: Supplier
AdminAdmin

: Consumer: Consumer
AdminAdmin

: Push: Push
ConsumerConsumer

: Pull: Pull
ConsumerConsumer

: Push: Push
SupplierSupplier

: Pull: Pull
SupplierSupplier

: Proxy: Proxy
PushPush

ConsumerConsumer

: Proxy: Proxy
PullPull

SupplierSupplier

: Proxy: Proxy
PushPush

SupplierSupplier

: Proxy: Proxy
PullPull

ConsumerConsumer

13

The EventComm Module

� The event communication module EventComm

illustrated below de�nes a set of CORBA

interfaces for event-style communication

module CosEventComm {

exception Disconnected {};

interface PushConsumer {

void push (in any data) raises (Disconnected);

void disconnect_push_consumer ();

};

interface PushSupplier {

void disconnect_push_supplier ();

};

interface PullSupplier {

any pull() raises (Disconnected);

any try_pull() (out boolean has_event)

raises (Disconnected);

void disconnect_pull_supplier ();

};

interface PullConsumer {

void disconnect_pull_consumer ();

};

14

The PushConsumer Interface

� A push consumer implements the PushConsumer

interface to receive event data from a sup-

plier

interface PushConsumer

{

void push (in any data) raises (Disconnected);

void disconnect_push_consumer ();

};

� A supplier communicates event data to

the consumer by invoking the push oper-

ation on an object reference and passing

the event data as a parameter

� The disconnect push consumer operation ter-

minates the event communication and re-

leases resources

15

The PushSupplier Interface

� A push supplier implements the PushSupplier

interface to disconnect from a supplier

interface PushSupplier

{

void disconnect_push_supplier ();

};

� The disconnect push supplier operation ter-

minates the event communication and re-

leases resources

16

The PullSupplier Interface

� A pull supplier implements the PullSupplier

interface to transmit event data to a con-

sumer

interface PullSupplier {

any pull() raises (Disconnected);

any try_pull() (out boolean has_event)

raises (Disconnected);

void disconnect_pull_supplier ();

};

� A consumer requests event data from the

supplier by invoking either the pull oper-

ation (blocking) or the try pull operation

(non-blocking) on the supplier

� The disconnect pull supplier operation ter-

minates event communication and releases

resources

17

The PullConsumer Interface

� A pull consumer implements the PullConsumer

interface to disconnect from a consumer

interface PullConsumer

{

void disconnect_pull_consumer ();

};

� The disconnect pull consumer operation ter-

minates the event communication and re-

leases resources

18

Event Channel Overview

� In addition to consumers and suppliers,
OMG event services also have the notion
of an event channel

{ An event channel is an object that allows mul-
tiple suppliers to communicate with multiple

consumers in a highly decoupled, asynchronous

manner

� An event channel is both a consumer and
supplier of event data that it receives

{ In its simplest form, an event channel acts as

\broadcast repeater"

19

Event Channel Overview (cont'd)

� Event channels are standard CORBA ob-

jects, and communication with an event

channel is accomplished using standard CORBA

requests

� However, an event channel need not sup-
ply the incoming event data to its con-
sumer(s) at the same time it consumes
data from its supplier(s)

{ i.e., it may bu�er data

20

Event Channel Use-case

SUPERVISOR

CONSUMER

NETWORKNETWORK

SERVERSERVERCLIENTCLIENT

HOSTHOST

AA

HOSTHOST

BB
CLIENTCLIENT

EVENT SERVER

SUPERVISOR

CONSUMER

PushConsumer::push()

PushConsumer::push()
P

u
sh

C
on

su
m

er
::

P
u
sh

C
on

su
m

er
::

p
u
sh

()

p
u
sh

()

EVENT

CHANNEL

PushC
onsum

er::

PushC
onsum

er::

push()

push()

