
The Design and Performance of a CORBA
Audio/Video Streaming Service

Sumedh Mungee, Nagarajan Surendran Douglas C. Schmidt
Yamuna Krishnamurthy

fsumedh,naga,yamunag@cs.wustl.edu fschmidtg@uci.edu
Department of Computer Science, Washington University Electrical & Computer Engineering Dept.

St. Louis, MO 63130 University of California, Irvine, CA 92697�

This paper appeared a chapter in the bookDesign and Man-
agement of Multimedia Information Systems: Opportunities
and Challenges, edited by Mahbubur Syed and published by
Idea Group Publishing, Hershey, USA, in 2001.

1 Introduction

Motivation: Advances in network bandwidth and CPU pro-
cessing power have enabled the emergence of multimedia
applications, such as tele-conferencing or streaming video,
that exhibit significantly more diverse and stringent quality-
of-service (QoS) requirements than traditional data-oriented
applications, such as file transfer or email. For instance,
popular Internet-based streaming mechanisms, such as Re-
alvideo [RealNetworks, 1998] and Vxtreme [Vxtreme, 1998],
allow suppliers to transmit continuous streams of audio and
video packets to consumers. Likewise, non-continuous media
applications, such as medical imaging servers [Hu et al., 1998]
and network management agents [Schmidt and Suda, 1994],
employ streaming to transfer bulk data efficiently from sup-
pliers to consumers.

However, many distributed multimedia applications rely on
custom and/or proprietary low-level stream establishment and
signaling mechanisms to manage and control the presenta-
tion of multimedia content. These types of applications run
the risk of becoming obsolete as new protocols and services
are developed [Huard and Lazar, 1998]. Fortunately, there is a
general trend to move from programming custom applications
manually to integrating applications using reusable compo-
nents based on open distributed object computing (DOC) mid-
dleware, such as CORBA [Object Management Group, 1999],
DCOM [Box, 1997], and Java RMI [Wollrath et al., 1996].

Although DOC middleware is well-suited to handle re-
quest/response interactions among client/server applications,
the stringent QoS requirements of multimedia applications

�This work was supported in part by AFOSR grant F49620-00-1-0330,
Boeing, NSF grant NCR-9628218, DARPA contract 9701516, and Sprint.

have historically precluded DOC middleware from being used
as their data transfer mechanism [Pyarali et al., 1996].
For instance, inefficient CORBA Internet Inter-ORB
Protocol (IIOP) [Gokhale and Schmidt, 1999] implemen-
tations perform excessive data-copying and memory
allocation per-request, which increases packet latency
[Gokhale and Schmidt, 1998]. Likewise, inefficient marshal-
ing/demarshaling in DOC middleware decreases streaming
data throughput [Gokhale and Schmidt, 1996].

As the performance of DOC middleware steadily improves,
however, the stream establishment and control components of
distributed multimedia applications can benefit greatly from
the portability and flexibility provided by DOC middleware.
Therefore, to facilitate the development of standards-based
distributed multimedia applications, the Object Management
Group (OMG) has defined the CORBA Audio/Video (A/V)
Streaming Service specification [OMG, 1997a], which defines
common interfaces and semantics necessary to control and
manage A/V streams.

The CORBA A/V Streaming Service specification defines
an architecture for implementing open distributed multime-
dia streaming applications. This architecture integrates (1)
well-defined modules, interfaces, and semantics for stream es-
tablishment and control with (2) efficient data transfer pro-
tocols for multimedia data transmission. In addition to
defining standard stream establishment and control mecha-
nisms, the CORBA A/V Streaming Service specification al-
lows distributed multimedia applications to leverage the inher-
ent portability and flexibility benefits provided by standards-
based DOC middleware.

