
Integration of QoS-enabled Distributed Object Computing Middleware for
Developing Next-generation Distributed Applications

Yamuna Krishnamurthy, Vishal Kachroo David A. Karr, Craig Rodrigues,
fyamuna,vishalg@cs.wustl.edu Joseph P. Loyall and Richard Schantz

Department of Computer Science fdkarr,crodrigu,jloyall,schantzg@bbn.com
Washington University BBN Corporation

St. Louis, MO, USA Cambridge, MA, USA

Douglas C. Schmidt
schmidt@uci.edu

Electrical & Computer Engineering Department
University of California

Irvine, CA, USA

Abstract

This paper describes the integration of QoS-enabled dis-
tributed object computing (DOC) middleware for developing
next-generation distributed applications. QoS-enabled DOC
middleware, facilitates ease of development and deployment
of applications that can leverage the underlying networking
technology or end-system QoS architecture. This paper also
describes the development of a demonstration application uti-
lizing QoS-enabled middleware to control the dissemination of
Unmanned Air Vehicle (UAV) data throughout a ship.

Keywords: Distributed object computing, QoS-enabled
Middleware, QuO middleware, CORBA-based Multimedia
Streaming

1 Introduction

DOC middleware has evolved tremendously over the past few
years. Initially, it facilitated the seamless inter-operation of
various applications over a variety of heterogeneous environ-
ments. Its growing acceptance has opened its applicability to a
broader variety of applications, whose demands are far beyond
inter-operability. This is especially true for next-generation
applications such as e-commerce, autonomous process con-
trol, and global event notification systems.

These advanced applications require a wide range of quality
of service (QoS) support, where resources are managed both
prior to and during run-time. For example in mission critical
telecommunication systems and distributed electronic medical

imaging systems, a failure to meet certain deadlines can re-
sult in significant loss of property and even life. Therefore,
these systems must be analyzed and monitored both off-line
and on-line to ensure that resources are properly allocated and
managed. Also, these applications must be able to (1) au-
tonomously reflect upon situational factors as they arise in the
run-time environment and (2) adapt to these factors while pre-
serving the integrity of key mission-critical activities.

These requirements have driven R&D efforts in DOC mid-
dleware to develop QoS-enabled DOC middleware which sim-
plifies the development of advanced applications that can
leverage the advances in networks and end-systems end-to-
end. Two major research efforts in this area have been:

Quality Objects (QuO): This is a DOC middleware ex-
tension, which supports adaptive QoS specification, measure-
ment, and control [1].

ACE QoS API (AQoSA): This is a unified QoS API in
the Adaptive Communication Environment (ACE) [2] that ab-
stracts various network QoS protocols like RSVP and Diff-
Serv.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 gives an overview of the QuO
middleware framework; Section 3 presents a case study of
AQoSA, a unified QoS API and describes how this API has
been used to provide qos to multimedia services that span
the network and the ORB end-system layers;Section 4 de-
scribes the integration of the QoS-enabled CORBA Audio
Video Streaming Service and QuO into the Unmanned Air Ve-

1

hicle video dissemination application; and Section 5 summa-
rizes concluding remarks.

2 Overview of the Adaptive QuO Mid-
dleware

Figure 1 illustrates a client-to-object logical method call. In
a traditional CORBA application, a client makes a logical
method call to a remote object. A local ORB proxy (i.e., a
stub) marshals the argument data, which the local ORB then
transmits across the network. The ORB on the server side re-
ceives the message call, and a remote proxy (i.e., a skeleton)
then unmarshals the data and delivers it to the remote servant.
Upon method return, the process is reversed.

Figure 1: CORBA DOC model

Quality Objects (QuO) is a distributed object computing
(DOC) framework designed to develop distributed applica-
tions that can specify (1) their QoS requirements, (2) the sys-
tem elements that must be monitored and controlled to mea-
sure and provide QoS, and (3) the behavior for adapting to
QoS variations that occur at run-time. By providing these fea-
tures, QuO opens up distributed object implementations [3] to
control an application’s functional aspects and implementation
strategies that are encapsulated within its functional interfaces.

A method call in the QuO framework is a superset of a tra-
ditional DOC call, and includes the following components, il-
lustrated in Figure 2:

Figure 2: QuO CORBA model

� Contracts specify the level of service desired by a client,
the level of service an object expects to provide, operating
regions indicating possible measured QoS, and actions to
take when the level of QoS changes.

