
Alternative Techniques for

Designing Concurrent Server

Daemons

Douglas C. Schmidt

Washington University, St. Louis

http://www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

1

Motivation

� Network applications (particularly servers)
often handle di�erent types of events simul-
taneously, e.g.,

1. I/O events

{ e.g., input, output, exceptions corresponding to

interactions with clients

2. Time-related events

{ e.g., handle timeouts and retransmissions

� Connection-oriented servers often identi�ed
clients internally via distinct I/O handles

{ Handles are internal IDs that correspond to exter-

nal IDs of network resources

. Handles are typically implemented via integers or

pointers

2

Common Traps and Pitfalls

� Blocking on a single I/O handle in read or
accept

{ In general, a \concurrent daemon" should not ser-

vice one I/O handle at the exclusion of the other

handles

. This will result in starvation for other services

� Polling via \busy waiting"

{ This will result in wasted CPU time

� Excessive process or thread creation

{ It is wasteful to dedicate OS resources while wait-

ing for communication activity to occur

3

Distributed Logger

� This lecture describes an extended example

of a distributed logging facility

� This example illustrates the applicability of
various ACE components and covers:

1. The application-level logging API

2. The client logging daemon IPC mechanisms

3. Several alternative concurrent server logging dae-

mon designs and implementations

� The examples illustrate how OO and C++

simplify development and improve several

key software quality factors

4

Distributed Logger (cont'd)

� The distributed logging facility was origi-

nally written in C and used select and/or

poll directly

� The original version was part of a commer-

cial distributed on-line transaction-processing

product that was ported from BSD to Sys-

tem V

� This was later ported to C++ and is now

in ACE

5

Distributed Logger Architecture

A1

A2

A3

CLIENT

LOGGING

DAEMON

NETWORKNETWORK

STORAGESTORAGE

DEVICEDEVICE

SERVERCLIENTCLIENT
HOSTHOST

AA

HOST

B
CLIENTCLIENT

CONSOLECONSOLE

PRIN
TER

PRIN
TER

A

B

SERVER LOGGING

DAEMON

A1 CLIENT

LOGGING

DAEMON
A2

LISTENER

CLIENTCLIENT

HOST

C

CLIENT

LOGGING

DAEMON

LOGGINGLOGGING

RECORDSRECORDS

CONNECTIONCONNECTION

REQUESTSREQUESTS

LOGGINGLOGGING

RECORDSRECORDS

� Server logging daemon collects, formats, and

outputs logging records forwarded from mul-

tiple client logging daemons residing through-

out a network or internetwork

6

Distributed Logger Architecture

(cont'd)

� Note the two levels of I/O multiplexing in
the distributed logger architecture:

1. One or more application processes multiplex their

logging records to a single client logging daemon

located on each local host

2. One or more client logging daemons multiplex their

accumulated messages to a single server logging

daemon running on a designated host in a net-

work/internetwork

� Di�erent IPC mechanisms may be used for
each component, but the general architec-
tures are the same

{ Note that ACE reects these similarities in the

design and implementation

7

Distributed Logger Architecture

(cont'd)

� The distributed logger provides services that:

1. Identify processes via their program name, process

ID (PID), and host name

2. Time-stamp records to facilitate chronological trac-

ing

3. Prioritize record delivery at a client logging dae-

mon

� e.g.,

ACE_ERROR ((LM_ERROR, "unable to fork in function spawn"));

ACE_DEBUG ((LM_DEBUG, "sending to server %s", server_host));

Feb 30 14:50:13 1997@tango.cs.wustl.edu@22766@7@client-test

::unable to fork in function spawn

Feb 30 14:50:28 1997@tango.ics.uci.edu@18352@2@drwho

::sending to server mambo

8

Application Logging API

� Provides applications with a thread-safe \vari-
adic" logging interface similar to printf, e.g.,

ACE DEBUG ((LM DEBUG, "server is %s\n", hostname);

ACE ERROR ((LM ERROR, "usage: %n �lename\n");

� In addition to interpreting and expanding
the variadic arguments, the API library code
also:

1. Creates a logging record and copies the expanded

data into it

2. Time-stamps the logging record

3. Adds the PID and program name to the record

4. Sends the record to the client logging daemon run-

ning on the local host via a local IPC channel

{ e.g., named pipes or STREAM pipes

9

Application Logging API (cont'd)