Our prior research on CORBA middleware has
explored the efficiency, predictability, and scalabil-
ity aspects of ORB endsystem design, including
static [Schmidt et al., 1998a] and dynamic [Gill et al., 2001]
scheduling, I/O subsystem [Kuhns et al., 1999] and plug-
gable ORB transport protocol [O’Ryan et al., 2000]
integration, synchronous [Schmidt et al., 2001] and asyn-

1

NETWORK

OS KERNEL

HIGH-SPEED

NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

OS KERNEL

HIGH-SPEED

NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

ACE COMPONENTS

REAL-TIME ORB COREIOP IOP

AV Service

SUPPLIER CONSUMER

ACE COMPONENTS ACE COMPONENTS

STREAM

ADAPTER

CONTROL AND

MANAGEMENT OBJECTS

STREAM

INTERFACE

AND CONTROL

OBJECTS
Pluggable

Protocol

STREAM

ADAPTER

STREAM

INTERFACE

AND CONTROL

OBJECTS
Pluggable

Protocol

AV Service

Figure 1: Layering of TAO’s A/V Streaming Service Atop the
TAO ORB Endsystem

chronous [Arulanthu et al., 2000] ORB Core architectures,
event processing [Harrison et al., 1997], optimization prin-
ciple patterns for ORB performance [Pyarali et al., 1999],
and the performance of various commercial and research
ORBs [Gokhale and Schmidt, 1996, Schmidt et al., 1998b]
over high-speed ATM networks. This chapter focuses on
another important topic in ORB endsystem research:the
design and performance of the CORBA A/V Streaming Service
specification.

The vehicle for our research on the CORBA A/V Stream-
ing Service is TAO [Schmidt et al., 1998a]. TAO is a high-
performance, real-time Object Request Broker (ORB) endsys-
tem targeted for applications with deterministic and statistical
QoS requirements, as well as best effort requirements. The
TAO ORB endsystem contains the network interface, OS I/O
subsystem, communication protocol, and CORBA-compliant
middleware components and services shown in Figure 1.

Figure 1 also illustrates how TAO’s A/V Streaming Ser-
vice is built over the TAO ORB subsystem. TAO’s
real-time I/O (RIO) [Kuhns et al., 2000] subsystem runs in
the OS kernel and sends/receives requests to/from clients
across high-speed, QoS-enabled networks, such as ATM
or IP Integrated [Internet Engineering Task Force, 2000b] and
Differentiated [Internet Engineering Task Force, 2000a] Ser-
vices. TAO’s ORB components, such as its ORB Core, Ob-

ject Adapter, stubs/skeletons, and servants, run in user-space
and handle connection management, data transfer, endpoint
and request demultiplexing, concurrency, (de)marshaling, and
application operation processing. TAO’s A/V Streaming Ser-
vice is implemented atop its user-space ORB components. At
the heart of TAO’s A/V Streaming Service is itspluggable A/V
protocol framework. This framework provides the “glue” that
integrates TAO’s A/V Streaming Service with the underlying
I/O subsystem protocols and network interfaces.

Chapter organization: The remainder of this chapter is or-
ganized as follows: Section 0.2 illustrates how we applied
patterns to develop and optimize the CORBA A/V Streaming
Service to support the standard OMG interfaces; Section 0.3
describes two case studies that illustrate how to develop dis-
tributed multimedia applications using TAO’s A/V Stream-
ing Service and its pluggable A/V protocol framework; Sec-
tion 0.4 presents the results of empirical benchmarks we con-
ducted to illustrate the performance of TAO’s A/V Stream-
ing Service; Section 0.5 presents concluding results. For
completeness, Appendix .1 outlines the intents of all the pat-
terns applied in TAO’s A/V Streaming Service; Appendix .2
summarizes the CORBA reference model and Appendix .3
illustrates the various point-to-point and point-to-multipoint
stream and flow endpoint bindings implemented in TAO’s A/V
Streaming Service.

2 The Design of TAO’s Audio/Video
Streaming Service

This section first presents an overview of the key archi-
tectural components in the CORBA A/V Streaming Ser-
vice. We then summarize the key design challenges faced
when developing TAO’s CORBA A/V Streaming Service
and outline how we applied patterns [Gamma et al., 1995,
Buschmann et al., 1996, Schmidt et al., 2000] to resolve these
challenges. Finally, we describe the design and performance
of the pluggable A/V protocol framework integrated into
TAO’s A/V Streaming Service.