� Delegates act as local proxies for remote objects. Each
delegate provides an interface similar to that of the re-
mote object stub, but adds locally adaptive behavior
based upon the current state of QoS in the system, as
measured by the contract.

� System condition objects provide interfaces to resources,
mechanisms, objects, and ORBs in the system that need
to be measured and controlled by QuO contracts.

In addition, QuO applications may use property managers
and specialized ORBs. Property managers are responsible for
managing a given QoS property (such as the availability prop-
erty via replication management [4] or controlled through-
put via RSVP reservation management [5]) for a set of QuO-
enabled server objects on behalf of the QuO clients using those
server objects. In some cases, the managed property requires
mechanisms at lower levels in the protocol stack. To support
this, QuO includes a gateway mechanism [6], which enables
special purpose transport protocols and adaptation below the
ORB.

In addition to traditional application developers (who de-
velop the client and object implementations) and mechanism
developers (who develop the ORBs, property managers, and
other distributed resource control infrastructure), QuO appli-
cations involve another group of developers, namely QoS de-
velopers. QoS developers are responsible for defining QuO
contracts, system condition objects, callback mechanisms, and
object delegate behavior. To support the added role of QoS de-
veloper, we are developing a QuO toolkit, described in earlier
papers such as [7, 8], and consisting of the following compo-
nents:

� Quality Description Languages (QDL) for describing the
QoS aspects of QuO applications, such as QoS contracts
(specified by the Contract Description Language, CDL)
and the adaptive behavior of objects and delegates (spec-
ified by the Structure Description Language, SDL). CDL
and SDL are described in [9, 8].

� The QuO runtime kernel, which coordinates evaluation
of contracts and monitoring of system condition objects.
The QuO kernel and its runtime architecture are de-
scribed in detail in [10].

� Code generators that weave together QDL descriptions,
the QuO kernel code, and client code to produce a single
application program. Runtime integration of QDL speci-
fications is discussed in [8].

3 Unified Middleware-centric QoS API

Application developers need standardized interfaces to allow
QoS specification and to receive guarantees from the under-

2

lying network and QoS infrastructure. As the different QoS
protocols become more and more mature, the need for a QoS
API that applications can use as a unified interface to the un-
derlying QoS protocols has grown tremendously. Firstly, the
applications would like to shield themselves from the protocol
specific details. Secondly, although the QoS protocols provide
a mechanism for allocating resources between two end sys-
tems, they are not sufficient to address the translation required
from the application level QoS parameters to the network level
QoS parameters. Thirdly, the adaptive applications require a
uniform mechanism to get notified of changes to the available
resources so they can re-negotiate the QoS. All these consider-
ations motivate the design of a unified QoS API that addresses
these issues in a platform/protocol independent way.

Once the unified API is developed, it can be exposed to the
applications through middleware like CORBA. This allows the
applications to get QoS guarantees through standard middle-
ware APIs and at the same time leverage all the usual features
of a middleware. The API can also be integrated with higher
level middleware services. At this level, the API would have
added functionality like binding QoS to specific application
data flows or translating standard QoS flow requirements to
network QoS.

With this motivation we have designed and implemented
a unified QoS API in the Adaptive Communication Environ-
ment (ACE) [2] to abstract the two separate implementations
of IntServ available. They are, the GQoS implementation on
Windows 2000 from Microsoft and the RSVP API (RAPI) im-
plementation on UNIX from Sun. The interface provided by
these to the application developers is totally disparate from
each other.

Our effort, in this work, has been to abstract out the common
functionality from these implementations from an application
developer’s perspective and to design APIs driven by these
abstractions. The unified ACE QoS API (AQoSA) enables
the users to QoS enable their applications without bothering
about the underlying platform or QoS protocol implementa-
tion. These APIs are further exposed to the ORB, thereby, em-
powering the ORB with network level QoS guarantees. The
APIs will also be used by the ORB services like the Au-
dio/Video service to provide QoS to applications that make
use of such services, such as the tele-immersion application,

3.1 Overview of the ACE QoS API (AQoSA)

AQoSA was designed by inductively identifying common pat-
terns [11, 12] used to program to existing QoS APIs. Below,
we describe the features provided by the AQoSA implementa-
tion addresses key design requirements.
Portability: AQoSA encapsulates applications from the de-
tails of platform-dependent GQoS and RAPI IntServ imple-
mentations in the underlying endsystem platform. AQoSA

encapsulates the functions, data structures, and macros used
to represent various QoS parameters in these two IntServ im-
plementations. Thus, applications and higher-level DOC mid-
dleware can access IntServ capabilities via a convenient and
portable QoS programming interface.
QoS Event Notification for Adaptivity: AQoSA provides
applications with a platform-independent API for receiving
notifications when the underlying network QoS changes. ACE
applications often use an event handling model based on
the Reactor pattern [11], which allows servers to decou-
ple event demultiplexing/dispatching from their application-
specific event handling. In RSVP, the notifications are carried
in RSVP events.