EVENT

ROUTER

EVENT

CHANNEL

TELECOMTELECOM

SWITCHESSWITCHES

21

Push-Style Communication with

an Event Channel

� The supplier pushes event data to an event

channel

� The event channel, in turn, pushes event
data to all consumers

{ Note that an event channel need not make any

complex routing decision, e.g., it can simply
deliver the data to all consumers

{ More complex semantics are also possible, of

course

22

Pull-Style Communication with an

Event Channel

� The consumer pulls event data from the

event channel

� The event channel, in turn, pulls event
data from the suppliers

{ This can be optimized by adding a queueing

mechanism in the Event Channel

23

Multiple Consumers and Multiple

Suppliers

� An event channel may provide many-to-

many communication

� The channel consumes events from one or

more suppliers, and supplies events to one

or more consumers

� Subject to the quality of service of a par-

ticular implementation, an event channel

provides an event to all consumers

� An event channel can support consumers

and suppliers that use di�erent communi-

cation models

24

Mixed-style Communication with

an Event Channel

� An event channel can communicate with a

supplier using one style of communication,

and communicate with a consumer using

a di�erent style of communication

� Note that how long an event channel must

bu�er events is de�ned as a \quality of

implementation" issue

25

Event Channel Administration

� An event channel is built up incrementally

{ i.e., when a channel is created no suppliers or

consumers are connected

� An EventChannelFactory object is used to

return an object reference that supports

the EventChannel interface

� The EventChannel interface de�nes three
administrative operations:

1. ConsumerAdmin ! a factory for adding con-

sumers

2. SupplierAdmin ! a factory for adding suppli-

ers

3. An operation for destroying the channel

26

Event Channel Administration

(cont'd)

� The ConsumerAdmin factory operation re-
turns a proxy supplier

{ A proxy supplier is similar to a normal supplier

(in fact, it inherits the supplier interface)

{ However, it includes a method for connecting

a consumer to the proxy supplier

� The SupplierAdmin factory operation re-
turns a proxy consumer

{ A proxy consumer is similar to a normal con-

sumer (in fact it inherits the interface of a con-
sumer)

{ However, it includes an additional method for

connecting a supplier to the proxy consumer

27

Event Channel Administration

(cont'd)

� Registering a supplier with an event chan-
nel is a two-step process

1. An event-generating application �rst obtains a

proxy consumer from a channel

2. It then \connects" to the proxy consumer by

providing it with a supplier object reference

� Likewise, registering a consumer with an
event channel is also a two-step process

1. An event-receiving application �rst obtains a
proxy supplier from a channel

2. It then \connects" to the proxy supplier by pro-

viding it with a consumer object reference

28

Event Channel Administration

(cont'd)

� The reason for the two-step registration

process is to support composing event chan-

nels created by an external agent

� Such an agent would compose two chan-

nels by obtaining a proxy supplier from one

(via the channel's SupplierAdmin factory)

� It would then obtain a proxy consumer

from the other channel (via the channel's

ConsumerAdmin factory)

� Finally, it would pass each of the proxy

object references to the other channel as

part of their connection procedure

29

The EventChannelAdmin Module

� The EventChannelAdmin module de�nes the

interfaces for making connections between

suppliers and consumers

#include "EventComm.idl"

module CosEventChannelAdmin {

exception AlreadyConnected {};

exception TypeError {};

interface ProxyPushConsumer

: CosEventComm::PushConsumer

{

void connect_push_supplier

(in CosEventComm::PushSupplier push_supplier)

raises (AlreadyConnected);

};

interface ProxyPullSupplier

: CosEventComm::PullSupplier

{

void connect_pull_consumer

(in CosEventComm::PullConsumer pull_consumer)

raises (AlreadyConnected);

};

30

The EventChannelAdmin Module

(cont'd)

� interface EventChannelAdmin (cont'd)

interface ProxyPullConsumer

: CosEventComm::PullConsumer

{

void connect_pull_consumer

(in CosEventComm::PullSupplier pull_supplier)

raises (AlreadyConnected, TypeError);

};

interface ProxyPushSupplier

: CosEventComm::PushSupplier

{

void connect_push_consumer

(in CosEventComm::PushConsumer push_consumer)

raises (AlreadyConnected, TypeError);

};

31

The EventChannelAdmin Module

(cont'd)

� interface EventChannelAdmin (cont'd)

interface ConsumerAdmin {

ProxyPushSupplier obtain_push_supplier ();

ProxyPullSupplier obtain_pull_supplier ();

};

interface SupplierAdmin {

ProxyPushConsumer obtain_push_consumer ();

ProxyPullConsumer obtain_pull_consumer ();

};

interface EventChannel {

ConsumerAdmin for_consumers ();

SupplierAdmin for_suppliers ();

void destroy ();

};

};

32

The EventChannel Interface

� The EventChannel interface de�nes three
administrative operations

1. Adding consumers

2. Adding suppliers

3. Destroying the channel

� e.g.,

interface EventChannel {

ConsumerAdmin for_consumers ();