� Applications can specify di�erent levels of

logging priority (similar to UNIX syslogd),

e.g.,

enum Log_Priority

{

LM_SHUTDOWN = 1, /* Shutdown the logger */

LM_DEBUG = 2, /* Messages with debugging info */

LM_INFO = 3, /* Informational messages */

LM_NOTICE = 4, /* Conditions that are not errors

but require special handling */

LM_WARNING = 5, /* Warning messages */

LM_STARTUP = 6, /* Initialize the logger */

LM_ERROR = 7, /* Errors */

LM_CRIT = 8, /* Critical conditions, such as

hard device errors */

LM_ALERT = 9, /* A condition that must corrected,

such as a corrupted database */

LM_EMERG = 10, /* A panic condition This is normally

broadcast to all users */

LM_MAX = 11 /* Maximum value + 1 */

};

10

Client Logging Daemon

� Runs on the local host, reads from the named

pipe being written to by di�erent instances

of the application logging API (which is linked

into di�erent user processes and/or threads)

� When logging records arrive, the client log-
ging daemon behaves as follows:

1. Reads the records in priority order

2. Performs network-byte order conversions on multi-

byte header �elds

3. Transmits the records to the server logging dae-

mon across the network using TCP

{ However, TCP does not maintain logging record

priorities: : :

{ Note, the client logging daemon may also run as

a stand-alone process on a local host

11

Client Logging Daemon (cont'd)

� The following logging record PDU format

is exchanged between the client and server

logging daemons:

class Log_Record {

public:

enum {

MAXLOGMSGLEN = BUFSIZ, /* Maximum logging message. */

ALIGN_WORDB = 8, /* Most restrictive alignment. */

};

Log_Record (void);

Log_Record (Log_Priority lp, long time_stamp, pid_t pid);

int print (const char host_name[], FILE *fp = stderr);

void encode (void);

void decode (void);

int length (void);

void length (int len);

private:

long type; /* Type of logging record */

long length; /* length of the logging record */

long time_stamp; /* Time logging record generated */

long pid; /* Process Id generating the record */

char msg_data[MAXLOGMSGLEN]; /* Logging record data */

};

12

Concurrent Daemon Designs

� To motivate the utility of OO network pro-
gramming techniques, the following slides
examine several alternative designs for han-
dling multiple sources of input and output
in the distributed logger, e.g.,

{ Non-blocking I/O concurrent daemon

. i.e., \polling"

. Daemon process continuously sweeps across all

open handles, performing non-blocking I/O on

each

{ Multiple-process or multi-threaded concurrent dae-

mon

. i.e., fork or thread facilities (e.g., POSIX/Solaris)

. Allows each separate slave daemon process or

thread to block while reading from a single I/O

handle

13

Concurrent Daemon Designs

(cont'd)

� Alternative designs (cont'd)

{ Single-threaded concurrent daemon

. i.e., based upon I/O demultiplexing with select
and poll

� select and poll allow blocking, non-blocking,

and/or timed-wait on multiple I/O handles si-

multaneously

. In certain cases, this approach may be easier

to design, more portable, and potentially more

e�cient than alternative designs

{ Note, hybrid designs are also possible

14

The handle logging record

Function

� The following function is used in each alter-

native daemon design to handle the recep-

tion of logging records sent from the client

logging daemon to the server logging dae-

mon

// Perform two recv's to simulate a record service

// via the underlying bytestream-oriented TCP connection.

// Note that the sender must follow this protocol also...

template <class MUTEX = Null_Mutex>

int handle_logging_record (int handle)

{

MUTEX lock;

long m_len;

Log_Record log_record;

// The first recv reads the length (stored as a

// fixed-size integer) of the adjacent logging record.

size_t n = ACE_OS::recv (handle, &m_len, sizeof m_len);

if (n != sizeof m_len)

15

return n;

else {

// Convert byte-ordering

m_len = ntohl (m_len);

// The second recv then reads "length" bytes to

// obtain the actual record.

n = ACE_OS::recv (handle, (char *) &log_record, m_len);

if (n != m_len) return -1;

log_record.decode ();

if (log_record.length () == n) {

// Automatically obtain lock for MT designs.

ACE_Guard<MUTEX> monitor (lock);

log_record.print (output_device);

// Automatically release lock here for

// MT designs.