QoS Service
Provider

QoS / Data

Event Handler

Connector/

Acceptor

Reactor

PATH
RESV
PATH_ERROR
RESV_ERROR
REQ_CONFIRM

RAPI

Daemon

GQoS

Service Provider

RAPI fd Win QoS Events

AQoSA

Application

QoS
Protocol

Network

RSVP ROUTER RSVP ROUTER

QoS Decorator /

RAPI Handler

Event Handler

ACE QoS SessionACE QoS Session

Factory

ACE

Figure 3: ACE QoS Event Handling

As shown in Figure 3, AQoSA receives and handles
RSVP events uniformly for different network-level QoS im-
plementations via the Reactor pattern [11]. In this pat-
tern, asynchronous event demultiplexer, such asselect or
WaitForMultipleObjects , handles event demultiplex-
ing and an associated reactor notifies previously registered
application-specific event handlers so they can adapt to QoS
state change events.
Extensibility: AQoSA enables new network- and
endsystem-level QoS mechanisms to be integrated without
tedious refactoring of its public APIs,e.g., it is straightfor-
ward to extend AQoSA to support other QoS models, such as
DiffServ. To accomplish this, AQoSA extends the existing
ACE framework components by introducing new capabilities

3

that allow applications and underlying DOC middleware to
manage QoS multicast or unicast sessions. Moreover, AQoSA
applies several patterns to ensure that new network-level QoS
implementations can be easily integrated without changing
applications that use its API.

Advanced QoS capabilities: AQoSA binds multicast or
unicast flows to reservations via a uniform and portable com-
ponent called aQoS session. A QoS session represents the
application’s notion of the underlying network-level QoS.
Though modeled originally using IntServ RSVP sessions, a
AQoSA QoS session can also accommodate other QoS mech-
anisms, such as DiffServ.

An AQoSA QoS session explicitly separates QoS proper-
ties of its sessions from lower-level socket data transfer as-
pects. Internally, the ACE QoS socket maintains an associa-
tion between QoS sessions to which an application has sub-
scribed. This separation of concerns also facilitates more ad-
vanced QoS functionality, such as QoS event notification.

Figure 4 depicts the UML class diagram for the components
in AQoSA. These components allow applications to specify

ACE_QoS_Session

open ()

get_qos ()

set_qos ()

close ()

ACE_RAPI_SessionACE_GQoS_Session

ACE_SOCK

ACE_QoS_Session_Factory

create_session ()

destroy_session ()

ACE_SOCK_Connector ACE_SOCK_Acceptor ACE_SOCK_Dgram

ACE_SOCK_Dgram_Mcast

subscribe ()

ACE_SOCK_Dgram_Mcast_QoS

subscribe ()

ACE_QoS_Manager

join_qos_session ()

qos_session_set ()

ACE_Unbounded_Set <ACE_QoS_Session>

Figure 4: AQoSA QoS Class Design

and query for the QoS configured currently for a particularly
unicast or a multicast session. The UML diagram also shows
how AQoSA uses the Bridge pattern [12], which provides a
uniform interface for different mechanisms implementations,
such as RAPI and GQoS. New QoS mechanisms can be added
by subclassing implementations of this interface. In addition,
the diagram shows how AQoSA applies the Factory Method
pattern [12] to create and manage the lifetime of QoS session
objects subscribed to by applications.

3.2 Applying AQoSA to the CORBA Au-
dio/Video Streaming Service

As shown in Section 3.1, AQoSA shields applications from
the non-portable aspects of the underlying operating system
and network-level QoS implementations. The infrastructure
middleware abstractions provided by AQoSA are sufficient for
certain types of applications, such as controlling and managing
network switch and router elements [13]. Other types of ap-
plications, however, can benefit from higher-level middleware
programming models that support a broader range of protocols
and common middleware services.