SupplierAdmin for_suppliers ();

void destroy ();

};

33

The EventChannel Interface

(cont'd)

� Consumer administration and supplier ad-
ministration are de�ned as separate ob-
jects so that the creator of the channel
can control the addition of suppliers and
consumers, e.g.,

{ An event channel creator might wish to be the

sole supplier of event data, but might allow

many consumers to be connected to the chan-

nel

{ In this case, the creater would simply export

the ConsumerAdmin object

interface Document

{

ConsumerAdmin title_changed ();

};

34

The EventChannel Interface

(cont'd)

� Any object that possesses an object refer-
ence that supports the EventChannel inter-
face can perform the following operations

{ The ConsumerAdmin interface allows consumers
to be connected to an event channel

� The for consumers operation returns an

object reference that supports the ConsumerAdmin
interface

{ The SupplierAdmin interface allows suppliers

to be connected to an event channel

� The for suppliers operation returns an

object reference that supports the SupplierAdmin
interface

{ The destroy operation destroys the event chan-
nel

35

The ConsumerAdmin Interface

� The ConsumerAdmin interface de�nes the
�rst step for connecting consumers to an
event channel

{ Clients use this interface to obtain proxy sup-

pliers

interface ConsumerAdmin {

ProxyPushSupplier obtain_push_supplier ();

ProxyPullSupplier obtain_pull_supplier ();

};

� The obtain push supplier operation returns

a ProxyPushSupplier object that may be

used to connect a push-style consumer

� The obtain pull supplier operation returns

a ProxyPullSupplier object that may be

used to connect a pull-style consumer

36

The SupplierAdmin Interface

� The SupplierAdmin interface de�nes the
�rst step for connecting suppliers to an
event channel

{ Servers use it to obtain proxy consumers

interface SupplierAdmin {

ProxyPushConsumer obtain_push_consumer ();

ProxyPullConsumer obtain_pull_consumer ();

};

� The obtain push consumer operation returns

a ProxyPushConsumer object that may be

used to connect a push-style supplier

� The obtain pull consumer operation returns

a ProxyPullConsumer object that may be

used to connect a pull-style supplier

37

The ProxyPushConsumer

Interface

� The ProxyPushConsumer interface de�nes the

second step for connecting push suppliers

to an event channel

interface ProxyPushConsumer

: CosEventComm::PushConsumer

{

void connect_push_supplier

(in CosEventComm::PushSupplier push_supplier)

raises (AlreadyConnected);

};

38

The ProxyPushConsumer

Interface (cont'd)

� A nil object reference may be passed to
the connect push supplier operation

{ If so, a channel can't call disconnect push supplier
on the supplier

{ Therefore, the supplier may be disconnected
from the channel without being informed

� If the ProxyPushConsumer is already con-

nected to a PushSupplier, then the excep-

tion AlreadyConnected is raised

39

The ProxyPullSupplier Interface

� The ProxyPullSupplier interface de�nes the

second step for connecting pull consumers

to an event channel

interface ProxyPullSupplier

: CosEventComm::PullSupplier

{

void connect_pull_consumer

(in CosEventComm::PullConsumer pull_consumer)

raises (AlreadyConnected);

};

40

The ProxyPullSupplier Interface

(cont'd)

� A nil object reference may be passed to
the connect pull consumer operation; if so
a channel can't call disconnect pull consumer
on the consumer

{ Therefore, the consumer may be disconnected

from the channel without being informed

� If the ProxyPullSupplier is already con-

nected to a PullConsumer, then the excep-

tion AlreadyConnected is raised

41

The ProxyPullConsumer Interface

� The ProxyPullConsumer interface de�nes the

second step for connecting pull suppliers

to an event channel

interface ProxyPullConsumer

: CosEventComm::PullConsumer

{

void connect_pull_consumer

(in CosEventComm::PullSupplier pull_supplier)

raises (AlreadyConnected, TypeError);

};

42

The ProxyPullConsumer Interface

(cont'd)

� Implementations should raise the standard

BAD PARAM exception if a nil object ref-

erence is passed to connect pull supplier

� If the ProxyPullConsumer is already con-

nected to a PullSupplier, then the excep-

tion AlreadyConnected is raised

� An implementation of a ProxyPullConsumer
may put additional requirements on the
interface supported by the pull supplier