2.1 Overview of the CORBA Audio/Video
Streaming Service Specification

The CORBA Audio/Video (A/V) Streaming Service specifi-
cation [OMG, 1997a] defines an architectural model and stan-
dard OMG IDL interfaces that can be used to build interopera-
ble distributed multimedia streaming applications. Below, we
outline the architectural components and goals of the CORBA
A/V Streaming Service specification.

2

2.1.1 Synopsis of Components in the CORBA A/V
Streaming Service

The CORBA A/V Streaming Service specification defines
flows as a continuous transfer of media between two multi-
media devices. Each of these flows is terminated by aflow
endpoint. A set of flows, such as audio flow, video flow and
data flow, constitute astream, which is terminated by astream
endpoint. A stream endpoint can have multiple flow endpoints.

Figure 2 shows amultimedia stream, which is represented as
a flow between twoflow endpoints. One flow endpoint acts as

End-point
Flow data

Adaptor
Stream

(Source)

Flow data

Adaptor

Objects
And Management

Object
Control
Interface

ORB CORE

POA

End-point

Stream

Control
Interface

Object

Stream

Stream

POA

Control

(Sink)

MULTIMEDIA
STREAM

Figure 2: CORBA A/V Streaming Service Architecture

a source of the data and the other flow endpoint acts as a sink.
Note that the control and signaling operations pass through the
GIOP/IIOP-path of the ORB, demarcated by the dashed box.
In contrast, the data stream usesout-of-bandstream(s), which
can be implemented using communication protocols that are
more suitable for multimedia streaming than IIOP. Maintain-
ing this separation of concerns is crucial to meeting end-to-end
QoS requirements.

Each stream endpoint consists of three logical entities: (1) a
stream interface control objectthat exports an IDL interface,
(2) adata source or sink, and (3) astream adaptorthat is re-
sponsible for sending and receiving frames over a network.
Control and Management objectsare responsible for the es-
tablishment and control of streams. The CORBA A/V Stream-
ing Service specification defines the interfaces and interactions
of the Stream Interface Control Objectsand the Control and
Management objects. Section 0.2.3 describes the various com-
ponents in Figure 2 in detail.

2.1.2 Synopsis of Goals for the CORBA A/V Streaming
Service

The goals of the CORBA A/V Streaming Service include the
following:

Standardized stream establishment and control protocols:
Using these protocols, consumers and suppliers can be devel-
oped independently, while still being able to establish streams
with one another.

Support for multiple data transfer protocols: The
CORBA A/V Streaming Service architecture separates its
stream establishment and control protocols from its data trans-
fer protocols, such as TCP, UDP, RTP, or ATM, thereby allow-
ing applications to select the most suitable data transfer proto-
cols for a particular network environment or set of application
requirements.

Provide interoperability of flows: A flow specificationis
passed between two stream endpoints to convey per-flow in-
formation, such as format, network host name and address,
and flow protocol, required to bind or communication between
two multimedia devices.

Support many types of sources and sinks: Common
stream sources include video-on-demand servers, video cam-
eras attached to a network, or stock quote servers. Com-
mon sinks include video-on-demand clients, display devices
attached to a network, or stock quote clients.

2.2 Overview of Design Challenges and Resolu-
tions

Below, we present an overview of the key challenges faced
when we developed TAO’s CORBA A/V Streaming Service
and outline how we applied patterns [Gamma et al., 1995,
Schmidt et al., 2000] to resolve these challenges. Sec-
tions 0.2.3 and 0.2.4 then examine these design and optimiza-
tion pattern techniques in more depth. Appendix .1 outlines
the intents of all the patterns applied in TAO’s A/V Streaming
Service.