}

return n;

}

}

� Note, fault tolerant applications may require

more sophisticated message-oriented data

transfer techniques

Polling via Non-blocking I/O

NETWORKNETWORK

SERVERSERVER

LOGGING DAEMONLOGGING DAEMON

SERVER

HOST

LOGGING

RECORDS
LOGGING

RECORDS

CONNECTION

REQUEST

maxhandlep1maxhandlep1
acceptoracceptor

16

Polling via Non-blocking I/O

(cont'd)

� Pseudo-code for sample non-blocking server
logging daemon

initialize acceptor endpoint in non-blocking mode

loop

foreach open client handle loop

if data available from client then

call handle logging record

else if client has shutdown connection then

duplicate highest handle

to maintain contiguity

else

continue

end if

end loop

while connection requests pending loop

accept next request and set new client

handle to non-blocking mode

end loop

end loop

17

Polling via Non-blocking I/O

(cont'd)

� C++ code for sample non-blocking server

logging daemon

int main (void)

{

// Create a server end-point

ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) PORT_NUM);

ACE_SOCK_Stream new_stream;

// Extract handle

int s_handle = acceptor.get_handle ();

int maxhandlep1 = s_handle + 1;

// Set acceptor in non-blocking mode

acceptor.enable (ACE_NONBLOCK);

// Loop forever performing logger server processing

for (;;) {

// Poll each handle to see if logging

// records are immediately available on

// active network connections

18

for (int handle = s_handle + 1;

handle < maxhandlep1;

handle++) {

ssize_t n = handle_logging_record (handle);

if (n == -1) {

// No input pending

if (errno == EWOULDBLOCK)

continue;

}

else if (n == 0) {

// Keep handles contiguous...

ACE_OS::dup2 (handle, --maxhandlep1);

ACE_OS::close (maxhandlep1);

}

}

// Handle all pending connections

while (acceptor.accept (new_stream) != -1) {

// Make new connection non-blocking

new_stream.enable (ACE_NONBLOCK);

handle = new_stream.get_handle ();

assert (handle + 1 == maxhandlep1);

maxhandlep1++;

}

if (errno != EWOULDBLOCK)

ACE_OS::perror ("accept failed");

}

/* NOTREACHED */

}

19

Polling via Non-blocking I/O

(cont'd)

� Advantages

{ Relatively portable across UNIX and many PC plat-

forms

� Disadvantages

1. Ine�cient

{ Wasteful of CPU resources due to \busy wait-

ing"

2. Non-extensible

{ Di�cult to extend server to handle other types

of I/O events and services without writing addi-

tional special code and modifying existing code

{ Note, this is a general drawback with all the

functionally-designed approaches illustrated here

20

Multiple Process Creation

NETWORK

MASTER SERVERMASTER SERVER

PROCESSPROCESS
SERVERSERVER

: logging: logging
acceptoracceptor

SLAVESLAVE

PROCESSESPROCESSES

CONNECTION

REQUEST : logging: logging
handlerhandler

: logging: logging
handlerhandler

CLIENTCLIENT

CLIENTCLIENT

CLIENTCLIENT

LOGGING

RECORDS
LOGGING

RECORDS

21

Multiple Process Creation

(cont'd)

� Pseudo-code for sample multi-process mas-
ter server logging daemon

initialize acceptor endpoint
loop

foreach connection request pending loop

accept request
fork a child process to handle request

end loop

end loop

� Pseudo-code for sample multi-process slave
server logging daemon

loop

foreach incoming data message from client loop
call handle logging record

end loop

exit process
end loop

� Note, handling the SIGCHLD signal compli-

cates this basic logic somewhat: : :

22

Multiple Process Creation

(cont'd)

� Sample C++ multi-process server logging

daemon

// Handle all logging records from a particular

// client (run in the slave process)

void logging_handler (int handle)

{

// Perform a "blocking" receive and process

// client logging records until client shuts down

// the connection

for (int n;;) {

n = handle_logging_record <ACE_Process_Mutex> (handle);

if (n <= 0)

break;

}

}

23

// Reap zombie'd children (run in the

// master process)

void child_reaper (int)

{

for (int res;

(res = ACE_OS::waitpid (-1, 0, WNOHANG)) > 0

|| (res == -1 && errno == EINTR);)

continue;

}

// Master process

int main (void)

{

// Register the SIGCHLD signal handler.