{ If the pull supplier does not meet those require-
ments, the ProxyPullConsumer raises the ex-

ception TypeError

43

The ProxyPushSupplier Interface

� The ProxyPushSupplier interface de�nes the

second step for connecting push consumers

to the event channel

interface ProxyPushSupplier

: CosEventComm::PushSupplier

{

void connect_push_consumer

(in CosEventComm::PushConsumer push_consumer)

raises (AlreadyConnected, TypeError);

};

44

Connecting a Consumer to an

Event Channel

EVENT

CHANNEL
CONSUMER

for_consumers()

obtain_push_supplier()

connect_push_consumer(this)

C
O

N
N

E
C

T
IO

N
P

H
A

S
E

push(event)

OBTAIN A

CONSUMERADMIN

FACTORY

OBTAIN A

PROXY SUPPLIER

CONNECT TO

THE CHANNEL

AND REGISTER

QOS REQUESTS

RECEIVE

NOTIFICATIONS

45

The ProxyPushSupplier Interface

(cont'd)

� Implementations should raise the standard

BAD PARAM exception if a nil object ref-

erence is passed to connect push supplier

� If the ProxyPushSupplier is already con-

nected to a PullConsumer, then the excep-

tion AlreadyConnected is raised

� An implementation of a ProxyPushSupplier
may put additional requirements on the
interface supported by the push consumer

{ If the push consumer does not meet those re-
quirements, the ProxyPushSupplier raises the
TypeError exception

46

Typed Event Communication

� The preceeding discussion of OMG event
services utilizes the properties of the CORBA
any type to enable generic communication
of event data

{ The any type supports extremely exible mod-
els of interworking

struct any {

typeCode *_type;

void *_value;

// ...

};

� However, it may be inconvenient or inef-
�cient for use any in certain types of ap-
plications

{ In many applications, it is more appropriate
to use typed communication between suppli-

ers and consumers

{ Therefore, OMG also provides a parallel set of

TypedEventComm and TypedEventChannelAdmin
interfaces

47

Composing Event Channels and

Filtering

� The event channel administration opera-
tions de�ned in the EventChannelAdmin in-
terface support the composition of event
channels

{ i.e., one event channel can consume events
supplied by another

� This architecture allows the implementa-
tion of an event channel that �lters the
events supplied by another

{ e.g., �ltering based on event type

48

Policies for Finding Event

Channels

� The OMG event service does not establish
policies for locating event channels

{ Finding a service is orthogonal to using the

service

� Higher levels of software may de�ne poli-
cies for locating and using event channels

{ i.e., higher layers will dictate when an event

channel is created and how references to the
event channel are obtained

� By representing the event channel as a
CORBA object, it has all of the properties
that apply to objects

{ i.e., name servers, object locator mechanisms,

marshalling, etc.

49

Example

SERVERSERVER

LOGGERLOGGER

APP1

cl_proxycl_proxy

pushpush

consumerconsumer

NETWORKNETWORK

STORAGESTORAGE

DEVICEDEVICE

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT

PRINTERPRINTER

CONSOLECONSOLE

cl_proxycl_proxy

pushpush

consumerconsumer

APP2

Logging

Server::

push()

CLIENTCLIENT

LOGGERLOGGER

clientclient

loggerlogger

eventevent

channelchannel

sl_proxysl_proxy

pushpush

consumerconsumer
app_proxyapp_proxy

pushpush

suppliersupplier

server

logger

event

channel

cl_proxy

push

supplier

� Distributed logging facility

50

Application Logger Interface

� Module specifying interface for client ap-

plication logging

module Logger {

enum Log_Priority {

LOG_DEBUG, // Debugging messages

LOG_WARNING, // Warning messages

LOG_ERROR, // Errors

LOG_EMERG, // A panic condition

};

struct Log_Record {

Log_Priority type;// Type of logging record

long time_stamp; // Time logging record generated

long pid; // Application process id

string msg_data; // Log record data

};

51

Application Logger Interface

(cont'd)

� Logging interface (cont'd)

exception Invalid_Record { };

interface Log

{

// Main method for logging a Log_Record

void log (in Log_Record log_rec)

raises (Invalid_Record);

};

};

52

Client Application Logging

� Client application obtains object reference

to Logger object and performs logging calls

using namespace Logger;

// Find any Logger implementation.