For example, the TAO open-source real-time CORBA
ORB [14] provides an implementation of the CORBA A/V
Streaming Service [15], which supports multimedia applica-
tions, such as video-on-demand and tele-immersion. The QoS
requirements of these types of applications depend on the fol-
lowing factors:

� Application class,such as interactive vs. non-interactive.
Interactive applications require real-time response and hence
predictable delivery of application data with bounded end-to-
end latencies. In contrast, non-interactive applications have
less stringent response requirements, but often possess higher
throughput demands.

� Application media types,such as audio and video. De-
pending on the media type, different performance criteria may
apply. For example, audio delivery is sensitive to delay, loss,
and bandwidth, and hence needs guaranteed QoS. In contrast,
video can often be best-effort since it is less sensitive to delay,
loss, and bandwidth. Therefore, it can be adapted more readily
to the available network QoS.

� Application adaptation policies,which may require im-
plicit or explicit adaptations to changes in delivered QoS. Im-
plicit adaptation is transparent to the application layer,e.g.,
dropping selected portions of a video stream at the transport
layer. Conversely, explicit adaptation, such as changing quan-
tization coefficients or application coding algorithms, is not
transparent to applications.

To provide acceptable QoS to multimedia applications de-
veloped using TAO, we therefore developed a QOS-enabled
implementation of the CORBA A/V Streaming Service using
AQoSA, as described in this section.

3.2.1 Overview of the CORBA A/V Streaming Service

The CORBA A/V Streaming Service controls and manages the
creation of streams between two or more media devices. Al-
though the original intent of this service was to transmit audio
and video streams, it can be used to send any type of data.
Applications control and manage A/V streams using the A/V
Streaming Service components shown in Figure 5.

4

MMDevice

MediaCtrl

Controller
Stream
EndPoint

Stream

VDev VDevVDevMMDevice

Stream

MediaCtrl

Stream
Controller

EndPoint

One per device
One per stream
One per device
One per stream

VDev

EndPoint
Stream

MMDevice

Multimedia
Stream
Multimedia
Stream

Supplier

Consumer

Figure 5: CORBA A/V Streaming Service Components

Streams are terminated by endpoints that can be distributed
across networks and are controlled by a stream control inter-
face, which manages the behavior of each stream.

The CORBA A/V Streaming Service combines (1) the flex-
ibility and portability of the CORBA object-oriented program-
ming model with (2) the efficiency of lower-level transport
protocols. The stream connection establishment and manage-
ment is performed via conventional CORBA operations. In
contrast, data transfer can be performed directly via more effi-
cient lower-level protocols, such as ATM, UDP, TCP, and RTP.
This separation of concerns addresses the needs of develop-
ers who want to leverage the language and platform flexibil-
ity of CORBA, without incurring the overhead of transferring
data via the standard CORBA interoperable inter-ORB proto-
col (IIOP) operation path through the ORB.

The CORBA A/V Streaming Service specification defines
interfaces and policies to allow applications to specify end-to-
end QoS parameters, such as video frame rate or audio sample
rate, for individual flows within a stream. It also defines a
mandatory set of network-level QoS parameters, such as to-
ken bucket, peak-bandwidth, and token rate. These QoS pa-
rameters are specified as name/value pairs using the CORBA
Property Service. Multimedia applications and A/V Stream-
ing Service implementations use these name/value pairs to (1)
negotiate QoS between two peer media devices and (2) modify
the QoS if there is a violation in the initial QoS or if the speci-
fied QoS cannot be met due to run-time environment changes.

3.2.2 The TAO A/V Streaming Service QoS Framework

Though the CORBA A/V Streaming Servicespecificationpro-
vides interfaces to specify and modify QoS, it is the responsi-
bility of implementationsto enforce the negotiated QoS. For
TAO’s A/V Streaming Service implementation, we designed a
framework based upon the ACE QoS API (AQoSA) described
in Section 3.1. This framework provides a middleware in-
terface that encapsulates QoS-specific details within the TAO
A/V Streaming Service, rather than in the multimedia appli-
cations. To obtain end-to-end QoS therefore, application de-

velopers simply specify the QoS they require for each flow in
their streams. These specifications are translated, enforced,
and modified transparently by the AQoSA-enabled TAO A/V
Streaming Service.