ACE_Sig_Action sa (ACE_SignalHandler (child_reaper),

SIGCHLD, 0, SA_RESTART);

logging_acceptor ();

}

24

static void

logging_acceptor (void)

{

// Create a server end-point

ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) PORT_NUM);

ACE_SOCK_Stream new_stream;

// Loop forever performing logging server processing

for (;;) {

// Wait for client connection request and create

// new ACE_SOCK_Stream endpoint (accept is

// automatically restarted after interrupts)

acceptor.accept (new_stream);

// Create a new process to handle client request

switch (ACE_OS::fork ()) {

case -1: ACE_OS::perror ("fork failed"); break;

case 0: // In child

acceptor.close ();

logging_handler (new_stream.get_handle ());

/* NOTREACHED */

default: // In parent

new_stream.close (); break;

}

}

/* NOTREACHED */

}

25

Multiple Process Creation

(cont'd)

� Advantages

1. fork is portable (on UNIX)

{ Win32 is more problematic: : :

2. In general, this design is e�cient for certain types

of daemons, e.g.,

{ I/O bound

{ Longer-duration/variable-length services

. e.g., �le transfer and rlogin

{ Services that set ownership and permissions based

upon userid

3. Also, transparently take advantage of multiple CPUs

26

Multiple Process Creation

(cont'd)

� Disadvantages

1. Often wasteful of OS resources

{ e.g., process table slots, virtual memory

2. Incurs additional overhead to schedule and context

switch between the multiple processes

3. May require additional synchronization and/or mu-

tual exclusion primitives to serialize access to shared

output devices

{ e.g., in Logging Handler

4. SIGCHLD signal handling is subtle and non-portable

27

Multiple Thread Creation

NETWORK

SERVERSERVER

LOGGING DAEMONLOGGING DAEMON

CLIENTCLIENT

SERVERSERVER

: logging: logging
acceptoracceptor

: logging: logging
handlerhandler

CONNECTION

REQUEST

LOGGING

RECORDS

CLIENTCLIENT

CLIENTCLIENT

: logging: logging
handlerhandler

LOGGING

RECORDS

28

Multiple Thread Creation (cont'd)

� Pseudo-code for sample multi-threaded mas-
ter server logging daemon

initialize acceptor endpoint

loop

foreach connection request pending loop

accept request

spawn a thread to handle request

end loop

end loop

� Pseudo-code for sample multi-thread slave
server logging daemon

loop

foreach incoming data message from client loop

call handle logging record

end loop

exit thread

end loop

29

Multiple Thread Creation (cont'd)

� Sample C++ multi-threaded server logging

daemon

// Handle all logging records from a particulur

// client (run in each slave thread)

void

logging_handler (int handle)

{

// Perform a "blocking" receive and process

// client logging records until client shuts

// down the connection

for (ssize_t n;;) {

n = handle_logging_record <ACE_Thread_Mutex> (handle);

if (n <= 0)

break;

}

ACE_OS::close (handle);

ACE_Thread::exit ();

/* NOTREACHED */

}

30

static void

logging_acceptor (void)

{

// Create a server end-point

ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) PORT_NUM);

ACE_SOCK_Stream new_stream;

// Loop forever performing logging server processing

for (;;) {

// Wait for client connection request and create

// a new ACE_SOCK_Stream endpoint (automatically

// restarted upon interrupts)

acceptor.accept (new_stream);

// Create a new thread to handle client request

ACE_Thread::spawn

(ACE_THR_FUNC (logging_handler),

(void *) new_stream.get_handle (),

THR_DETACHED | THR_NEW_LWP);

}

/* NOTREACHED */

}

// Master server

int main (void)

{

logging_acceptor ();

}

31

Multiple Thread Creation (cont'd)

� Advantages

{ Somewhat easier to program than fork

. e.g., no subtle signal handling semantics

{ Potentially more e�cient

. Modulo the thread library and OS implementation: : :

� Disadvantages

{ Not portable

{ Many threads libraries are incapable of providing

adequate performance and functionality

. e.g., lack of support for sockets in Solaris <= 2.2!

. Only allow one system call at a time: : :

32

Synopsis of select and poll

� select and poll are both I/O multiplexing
mechanisms that perform \timed-waits" for
input, output, or exception events to occur

{ The select API

int select

(

int maxhandlep1, // Maximum handle plus 1

fd_set *readhandles, // bit-mask of "read" handles

fd_set *writehandles, // bit-mask of "write" handles

fd_set *excepthandles, // bit-mask of "exception" handles

struct timeval *tv // Amount of time to wait for events

);

{ The poll API

int poll

(

struct pollfd *fds, // Handles of interest

unsigned long nfds, // Number of handles to check

int timeout // Length of time to wait (in milliseconds)

);

struct pollfd {

int fd; // file handle to poll

short events; // events of interest on fd

short revents; // events that occurred on fd

};