Log_var logger =

bind_service<Log> ("Logger");

Log_Record log_rec;

// Initialize the log_record

log_rec.type = Logger::LOG_DEBUG;

log_rec.time_stamp = ::time (0);

// ...

try {

logger->log (log_rec);

}

catch (Logger::Invalid_Record &) {

// ...

}

53

Client Logger Interface

� Interface for the Client Logger

interface Client_Logger {

SupplierAdmin for_suppliers ();

};

� The Client logger is typically located on
the same host as the applications

{ It performs a \multiplexing service"

� However, it could also be located on an-

other host within a network

� Regardless of location, the CORBA Name

Service mechanism will �nd the appropri-

ate object reference

54

Server Logger Interface

� Interface for the Server Logger

interface Server_Logger {

SupplierAdmin for_suppliers ();

};

� The Server Logger may be located any-
where in a network

{ Including co-located or replicated

� The CORBA locator mechanism is respon-

sible for determining where a Server Log-

ger resides

55

Application Logger Interface

Implementation

� Implement client's logging interface

class My_Log : public virtual Logger::LogBOAImpl {

public:

My_Log (void) {

// Locate the Client Logger event channel.

Client_Logger_var cl =

bind_service<Client_Logger> ("Client_Logger");

SupplierAdmin_var supplier_admin =

cl->for_suppliers ();

this->cl_proxy_push_consumer_ =

supplier_admin->obtain_push_consumer ();

// Don't allow two-way communication or disconnects.

this->cl_proxy_push_consumer->

connect_push_supplier (CORBA::nil ());

}

void log (const Logger::Log_Record &log_rec) {

CORBA::any msg (TC_LOG_RECORD, &log_rec);

// Push this to the Client Logger channel.

this->cl_proxy_push_consumer_->push (msg);

}

private:

ProxyPushConsumer_var cl_proxy_push_consumer_;

};

56

Server Logger PushConsumer

Implementation

� This is the �nal destination of an applica-

tion's log operation

class My_Logging_Server

: public virtual CosEventComm::PushConsumer {

public:

My_Logging_Server (void):

log_type_ (new CORBA::typeCode (TC_LOG_RECORD)) {}

~My_Logging_Server (void) { delete this->log_type_; }

virtual void push (any *msg) {

if (msg->_type->kind () == tk_struct) {

any *struct_type = msg->_type.parameter (0);

if (struct_type->_type->equal (this->log_type_)) {

Logger::Log_Record *log_rec =

static_cast <Logger::Log_Record *>

(struct_type->_value);

clog << log_rec.msg_data <<;

return;

}

} // otherwise there's an error...

}

private:

CORBA::typeCode *log_type_;

57

Client Logger Implementation

� Implementation of the SupplierAdmin fac-

tory

class My_Client_Logger

{

public:

SupplierAdmin_ptr for_suppliers (void) {

make_cl_channel ();

return make_supplier_admin ();

}

void make_cl_channel (void);

SupplierAdmin_ptr make_supplier_admin (void);

private:

// Proxy to our EventChannel.

EventChannel_ptr cl_channel_;

// Proxy to the Server's Event Channel.

Server_Logger_ptr sl_channel_proxy_;

}

58

Client Logger Implementation

(cont'd)

� Create the Client Logger's Event Channel

void My_Client_Logger::make_cl_channel (void)

{

// Magically create an EventChannelFactory and

// create our Client_Logger EventChannel.

EventChannelFactory_var factory = ...;

cl_channel_ =

factory->create_event_channel ();

// Get a proxy to the Server Logger.

sl_channel_proxy_ =

bind_service<Server_Logger> ("Server_Logger");

}

� Note that we would probably use a \Fac-

toryFinder" from the COSS Life Cycle spec-

i�cation to obtain our EventChannelFactory

59

Client Logger Implementation

(cont'd)

� Return the SupplierAdmin

SupplierAdmin_ptr

My_Client_Logger::make_supplier_admin (void)

{

// Obtain all the necessary proxies.