TAO AV Service

SUPPLIER CONSUMER

QoS

Monitoring
QoS

Adaptation
QOS MAPPING

AQOSA

REAL-TIME ORB CORE

RAPI GQOS

C

O

N

T

R

O

L

C

O

N

T

R

O

L

M

E

S

S

A

G

E

M

E

S

S

A

G

E

Figure 6: QoS Components in the TAO A/V Streaming Ser-
vice Framework

3.2.3 Components in TAO’s A/V Streaming Service
Framework

TAO’s A/V Streaming Service framework comprises three
main components, which are shown in Figure 6 and outlined
below.

1. QoS mapping: TAO’s QoS mapping component trans-
lates QoS parameters between the application-level and
network-level. This translation process allows application de-
velopers to specify QoS as perceptual qualities,e.g., the video
quality can be specified by the frame rate for a video flow.
The QoS mapping component is then responsible for translat-
ing the frame rate into network bandwidth requirements.

2. QoS monitoring and adaptation: These two compo-
nents support applications that require QoS guarantees, but
are flexible in their needs,e.g., they can adapt to changing
resource availability within specified QoS bounds. The QoS
monitoring component, which consists of AQoSA and the
higher-level TAO middleware framework, measures end-to-
end QoS of application flows over a finite period of time. If

5

there are violations in the reserved QoS the monitoring compo-
nent notifies the application of actual resources available cur-
rently. TAO’s CORBA A/V service QoS midleware can then
decide if the available QoS is sufficient to meet the require-
ments specified by an application.

If the available QoS is insufficient, TAO’s A/V Streaming
Service notifies the application, which in turn can renegotiate
the QoS or adapt to the available QoS. Due to the extensible
design of TAO’s QoS adaptation component, various adapta-
tion algorithms can be configured.

AQoSA QoS Session

TAO A/V
Streaming Service

SUPPLIER CONSUMER

R
eservations

Flo
w
s

Q
o
S

 U
p
d
a
te

s

R
e
q
u
e
s
t

R
e
s
e
rv

a
ti
o
n
s

A
c
c
e
p
t
/
R

e
je

c
t

Q
o
S

 E
v
e
n
t

 N
o
ti
fi
c
a
ti
o
n
s

RSVP

RAPI GQoS

Figure 7: QoS-based Transport API

3. QoS-Based transport API: This component is provided
by AQoSA, which enforces end-to-end QoS by reserving net-
work resources in accordance with application-level require-
ments. As shown in Figure 7, the CORBA A/V Streaming
Service is layered atop TAO and ACE, which handle flow con-
trol processing and media transfer, respectively. The CORBA
A/V service uses AQoSA for network-level QoS provision-
ing, renegotiation and violation notification control, and media
transfer. Likewise, application-level end-to-end QoS is

1. Translated from application-level to network-level pa-
rameters via TAO’s QoS mapping component and

2. Passed through the portable AQoSA interfaces that
portably encapsulate the GQoS and RAPI APIs.

AQoSA uses the underlying network-level QoS capabilities
to provision the specified QoS to individual application flows.
In addition, AQoSA provides mechanisms that are used by
TAO’s QoS monitoring and adaptation components to detect
QoS violations and to notify the A/V Streaming Service mid-
dleware so it can renegotiate QoS between peer media devices
and application endpoints.

4 Shipboard Dissemination of Un-
manned Air Vehicle (UAV) video

As part of an activity for the US Navy, we have been develop-
ing a demonstration application utilizing QuO to control the
dissemination of Unmanned Air Vehicle (UAV) data through-
out a ship. Figure 8 illustrates the initial architecture of the
demonstration. It is a three-stage pipeline, with an off-board
UAV sending MPEG video to an on-board video distribution
process. The off-board UAV is simulated in early prototypes
by a process that continually reads an MPEG file and sends
it to the distribution process. The video distribution process
sends the video frames to video display processes throughout
the ship, each with their own mission requirements.

Figure 8: Architecture of the UAV application

The application maintains a data path, across which video
frames are sent, and a separate control path, using CORBA
IIOP, across which QuO adaptive control is sent. We built and
evaluated two versions of this UAV application, one using an
ad hoc TCP/IP socket implementation for the data path con-
nection. In the other, we used TAO’s A/V Streaming Service
to abstract the data path connection from the rest of the appli-
cation code.

QuO adaptation is used as part of an overall system con-
cept to provide load-invariant performance. The video dis-
plays throughout the ship must display the current images ob-
served by the UAV with acceptable fidelity, regardless of the
network and host load, in order for the shipboard operators to
achieve their missions (e.g., flying the UAV or tracking a tar-
get). To accomplish this, system condition objects monitor the
frame rate and the host load on the video display hosts. As
the frame rate declines and/or the host load exceeds a thresh-
old, they cause region transitions, which trigger the following
adaptation:

� The video distribution process is told to drop frames go-
ing to the display on the overloaded host.