Flexibility in stream endpoint creation strategies: The
CORBA A/V Streaming Service specification defines the in-
terfaces and roles of stream components. Many performance-
sensitive multimedia applications require fine-grained control
over the strategies governing the creation of their stream com-
ponents. For instance, our past studies of Web server per-
formance [Hu et al., 1997, Hu et al., 1998] motivate the need
to supportadaptiveconcurrency strategies to develop efficient
and scalable streaming applications.

In the context of our A/V Streaming Service, we deter-
mined that the supplier-side of our MPEG case-study appli-
cation (described in Section 0.3.1) required a process-based
concurrency strategy to maximize stream throughput by al-
lowing parallel processing of separate streams. Other types
of applications required different implementations, however.
For example, the consumer-side of our MPEG application (de-
scribed in Section 0.3.1) benefited from the creation of reactive

3

[Schmidt, 1995] consumers that contain all related endpoints
within a single process.

To achieve a high degree of flexibility, therefore, TAO’s A/V
Streaming Service design decouples thebehaviorof stream
components from the strategies governing theircreation. We
achieved this decoupling via theFactory MethodandAbstract
Factory patterns [Gamma et al., 1995], as described in Sec-
tion 0.2.3.

Flexibility in data transfer protocol: A CORBA A/V
Streaming Service implementation may need to select
from a variety of transfer protocols. For instance,
an Internet-based streaming application, such as Re-
alvideo [RealNetworks, 1998], may use the UDP protocol,
whereas a local intranet video-conferencing tool [et al., 1996]
might prefer the QoS features offered by native high-speed
ATM protocols. Likewise, RTP [Schulzrinne et al., 1994] is
gaining acceptance as a transfer protocol for streaming audio
and video data over the Internet. Thus, it is essential that a
A/V Streaming Service support a range of data transfer proto-
colsdynamically.

The CORBA A/V Streaming Service defines a simple spe-
cialized protocolSimple Flow Protocol(SFP), which makes
no assumptions about the communication protocols used for
data streaming and provides an architecture independent flow
content transfer. Consequently, the stream establishment com-
ponents in TAO’s A/V Streaming Service provide flexible
mechanisms that allow applications to define and use multi-
ple network programming APIs, such as sockets and TLI, and
multiple communication protocols, such as TCP, UDP, RTP, or
ATM.

Therefore, another design challenge we faced was to define
stream establishment components that can work with a variety
of data transfer protocols. To resolve this challenge, we ap-
plied theStrategypattern [Gamma et al., 1995], as explained
in Section 0.2.3.

Providing a uniform API for different flow protocols:
The CORBA A/V Streaming Service specification defines
the flow specification syntax that can be used for con-
nection establishment. It defines the protocol names and
syntax for specifying the flow and data transfer proto-
col information, but it does not define any interfaces
for protocol implementations. We resolved this omis-
sion with ourpluggable A/V protocol framework(described
in Section 0.2.4) using design patterns, described in Ap-
pendix .1, such asLayer[Buschmann et al., 1996] ,Acceptor-
Connector[Schmidt et al., 2000],Facadeand Abstract Fac-
tory [Gamma et al., 1995]. Moreover, TAO’s A/V Streaming
Service defines a uniform API for the different flow protocols,
such as RTP and SFP, that can handle variations using the pol-
icy interface described in Section 0.2.4.

Flexibility in stream control interfaces: A/V streaming
middleware should provide flexible mechanisms that allow de-
velopers to define and use different operations for different
streams. For instance, a video application typically supports
a variety ofoperations, such asplay , stop , andrewind .
Conversely, a stream in a stock quote application may support
other operations, such asstart andstop . Since the opera-
tions provided by the stream are application-defined, it is use-
ful for the control logic component in streaming middleware
to be flexible and adaptive.

Therefore, another design challenge facing designers of
CORBA A/V Streaming Services is to allow applications the
flexibility to define their own stream control interfaces and ac-
cess these interfaces in an extensible, type-safe manner. In
TAO’s A/V Streaming Service implementation, we used the
Extension Interface[Schmidt et al., 2000] pattern to resolve
this challenge.