ConsumerAdmin_var consumer_admin =

cl_channel_->for_consumers ();

ProxyPushSupplier_var app_proxy_push_supplier =

consumer_admin->obtain_push_supplier ();

SupplierAdmin_var supplier_admin =

sl_channel_proxy_->for_suppliers ();

ProxyPushConsumer_var sl_proxy_push_consumer =

supplier_admin->obtain_push_consumer();

// Use double-dispatch to connect everything together.

sl_proxy_push_consumer->

connect_push_supplier (app_proxy_push_supplier);

app_proxy_push_supplier->

connect_push_consumer (sl_proxy_push_consumer);

// Return connected supplier admin.

return cl_channel_->for_suppliers ();

}

60

Server Logger Implementation

� Implementation of Server Logger SupplierAdmin

factory

class My_Server_Logger

{

public:

SupplierAdmin_ptr for_suppliers (void) {

make_sl_channel ();

return make_supplier_admin ();

}

void make_sl_channel (void);

SupplierAdmin_ptr make_supplier_admin (void);

private:

// Proxy to our EventChannel.

EventChannel_var sl_channel_;

// Implementation of the actual PushConsumer.

PushConsumer_var server_logger_;

};

61

Server Logger Implementation

(cont'd)

� Create the Server Logger's Event Channel

void My_Server_Logger::make_sl_channel (void)

{

// Magically create an EventChannelFactory and

// create our Client_Logger EventChannel.

EventChannelFactory_var factory = ...;

sl_channel_ = factory->create_eventchannel ();

}

� Note that we would probably use a \Fac-

toryFinder" from the COSS Life Cycle spec-

i�cation to obtain our EventChannelFactory

62

Server Logger Implementation

(cont'd)

� Return the SupplierAdmin

SupplierAdmin_ptr

My_Server_Logger::make_supplier_admin (void) {

// Obtain proxies to the Supplier/Consumer

// factories and Proxies

SupplierAdmin_var supplier_admin =

sl_channel_->for_suppliers ();

ConsumerAdmin_var consumer_admin =

sl_channel_->for_consumers ();

ProxyPushSupplier_var cl_proxy_push_supplier =

consumer_admin->obtain_push_supplier ();

// Initialize the PushConsumer implementation.

server_logger_ = new My_Logging_Server;

// Double-dispatch to connect everything together.

cl_proxy_push_supplier->

connect_push_supplier (server_logger);

return supplier_admin;

}

63

Advanced Event Channel Services

� Note that a simple event channel imple-
mentation contains no real routing intelli-
gence

{ i.e., it simply forwards all events it receives

from supplier to consumer (assuming the push

model is used)

� A more sophisticated event channel imple-
mentation could provide a type of \event
router"

{ This router would selectively decide which event
channel(s) receive which events

� Even more sophisticated schemes could
provide additional semantics

{ e.g., �ltering, correlation, persistence, fault tol-
erance, real-time scheduling, etc.

{ See www.cs.wustl.edu/�schmidt/oopsla.ps.gz

64

Case Study: Real-time Event

Channels

� Asynchronous messaging and group com-
munication are important for real-time ap-
plications

{ e.g., avionics mission control systems, telecom

gateways, etc.

� The following example presents our OO

architecture for CORBA Real-time Event

Channels

� Focus is on design patterns and reusable

framework components

65

Real-time Issues Not Addressed

by COS Event Services

� Deadlines

{ Real-time tasks with data and event dependen-

cies require predictable event noti�cations

� e.g., consumers must receive events in time

to meet deadlines

� Scheduling

{ Real-time systems must guarantee that higher
priority tasks are noti�ed before lower priority

tasks

� e.g., policies for event propagation

� Periodic Tasks

{ Periodic tasks must always run at certain in-

tervals

� e.g., timers and rate groups

66

Open vs. Closed Systems

� De�nitions

{ Open systems are systems designed to work

correctly even when they have no idea of all

other components in the system

� e.g., WWW browsers running Java Applets

{ Closed systems are ones that know how all the

other components in the system behave

� e.g., existing RT avionics systems

� Challenge

{ Identify the structure and boundaries of the

open and closed aspects for Real-time avionics

system

{ Central issues are:

� Trust

� Dependencies

� Time to run

67

Enhancing COS Event Services

for Real-time Systems

� To enhance the COS Event Services for
Real-time we've de�ned:

1. Real-time scheduling policies

2. Real-time dispatching

3. Quality of Service interfaces

4. Flexible concurrency strategies

5. Event �ltering and correlation

� Goal � \as close to the COS speci�ca-

tion as possible, but no closer"

68

RT Event Service Architecture

Subscription
& Filtering

Event
Correlation

Dispatching
Module

EVENT
CHANNEL

Consumer

Consumer
Consumer

Supplier Supplier
Supplier

push (event)

push (event)

Consumer
Proxies

Supplier
Proxies

Priority
Timers

Event
Flow

69

Real-time Scheduling Policies

� Problem

{ Order in which events are forwarded by COS
Event Channels is not de�ned by the speci�-

cation

� Solution

{ An RT event channel must integrate with system-
wide scheduling policies

� e.g., rate monotonic

{ Achieving this requires speci�c information from
Suppliers and Consumers

� e.g., period, worst-case execution time, etc.