� The video display on the overloaded host is told to reduce
its display frame rate to the rate at which frames are being
sent to it.

6

Simultaneously, system condition objects on the video dis-
tribution host are monitoring the host load, the input and out-
put queues, and the frame rate. If the queues fill up or if the
host load exceeds a threshold, the contract tells the video dis-
tribution process to drop frames to compensate. In this way,
the adaptation attempts to maintain the video display processes
displaying the current images that the UAV is observing with
appropriate fidelity, regardless of the load on the various hosts.

The contracts on each host are simultaneously reporting the
current contract region and video distribution metrics (e.g.,
queue lengths, frame rate, and number of dropped frames) to
a system resource manager (RM). When QuO recognizes that
the load on the video distribution host has become unaccept-
able, it notifies the RM. The RM then has the option of starting
a video distribution process on another, less loaded host, and
hooking it up to the UAV video source process and the video
display processes. It then kills the processes on the overloaded
host.

We collected data in two areas of performance: performance
of the two versions of the application when adapting to ab-
normal system conditions and performance of the underlying
transport protocol under normal conditions.

4.1 Adaptation and Performance Under Load

We performed the following experiments to test the effective-
ness of our adaptive behavior. The three stages of the UAV
were run on three separate hosts. Each host contained a sin-
gle 200MHz Pentium Pro processor with 128KB of memory,
running the RedHat 6.2 distribution of Linux. The application
was run and data were collected over a period of five min-
utes. At approximately one minute into this period, we intro-
duced three competing processes, each one of which would
have taken 30% of the CPU on an unloaded machine. This
competing load reduced the ability of the distributor process
to transfer the MPEG video at the bit rate at which it was
recorded. After one more minute, the three competing pro-
cesses were terminated, and the distributor was given the rest
of the five-minute period to recover from any disturbance.

We conducted two experiments using this setup. In the first
experiment, we used ad-hoc TCP sockets code for the video
transfer. In the second experiment, we used the A/V Streams
implementation. Each experiment consisted of two cases:

� Control case: The QuO kernel was not run, and adapta-
tion in the distributor was disabled.

� Experimental case: The QuO kernel was attached to the
distributor and was enabled to adapt to the system load
by dropping B (bidirectional interpolated) frames, or if
necessary both B and P (predictive extrapolated) frames
from the MPEG stream.

The results are shown in Table 1. These figures are based on
the timing of the I frames, which occur 2 times per second and
(in the ideal) are not biased between non-adaptive and adap-
tive cases since our adaptations never drop I frames. (We also
obtained numbers for all frames, and they are not much differ-
ent from these.) The lateness of each frame is the difference
between when the frame was processed by the viewer’s proxy,
and when the frame should have been processed assuming that
a new I frame should arrive every 1/2 second. The figures for

Protocol Adaptation I frames Mean Max
delivered lateness lateness

(sec) (sec)
Ad-hoc TCP No 600 5.400 32.696
Ad-hoc TCP Yes 600 0.067 1.930
A/V streams No 541 22.085 29.936
A/V streams Yes 598 0.834 2.035

Table 1: Late frames in UAV real-time application

mean and maximum lateness are much better for QuO than for
the non-adaptive cases, showing that the application satisfied
the real-time performance requirements with QuO than with-
out. (Clearly, both mean and maximum lateness could have
been reduced, perhaps even to zero, by buffering a sufficient
number of frames at the player and showing them after a delay
of some seconds, but this would violate the requirement that
the frames be displayed as near as possible to the time that the
video camera captured them.)

These figures also show some room for improvement that
can be addressed during the current work in progress. First,
the figures for mean and maximum lateness with QuO could
potentially be further improved by providing QuO with more
complete and timely information about the frame rate achiev-
able at any given time, so that it can more rapidly reduce the
number of frames sent under load conditions, and increase the
number of frames sent under no-load conditions. Second, the
A/V Streams implementation is being improved, which ulti-
mately should bring its performance figures closer to the ad-
hoc TCP figures.

4.2 Unloaded Throughput and Jitter

In order to better define the baseline for the performance of the
adaptive application, We have collected preliminary measure-
ments of the end-to-end quality-of-service of the three-stage
pipeline in the absence of load in two separate implementa-
tions.