33

Single-Threaded Concurrent

Daemon (select-based)

NETWORK

SERVERSERVER

LOGGING DAEMONLOGGING DAEMON

maxhandlep1maxhandlep1

read_handlesread_handles

CONNECTION

REQUEST

LOGGING

RECORDS LOGGING

RECORDS

LOGGING

RECORDS

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT CLIENTCLIENT

SERVERSERVER

acceptoracceptor

34

Single-Threaded Concurrent

Daemon (select-based) (cont'd)

� Pseudo-code for sample single-threaded, con-
current server logging daemon

initialize acceptor endpoint

initialize select handle sets

loop

select on active handles

foreach active client handle loop

call handle logging record

end loop

while connection requests pending loop

accept the client connection and

update handle set

end loop

end loop

35

Single-Threaded Concurrent

Daemon (select-based) (cont'd)

� Sample C++ single-threaded, concurrent server
logging daemon using I/O multiplexing

{ Note the serialization at the transport layer interface: : :

int

main (void)

{

// Create a server end-point

ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) PORT_NUM);

ACE_SOCK_Stream new_stream;

int s_handle = acceptor.get_handle ();

int maxhandlep1 = s_handle + 1;

fd_set temp_handles;

fd_set read_handles;

FD_ZERO (&temp_handles);

FD_ZERO (&read_handles);

FD_SET (s_handle, &read_handles);

// Loop forever performing logging server processing

for (;;) {

temp_handles = read_handles; // structure assignment

36

// Wait for client I/O events.

ACE_OS::select (maxhandlep1, &temp_handles, 0, 0, 0);

// Handle pending logging records first (s_handle + 1)

// is guaranteed to be lowest client handle)

for (int handle = s_handle + 1;

handle < maxhandlep1;

handle++)

if (FD_ISSET (handle, &temp_handles)) {

// Guaranteed not to block in this case!

ssize_t n = handle_logging_record (handle);

if (n == -1)

ACE_OS::perror ("logging failed");

else if (n == 0) {

// Handle client connection shutdown

FD_CLR (handle, &read_handles);

ACE_OS::close (handle);

if (handle + 1 == maxhandlep1) {

// Decrement past unused handles

while (!FD_ISSET (--handle, &read_handles))

continue;

maxhandlep1 = handle + 1;

}

}

}

// Check whether any connection requests arrived

if (FD_ISSET (s_handle, &temp_handles)) {

// Handle all pending connection request

// (note use of "polling" feature)

while (ACE_OS::select (s_handle + 1, &temp_handles,

0, 0, ACE_Time_Value::zero) > 0)

if (acceptor.accept (new_stream) == -1)

ACE_OS::perror ("accept");

else {

handle = new_stream.get_handle ();

FD_SET (handle, &read_handles);

if (handle >= maxhandlep1)

maxhandlep1 = handle + 1;

}

}

}

/* NOTREACHED */

}

Single-Threaded Concurrent

Daemon (select-based) (cont'd)

� Advantages

{ May be more e�cient than multi-threading and

multi-processing for certain applications

. e.g., no need to serialize logging record handling

since output is single-threaded within a daemon

process

. Does not consume excessive OS resources by

creating multiple processes or threads

. Less context switching and scheduling overhead

{ Does not consume excessive CPU time by per-

forming \busy-waiting"

37

Single-Threaded Concurrent

Daemon (select-based) (cont'd)

� Disadvantages

{ Complicated and error-prone low-level interfaces

. Requires developers to handlemany details man-

ually, e.g.,

� Value/result parameter passing of handle sets

requires copying

� Handle set parsing

� Multiple bitmasks, interrupts, etc.

. Updating maxhandlep1 is tricky on close

. There is a per-process limit on the number of

handles available

{ Does not scale up to take advantage of multi-

processor platforms

. i.e., serialization is at transport interface within

a single process: : :

38

Single-Threaded Concurrent

Daemon (poll-based)

� Sample single-threaded, concurrent server

logging daemon

// Maximum per-process open I/O handles

const int MAX_HANDLES = 200;

int main (void)

{

// Create a server end-point

ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) PORT_NUM);

ACE_SOCK_Stream new_stream;

int s_handle = acceptor.get_handle ();

struct pollfd poll_array[MAX_HANDLES];

for (int i = 0; i < MAX_HANDLES; i++) {

poll_array[i].fd = -1;

poll_array[i].events = POLLIN;

}

poll_array[0].fd = s_handle;

for (int nhandles = 1;;) {

// Wait for client I/O events.