70

Real-time RTEC Scheduler

PROXYPROXY

SERVANTSERVANT
PROXYPROXY

SERVANTSERVANT
PROXYPROXY

SERVANTSERVANT

EVENTEVENT CHANNELCHANNEL

SERVANTSSERVANTSSERVANTSSERVANTSSERVANTSSERVANTS

RR

EE

AA

LL

TT

II

MM

EE

 S S

CC

HH

EE

DD

UU

LL

EE

RR
II//OO SUBSYSTEMSUBSYSTEM

ORBORB CORECORE

SERVANTSERVANT DEMUXERDEMUXER

OBJECTOBJECT ADAPTERADAPTER

REACTORREACTOR

(20 (20 HZHZ))

REACTORREACTOR

(10 (10 HZHZ))

REACTORREACTOR

(5 (5 HZHZ))

REACTORREACTOR

(1 (1 HZHZ))

QUEUEQUEUE DEMUXERDEMUXER

71

Real-time Dispatching

Mechanisms

� Problem

{ To ensure deadlines are met, Event Channel

must always dispatch highest priority event within

a small, bounded amount of time

� Solution

{ Create a Dispatcher Module that maintains a

queue for every Consumer priority level

{ The Dispatcher Module always dispatches events

in higher priority queues before lower priority
queues

{ Various types of preemption are supported

72

Real-time Dispatcher

0 1 2 3 4

1: push (event)

Supplier ProxiesSupplier

2: push (event)

3: push (event, consumer)

4: push (event, consumer)

5: enqueue (event, consumer)

6: dequeue (event, consumer)

7: push (event)

8: push (event)

Consumer

Consumer Proxies

Dispatcher

Priority Queues

Run-Time Scheduler

Event Correlation

Subscription & Filtering

Consumer

Consumer
Event Channel

Dispatching Module

73

Quality of Service Interfaces

� Problem

{ Suppliers and Consumers must relay their qual-

ity of service (QoS) requirements to the chan-

nel

{ Event Service mechanisms for coordinating schedul-
ing data should integrate with global schedul-

ing mechanism

� Solution

{ De�ne a system-wide Execution Model that

provides abstractions for obtaining threads of

control and publishing scheduling characteris-

tics

{ All components in the system must either:

� Use the Execution Model directly, or

� Use Adapters to integrate 'o�-the-shelf' toolk-

its into the Execution Model

74

Execution Model De�nitions

� Operation ! work that needs to be done
in reponse to an event

{ e.g., I/O, timer, method call

{ Typically encapsulated by an object

� RT Operation � work that needs to be
done with certain scheduling requirements

{ Typically periodic tasks

75

Specifying Operation Scheduling

Properties

� Problem

{ Di�erent operation have di�erent scheduling

requirements

{ Operation scheduling properties must be com-
plete

� The system-wide scheduling policy has spe-

ci�c data requirements in order to guarantee
schedulability

{ Operation scheduling properties must be ab-

stract

� Scheduling policies and mechanisms can change
as the project evolves

76

Specifying Operation Scheduling

Properties

� Solution

{ De�ne an RT Operation interface

� Must be implemented by all object with schedul-

ing requirements

� Allows RT Operations to share scheduling

properties (e.g., period, priority, etc) with
between operations and other Execution Model

API's

{ RT Operation is integrated into ACE

� Portable to Win32, Solaris, POSIX 1003.1c,

VxWorks, etc.

77

The RT Operation Interface

� If objects encapsulate operations with schedul-

ing requirements, then object methods are

the entry points of execution

� Each RT Operation contains an RT Info de-

scriptor:

struct RT_Info

{

Time worst_case_execution_time;

Time typical_execution_time;

Time cached_execution_time;

Period period;

Priority priority;

Time quantum;

sequence <RT_Info> called_tasks;

// ...