Table 2 describes the quality-of-service observed in the
UAV MPEG streaming video implementation over standard
TCP sockets code provided by the ACE libraries. Measure-
ments are taken at three points in the UAV application,

7

� uav: When the UAV (stage 1) sends data to the distributor.

� distrib: When the distributor sends data to the proxy

� proxy: When the proxy is ready to give the data to the
viewer.

Table 2 describes the quality-of-service observed in the UAV
MPEG streaming video application when the TCP sockets
were replaced by A/V Streams. In both cases, the video was
sent by the UAV source process at a rate of 30 frames per sec-
ond and observed for approximately 30 seconds. The three
stages of the UAV were run on three separate hosts, each con-
taining a single 200MHz Pentium Pro processor with 128KB
of memory and running the RedHat 6.2 distribution of Linux.

Stage uav distrib proxy
Samples 900 900 899
Mean 33.3 ms 33.3 ms 33.3 ms
standard dev. 22.4 ms 25.2 ms 24.5 ms

Table 2: Throughput and jitter in UAV over TCP

Stage uav distrib proxy
Samples 899 900 899
Mean 33.4 ms 33.4 ms 33.4 ms
standard dev. 38.1 ms 41.7 ms 40.8 ms

Table 3: Throughput and jitter in UAV over A/V Streams

In both implementations, the mean times are essentially
equal to 1/30 second close to 33.3 ms, meaning the pipeline
had completely adequate throughput for the test video (data
rate 1 Mbit per second).

In addition, in the A/V Streams implementation we ob-
served several “peaks” or clusters of interframe times whose
modal values are recorded in Table 4 The maximum interframe

interframe number of
time occurrences
2 ms 132

30 ms 48
40 ms 34
61 ms 27
70 ms 17

Table 4: Throughput and jitter in UAV over A/V Streams

time observed was 212 ms. The TCP implementation times

were clustered in an approximately bell-shaped curve around
33 ms, with a few outliers ranging up to 129 ms.

Clearly, frame rates varied considerably during the 30 sec-
onds even though no unusual load was placed on the system.
Measuring the rate over more than two consecutive frames
tends to reduce the variation in rate because one or two slow
frames will cause the system to try to “catch up” with later
frames. The number of 2 ms interframe times in the A/V
Streams implementation, for example, is attributable to prior
frames whose arrivals at the proxy were delayed at least 1/30
second past the time they were due, with the result that the
following frames could be sent to the viewer immediately af-
terward. Since the maximum bit rate achievable by the A/V
Streams transport was much higher than the bit rate of these
frames, it was able to send them in a fraction of the normal
interframe time.

We are currently working on improvements in this under-
lying behavior that will make measurements of the UAV ap-
plication taken on short time scales a more reliable measure
of the application’s reaction to mean system loads. The goal is
that such improvements will enable quicker and more accurate
QuO reactions, and enable improvements in the performance
figures shown in the previous section.

4.3 Integrating AQoSA into the UAV Applica-
tion

Section 4 describes how the QuO framework allows the ap-
plication to monitor the system conditions, like CPU load, and
adapt to these changes. In order to monitor and adapt to net-
work conditions like change in network bandwidth we will
be using the AQoSA middleware. The integration of AQoSA
with the UAV is being conducted in two stages. In the first
stage, reflected in the above results, we have integrated the
TAO A/V Streams Service into the UAV application. The TAO
A/V Streaming Service initiates the connection establishment
between the different components of the UAV application and
then streams data between them. In the second stage, we will
use AQoSA to control the bandwidth allocated to the TAO
A/V Streams, thereby making delivery of the video more pre-
dictable in the presence of adverse network conditions.

For example, using AQoSA to control bandwidth, the dis-
tributor, or to be more precise, the QuO contract attached to
the distributor, could actually request sufficient bandwidth to
send each of the viewers a video stream with the desired bit
rate of data. AQoSA would inform the QuO contract whether
the desired bandwidth is available, or if not, how much, if any,
was actually reserved; and if the bandwidth is reduced at a
later time, AQoSA would inform the contract of this fact via a
callback. If no bandwidth is reserved, the QuO contract would
assume that bandwidth is available only on a “best-effort” ba-

8

sis.
The QuO contract could then adapt each channel/stream to

the bandwidth received. When the full requested bandwidth
is available, the distributor can send the whole desired video
stream. When only a smaller amount of bandwidth could be
reserved, the distributor might instead send a reduced-bit-rate
version of the video, for example by dropping frames. In
the case of “best-effort” bandwidth, the actual available band-
width could be guessed by observing the actual transmission
rates achieved, and again the contract could adjust to any re-
ductions in available bandwidth by reducing the bit rate of the
video, much as in the example in section 4.2 of adapting to
CPU availability.