ACE_OS::poll (poll_array, nhandles);

39

// Handle pending logging messages first

// (poll_array[i = 1].fd is guaranteed to be

// lowest client handle)

for (int i = 1; i < nhandles; i++) {

if (poll_array[i].revents & POLLIN) {

char buf[BUFSIZ];

// Guaranteed not to block in this case!

ssize_t n =

handle_logging_record (poll_array[i].fd);

if (n == 0) {

// Handle client connection shutdown

ACE_OS::close (poll_array[i].fd);n

poll_array[i].fd = poll_array[--nhandles].fd;

}

}

}

if (poll_array[0].revents & POLLIN) {

// Handle all pending connection request

// (note use of "polling" feature)

while (ACE_OS::poll (poll_array, 1,

ACE_Time_Value::zero) > 0)

acceptor.accept (new_stream, &client);

poll_array[nhandles++].fd =

new_stream.get_handle ();

}

}

/* NOTREACHED */

}

Single-Threaded Concurrent

Daemon (poll-based) (cont'd)

� Advantages

{ The same basic advantages as the select-based
approach

{ However, compared to select, poll facilitates

easier \packing" of handles in the poll fd array

{ poll also detects a wider range of events than

select

. e.g., priority-band events

� Disadvantages (cont'd)

{ Same as select-based

40

Limitations with Preceding

Concurrent Daemon Designs

� Non-portable

{ Both within and across UNIX platforms

. e.g., select, poll, and threads are not stan-

dard across platforms

� Di�cult to extend/enhance services

{ Generally based upon functional design

. Though certain components are OO

� e.g., SOCK SAP

{ Lack of policy/mechanism separation

. i.e., changing functionality often requires modi-

fying, recompiling, relinking existing code

{ Moreover, the implementation is tightly coupled

with SOCK SAP network API

41

Overview of the Reactor

� The Reactor encapsulates the select and
poll I/O multiplexing facilities

{ It is a portable interface to an OO library of ex-

tensible, reusable, and type-secure C++ classes

{ The Reactor addresses many limitations with the

existing UNIX I/O demultiplexing facilities, while

preserving the bene�ts they o�er

� The Reactor helps simplify network program-
ming by integrating mechanisms that sup-
port multiplexing of:

1. Synchronous I/O-based events

2. Timer-based events

� When these events occur, the Reactor au-

tomatically dispatches previously-registered

\call-back" member functions that perform

application-speci�c services

42

Overview of the Reactor (cont'd)

� The Reactor's object-oriented design is based

upon domain analysis of typical client/server

I/O multiplexing structures and functional-

ity

� A primary design goal is to decouple

1. mechanisms for sensing, demultiplexing, and dis-

patching the I/O-based and timer-based events

from

2. policies of the application-speci�c services

� The Reactor forms the basis for more com-
prehensive OO daemon con�guration, port
multiplexing, and service dispatching frame-
works

{ e.g., the Service Con�gurator framework in ACE

43

Overview of the Reactor (cont'd)

:: Reactor Reactor

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

OS EVENT DEMULTIPLEXING INTERFACE

:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

:My:My
Handler1Handler1

1: handle_input()1: handle_input()

: Event: Event
HandlerHandler

: My: My
Handler2Handler2

: Event: Event
HandlerHandler

: My: My
Handler3Handler3

44

Single-threaded Concurrent

Daemon (Reactor-based)

NETWORK

: Logging: Logging
AcceptorAcceptor

: Logging: Logging
HandlerHandler : Logging: Logging

HandlerHandler

SERVER

LOGGING DAEMON

LOGGING

RECORDS

LOGGING

RECORDS

CONNECTION

REQUEST
CLIENTCLIENT

SERVERSERVER

: Reactor: Reactor

CLIENTCLIENT
CLIENTCLIENT

45

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� Pseudo-code for sample Reactor-based single-
threaded, concurrent server logging daemon

initialize acceptor endpoint

initialize Reactor object with acceptor object

loop

call Reactor event loop function

end loop

� Pseudo-code for Reactor event dispatcher
function

wait for set of client handles to become active

foreach active client handle loop

invoke appropriate service call-back routine

end loop

46

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

Event
Handler

PEER
STREAMEvent

Handler

Logging
Acceptor

Logging_Handler
SOCK_Acceptor

Logging
Handler

SOCK_Stream

Svc
Handler

Acceptor

SVC_HANDLER
PEER_ACCEPTOR PEER_STREAM

PEER
ACCEPTOR

R
E

A
C

T
O

R

F
R

A
M

E
W

O
R

K

C
O

M
P

O
N

E
N

T
S

C
O

N
N

E
C

T
IO

N
-

R
E

L
A

T
E

D

C
O

M
P

O
N

E
N

T
S

A
P

P
L

IC
A

T
IO

N
-

S
P

E
C

IF
IC

C
O

M
P

O
N

E
N

T
S

� Class relationships via Booch notation

47

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� The server logging daemon is decoupled into
several modular components that perform
di�erent tasks