};

78

Using RT Operation

� A class that implements RT Operation de-

�nes an RT Info descriptor for each method.

� Scheduled Method describes the execution
properties of a single method

{ Execution time ! worst case and average case

method execution times

{ Period ! the rate the method executes

{ Quantum ! max time to run before preempt-

ing for same priority tasks

{ Priority ! allows \clients" to assign levels of

importance

� Not applicable for Rate Monotonic Schedul-
ing

79

Advantages to RT Operation

API's

� Scheduling mechanisms acquire operation
scheduling properties via RT Info interfaces

{ Event Channels make scheduling decisions based

on data from Suppliers and Consumers

� Abstract interfaces support changes in schedul-

ing policy

� Facilitates simulation-time logging of schedul-
ing data

{ O�-line proof of schedulability

{ Integration with 3rd party scheduling utilities

80

Event Channel Scheduling

Mechanisms

� Problem

{ Event Channels must implement system-wide

scheduling policies during event propogation

� Solution

{ Channels use RT Operation and RT Info in-
terfaces to obtain task scheduling properties

{ Channels can utilize multiple concurrency strate-

gies to implement scheduling policies

81

Concurrency Strategies

� Problems

{ The system-wide scheduling policy may require

that Event Channels delegate threads to Sup-

pliers and Consumers

� Real-time threads can guarantee that higher

rate tasks preempt lower rate task in a Rate-

Monotonically scheduled system

� Solution

{ Event Channel push and pull operations can be

entry points for channel-maintained threads

{ A channel's concurrency policy can be decided
by a global scheduling component

82

Concurrency Alternatives

0 1 2 3 4

(B) RTU Dispatching

Dispatcher

Run-Time
Scheduler

3:3: DEQUEUE DEQUEUE

 REQUEST REQUEST

4:4: DISPATCH DISPATCH

 REQUEST REQUEST

1:1: INCOMING INCOMING

 REQUEST REQUEST

2:2: ENQUEUE ENQUEUE

REQUESTREQUEST

0 1 2 3 4

(C) Threaded Dispatching

Run-Time
Scheduler

1:1: INCOMING INCOMING

 REQUEST REQUEST

2:2: ENQUEUE ENQUEUE

REQUESTREQUEST

3:3: DEQUEUE DEQUEUE

 REQUEST REQUEST

4:4: DISPATCH DISPATCH

 REQUEST REQUEST

Dispatcher

(A) FIFO Dispatching

Dispatcher

4:4: DISPATCH DISPATCH

 REQUEST REQUEST

1:1: INCOMING INCOMING

 REQUEST REQUEST

2:2: ENQUEUE ENQUEUE

REQUESTREQUEST

3:3: DEQUEUE DEQUEUE

 REQUEST REQUEST

83

Related Patterns and

Architectures

� Observer (Gamma, Helm, Johnson, Vlis-
sides)

{ \De�ne a one-to-many dependency between

objects so that when one object changes state,
all its dependents are noti�ed and updated au-

tomatically."

� Publisher-Subscriber (Buschmann, Meunier,
Rohnert, Sommerlad, Stal)

{ \Helps to keep the state of cooperating com-

ponents synchronized. To achieve this, it en-

ables one-waypropagation of changes: one pub-
lisher noti�es any number of subscribers about

changes to its state."

� Object Group (Silvano Ma�eis)

{ \Provides a local surrogate for a group of ob-
jects distributed across networked machines."

84

Overview of Object Group

Architecture

Object Group
(Server Objects)

Client Application
(Object Reference)

Reliable Multicast

� Based on \Virtual Synchrony"

{ http://www.olsen.ch/~ma�eis/

85

Electra Overview

Virtual Synchrony ORB

TP
Monitor

MQ
Handler

Naming
Context

LifeCycle
Service

Common Object Services

Common FacilitiesApplication Objects

GUI
Classes

Compound
Documents

...

86

Summary

� The OMG event services speci�cation de-
�nes a decoupled communication model
between distributed objects

{ This model enables asynchronous communica-

tion between suppliers and consumers

� The OMG event services speci�cation is

useful for devising the basis for a exible

\publish/subscribe" service

� Implementations are slowly coming on line

{ Main problem is lack of standard semantics: : :

� RT Event Service integrated with TAO

{ www.cs.wustl.edu/~schmidt/TAO-obtain.html

87