5 Concluding Remarks

The maturation of the QoS-enabled DOC middleware de-
scribed in this paper is helping to decrease the cycle-time and
effort required to develop high-quality systems with stringent
QoS requirements. Distributed applications are increasingly
being composed out of flexible and modular reusable software
components and services, instead of being programmed en-
tirely from scratch via lower-level, proprietary tools. More-
over, standards-based DOC middleware, such as CORBA 3.0
and the Java virtual machine, enables applications to run
portably on multiple configuration and operating platforms.

The case study described in Section 4 is representative of
the emerging class of multimedia applications whose resource
requirements can vary dynamically at run-time. The QoS-
enabled CORBA ORB and Audio/Video Streaming Service
middleware developed using ACE and TAO and the QuO mid-
ddleware help to simplify and coordinate such applications.
These capabilities provide a cost-effective strategy for improv-
ing the quality of service received by end-users. This, in turn,
helps to reduce decision/action times for time-critical applica-
tions and generally improves overall system response in dy-
namically changing environments.

References
[1] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for

Quality of Service for CORBA Objects,”Theory and Practice of Object
Systems, vol. 3, no. 1, 1997.

[2] D. C. Schmidt and T. Suda, “An Object-Oriented Framework for
Dynamically Configuring Extensible Distributed Communication
Systems,”IEE/BCS Distributed Systems Engineering Journal (Special
Issue on Configurable Distributed Systems), vol. 2, pp. 280–293,
December 1994.

[3] G. Kiczales, “Beyond the black box: Open implementation,”IEEE
Software, 1996.

[4] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, , W. Sanders,
D. Bakken, M. Berman, D. Karr, and R. E. Schantz, “Aqua: An
adaptive architecture that provides dependable distributed objects,” in

Proceedings of the 17th IEEE Symposium on Reliable Distributed
Systems, pp. 245–253, October 1998.

[5] BBN Distributed Systems Research Group, DIRM project team, “Dirm
technical overview.” Internet URL
http://www.dist-systems.bbn.com/projects/DIRM, 1998.

[6] R. E. Schantz, J. A. Zinky, D. A. Karr, D. E. Bakken, J. Megquier, and
J. P. Loyall, “An object-level gateway supporting integrated-property
quality of service,” inProceedings of The 2nd IEEE International
Symposium on Object-oriented Real-time distributed Computing
(ISORC 99), May 1999.

[7] P. Pal, J. Loyall, R. Schantz, J. Zinky, , R. Shapiro, and J. Megquier,
“Using qdl to specify qos aware distributed (quo) application
configuration,” inProceedings of The 3rd IEEE International
Symposium on Object-oriented Real-time distributed Computing
(ISORC 00), to appear March 2000.

[8] J. P. Loyall, D. E. Bakken, R. E. Schantz, J. A. Zinky, D. Karr,
R. Vanegas, and K. R. Anderson, “Qos aspect languages and their
runtime integration,”Proceedings of the Fourth Workshop on
Languages, Compilers and Runtime Systems for Scalable Components,
May 1998.

[9] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken, “Specifying
and measuring quality of service in distributed object systems,” in
Proceedings of The 1st IEEE International Symposium on
Object-oriented Real-time distributed Computing (ISORC 98), April
1998.

[10] R. Vanegas, J. A. Zinky, J. P. Loyall, D. Karr, R. E. Schantz, and D. E.
Bakken, “Quo’s runtime support for quality of service in distributed
objects,”Proceedings of Middleware 98, the IFIP International
Conference on Distributed Systems Platform and Open Distributed
Processing, September 1998.

[11] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrency and
Distributed Objects, Volume 2. New York, NY: Wiley & Sons, 2000.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[13] C. Aurrecoechea, A. T. Campbell, and L. Hauw, “A Survey of QoS
Architectures,”ACM/Springer Verlag Multimedia Systems Journal,
Special Issue on QoS Architecture, vol. 6, pp. 138–151, May 1998.

[14] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[15] Object Management Group,Control and Management of Audio/Video
Streams: OMG RFP Submission, 1.2 ed., Mar. 1997.

9