{ Application-speci�c components

. Process logging records

{ Connection-related components

1. Acceptor

. Accepts connection requests from clients

. Dynamically creates a Svc Handler object per-
client and registers it with the Reactor

2. Svc Handler

. Performs I/O with clients

{ ACE framework components

. Perform IPC, event demultiplexing, dynamic link-

ing, etc.

48

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� C++ interface for registrating and dispatch-

ing event objects

class ACE_Event_Handler

{

public:

// Returns the I/O handle associated.

virtual int get_handle (void) const = 0;

// Called when object is removed from the ACE_Reactor

virtual int handle_close (int handle);

// Called when input becomes available on HANDLE

virtual int handle_input (int handle);

// Called when output is possible on HANDLE

virtual int handle_output (int handle);

// Called when urgent data is available on HANDLE

virtual int handle_exception (int handle);

// Called when timer expires (TV stores the

// current time and ARG is the argument given

// when the handler was originally scheduled)

virtual int handle_timeout (const Time_Value &tv,

const void *arg = 0);

};

49

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� Template class interface for accepting con-

nection requests from remote client dae-

mons

template <class SVC_HANDLER,

class PEER_ACCEPTOR>

class Acceptor : public ACE_Event_Handler

{

public:

Acceptor (void);

Acceptor (ACE_Reactor *r, const ADDR &a);

~Acceptor (void);

int open (ACE_Reactor *r, const ADDR &a);

// Dynamic linking hooks

virtual int init (int argc, char *argv[]);

virtual int info (char **info_string,

int length) const;

50

private:

virtual int get_handle (void) const;

virtual int handle_input (int);

virtual int handle_close (int = -1);

PEER_ACCEPTOR acceptor_; // Accept connections

ACE_Reactor *reactor_; // Demultiplex events.

};

51

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� Acceptor implementation

// Shorthand names

#define SH SVC_HANDLER

#define PA PEER_ACCEPTOR

template <class SH, class PA> int

Acceptor<SH, PA>::open (const PA::PEER_ADDR &addr)

{

acceptor_.open (addr);

}

template <class SH, class PA>

Acceptor<SH, PA>::Acceptor (const PA::PEER_ADDR &addr)

{

open (addr);

}

52

template <class SH, class PA>

Acceptor<SH, PA>::init (int argc, char *argv[])

{

PA::PEER_ADDR addr;

Get_Opt getopt (argc, argv, "p:");

for (int c; (c = getopt ()) != -1;)

switch (c) {

case 'p':

addr.set (ACE_OS::atoi (getopt.optarg));

break;

default:

break;

}

return open (addr);

}

template <class SH, class PA>

Acceptor<SH, PA>::info (char **strp, int length) const

{

char buf[BUFSIZ];

PA::PEER_ADDR addr;

acceptor_.get_local_addr (addr);

ACE_OS::sprintf (buf, "%s\t %d/%s %s",

"Logger", addr.get_port_number (), "tcp",

"# distributed client facility\n");

if (*strp == 0 && (*strp = ACE_OS::strdup (buf)) == 0)

return -1;

else ACE_OS::strncpy (*strp, buf, length);

return ACE_OS::strlen (buf);

}

53

template <class SH, class PA> int

Acceptor<SH, PA>::handle_close (int)

{

return acceptor_.close ();

}

template <class SH, class PA> int

Acceptor<SH, PA>::get_handle (void) const

{

return acceptor.get_handle ();

}

template <class SH, class PA> int

Acceptor<SH, PA>::handle_input (int)

{

// Create a new service handler.