Flexibility in managing states of stream supplier and con-
sumers: The data transfer component of a streaming appli-
cation often must change behavior depending on the current
stateof the system. For instance, invoking theplay opera-
tion on the stream control interface of a video supplier may
cause it to enter aPLAYING state. Likewise, sending it the
stop operation may cause it to transition to theSTOPPED

state. More complex state machines can result due to addi-
tional operations, such asrewind andfast forward op-
erations.

Thus, an important design challenge for developers is de-
signing flexible applications whose states can be extended.
Moreover, in each state, the behavior of supplier/consumer
applications, and the A/V Streaming Service itself, must be
well-defined. To address this issue we applied theState Pat-
tern [Gamma et al., 1995], as described in Section 0.3.1. The
State pattern is described in Appendix .1.

Providing a uniform interface for full and light profiles:
To allow developers and applications to control and manage
flows and streams, the CORBA A/V Streaming Service speci-
fication exposes certain of their IDL interfaces. There are two
levels of exposure defined by the CORBA A/V Service: (1)
the light profile, where only the stream and stream endpoint
interfaces are exposed and the flow interfaces are not exposed
and (2) thefull profile, where flow interfaces are also exposed.
This two-level design provides more flexibility and granularity
of control to applications and developers since flow interfaces
are CORBA interfaces and are not locality constrained.

Therefore, the design challenge was to define a uniform
interface for both the light and full profiles to make use
of TAO’s pluggable A/V protocol framework. We resolved
this challenge by deriving the full and light profile end-
points from a base interface and by generating the flow
specification using theForward FlowSpec Entry and

4

Reverse FlowSpec Entry classes, as mentioned in sec-
tion 0.2.3.

Providing multipoint-to-multipoint bindings: Different
multimedia applications require different stream endpoint
bindings. For example, video-on-demand applications re-
quire point-to-point bindings between consumer and sup-
plier endpoints whereas video-conferencing applications re-
quire a multipoint-to-multipoint bindings. The CORBA A/V
specification defines a point-to-multipoint binding, but not a
multipoint-to-multipoint binding, which is left as a responsi-
bility of implementors.

Thus, we faced the design challenge of providing
multipoint-to-multipoint bindings for applications that use
multicast protocols provided by the underlying network. We
have provided a solution based on IP multicast and used to
Adapter pattern [Gamma et al., 1995] to adapt it to ATM’s
multicast model. The Adapter pattern is used to allow mul-
tiple components to work together, even if they were not orig-
inally designed to work together. This adaptation was done
by having TAO’s A/V Streaming Service set source ids for the
flow producers so that the flow consumers can distinguish the
sources. We added support in both SFP and RTP to allow them
to be adapted for such bindings. Our implementation of Vic,
described in Section 0.3.2, uses TAO’s A/V Streaming Service
multipoint-to-multipoint binding and its RTP adapter.

2.3 CORBA A/V Streaming Service Compo-
nents

The CORBA A/V Streaming Service specification defines a
set of standard IDL interfaces that can be implemented to pro-
vide a reusable framework for distributed multimedia stream-
ing applications. Figure 3 illustrates the key components of
the CORBA A/V Streaming Service. This subsection de-

MMDevice

MediaCtrl

Controller
Stream
EndPoint

Stream

VDev VDevVDevMMDevice

Stream

MediaCtrl

Stream
Controller

EndPoint

One per device
One per stream
One per device
One per stream

VDev

EndPoint
Stream

MMDevice

Multimedia
Stream
Multimedia
Stream

Supplier

Consumer

Figure 3: A/V Streaming Service Components

scribes the design of TAO’s A/V Streaming Service compo-
nents shown in Figure 3. The corresponding IDL interface

name for each role is provided in brackets. In addition, we il-
lustrate how TAO provides solutions to the design challenges
outlined in Section 0.2.2.

2.3.1 Multimedia Device Factory (MMDevice)

An MMDevice abstracts the behavior of a multimedia device.
The actual device can bephysical, such as a video microphone
or speaker, or belogical, such as a program that reads video
clips from a file or a database that contains information about
stock prices. There is typically oneMMDevice per physical
or logical device.