SH *svc_handler = new SH;

// Accept connections from client client daemons.

acceptor_.accept (*svc_handler);

// Activate the service handler.

svc_handler->open ();

return 0;

}

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� Template class that performs I/O with re-

mote clients

template <class PEER_STREAM>

class Svc_Handler : public ACE_Event_Handler

{

public:

Svc_Handler (ACE_Reactor *);

// = Must be filled in by subclass.

virtual int open (void) = 0;

virtual int svc (void) = 0;

operator PEER_STREAM &();

virtual int get_handle (void) const;

54

protected:

// = Demultiplexing hook.

virtual int handle_input (int);

virtual int handle_close (int);

// Ensure dynamic allocation

virtual ~Svc_Handler (void);

char host_name_[MAXHOSTNAMELEN + 1];

// Communicates with connected peer.

PEER_STREAM peer_stream_;

ACE_Reactor *reactor_;

};

55

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� Handler implementation

#define CS PEER_STREAM

template <class CS>

Svc_Handler<CS>::Svc_Handler (ACE_Reactor *r)

: reactor_ (r) {}

// Extract the underlying CS (e.g., for

// purposes of accept()).

template <class CS>

Svc_Handler<CS>::operator CS &() { return peer_stream_; }

// Initiate the virtual function call-back.

template <class CS> int

Svc_Handler<CS>::handle_input (int)

{

// Hook method.

return svc ();

}

56

template <class CS> int

Svc_Handler<CS>::get_handle (void) const

{

return peer_stream_.get_handle ();

}

template <class CS> int

Svc_Handler<CS>::handle_close (int)

{

peer_stream_.close ();

// Must be allocated dynamically!

delete this;

return 0;

}

57

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� De�ne the classes that perform server log-

ging daemon functionality

class Logging_Handler :

public Svc_Handler<ACE_SOCK_Stream>

{

public:

Logging_Handler (ACE_Reactor *);

virtual int open (void);

virtual int svc (void);

};

typedef Acceptor<Logging_Handler,

ACE_SOCK_Acceptor>

Logging_Acceptor;

58

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� Implementing the application-speci�c func-

tions

// Constructor.

Logging_Handler::Logging_Handler (ACE_Reactor *reactor)

: Svc_Handler<ACE_SOCK_Stream> (reactor)

{

}

// Open hook (register with ACE_Reactor).

int

Logging_Handler::open (void)

{

reactor_.register_handler

(this, ACE_Event_Handler::READ_MASK);

}

59

// Callback routine for handling the

// reception of remote logging transmissions.

int

Logging_Handler::svc (void)

{

ssize_t n = peer_stream_.recv (&len, sizeof len);

int len;

switch (n) {

default:

case -1: return -1; /* NOTREACHED */

case 0: return 0; /* NOTREACHED */

case sizeof (int): {

Log_Record lp;

len = ntohl (len);

n = peer_stream_.recv_n ((void *) &lp,

len);

lp.decode ();

if (lp.len == n)

lp.print (host_name_, 0, stderr);

break;

}

return 0;

}

60

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� Main event-loop for the server logging dae-

mon

int

main (int argc, char *argv[])

{

// Event demultiplexor.

ACE_Reactor reactor;

// Create the Acceptor.

Logging_Acceptor acceptor ((ACE_INET_Addr) port);

// Register handler.

reactor.register_handler

(&acceptor, ACE_Event_Handler::READ_MASK);

// Performs event loop.

for (;;)

reactor.handle_events ();

}

61

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

: Logging

Handler

: Reactor

SERVER

SERVER

LOGGING

DAEMON

: Logging

Handler

: Logging
Acceptor

CONNECTION

REQUEST

CLIENT

LOGGING

RECORDS

CLIENT CLIENT

LOGGING

RECORDS

62

Single-threaded Concurrent

Daemon (Reactor-based) (cont'd)

� Advantages

{ OO design decouples the low-level I/O-based event

multiplexingmechanisms from the application-speci�c

service policies

. This improves extensibility, portability, and reuse

signi�cantly

{ The use of parameterized types decouples the re-

liance on a particular network IPC interface

. e.g., both socket-based and TLI-based C++ wrap-

pers may be used

� Disadvantages

{ The ow of control for the Reactor's event-driven

service dispatching is somewhat di�cult to follow

at �rst

{ Parameterized types tend to be slow to compile!

63

Summary

� There are a wide variety of alternative de-

signs for structuring concurrent network server

daemons

� Object-oriented techniques are useful for de-

vising highly decoupled software architec-

tures that are modular, reusable, extensible,

and e�cient

� C++ features such as inline functions, pa-

rameterized types, inheritance, and dynamic

binding facilitate the implementation and

design of such architectures

64