For instance, a particular device might support
MPEG-1 [ISO, 1993] compression or ULAW audio
[SUN Microsystems, 1992]. Such parameters are termed
“properties” of theMMDevice. Properties can be asso-
ciated with the MMDevice using the CORBA Property
Service [OMG, 1996], as shown in Figure 4.

MMDeviceMMDevice
PropertiesProperties

Name (String)Name (String) Value (CORBA "Any" type)Value (CORBA "Any" type)

PropertySetPropertySet"Video_Format" "MPEG", "JPEG", "AVI"

"Movies" "Gandhi", "Star wars"

"Connections" 4

define_property ();

get_property_value ()

delete_property ();

Figure 4: Multimedia Device Factory

An MMDevice is also an endpoint factory that creates new
endpoints for new stream connections. Each endpoint con-
sists of a pair of objects: (1) a virtual device (VDev), which
encapsulates the device-specific parameters of the connection
and (2) theStreamEndpoint , which encapsulates the data
transfer-specific parameters of the connection. The roles of
VDev andStreamEndpoint are described in Section 0.2.3
and Section 0.2.3, respectively.

The MMDevice component also encapsulates the imple-
mentation ofstrategiesthat govern the creation of theVDev
andStreamEndpoint objects. For instance, the implemen-
tation of MMDevice in TAO’s A/V Streaming Service pro-
vides the following two concurrency strategies:

Process-based strategy: The process-based concurrency
strategy creates new virtual devices and stream endpoints in a
new process, as shown in Figure 5. This strategy is useful for
applications that create a separate process to handle each new
endpoint. For instance, the supplier in our MPEG player appli-
cation described in Section 0.3.1 creates separate processes to
stream the audio and video data to the consumer concurrently.

5

Connection

requested

creates

VDev MediaCtrl

StreamEndpoint
Child
Process

Server Process

MMDevice

Figure 5:MMDevice Process-based Concurrency Strategy

Reactive strategy: In this strategy, endpoint objects for each
new stream are created in the same process as the factory, as
shown in Figure 6. Thus, a single process handles all the

VDev MediaCtrl

StreamEndpoint

Connection

requested

creates

Server
Process

MMDevice

Figure 6:MMDevice Reactive Concurrency Strategy

simultaneous connectionsreactively [Schmidt, 1995]. This
strategy is useful for applications that dedicate one process to
control multiple streams. For instance, to minimize synchro-
nization overhead, the consumer of the MPEG A/V player ap-
plication described in Section 0.3.1 uses this strategy to create
the audio and video endpoints in the same process.

In TAO’s A/V Streaming Service, theMMDevice uses the
Abstract Factorypattern [Gamma et al., 1995] to decouple (1)
the creation strategy of the stream endpoint and virtual device
from (2) the concrete classes that define it. Thus, applica-
tions that use theMMDevice can subclass both the strategies
described above, as well as theStreamEndpoint and the
VDev that are created.

The Abstract Factory pattern allows applications to cus-
tomize the concurrency strategies to suit their needs. For in-
stance, by default, the reactive strategy creates new stream
endpoints using dynamic allocation,e.g., via the new op-
erator in C++. Applications can override this behavior
via subclassing so they can allocate stream endpoints us-
ing other allocation techniques, such as thread-specific stor-
age [Schmidt et al., 2000] or special framebuffers.

2.3.2 Virtual Device (VDev)

The virtual device (VDev) component is created by the
MMDevice factory in response to a request for a new stream
connection. There is oneVDev per stream. TheVDev is used
by an application to define its response toconfigure re-
quests. For instance, if a consumer of a stream wants to use

the MPEG video format, it can invoke theconfigure oper-
ation on the supplierVDev, as shown in Figure 7.

Video_VDevVideo_VDev
configure ();configure ();

VDevVDev

configureconfigure

configure (string name, Any value)

{

 if (name == "video_format")

 switch (value)

 case "MPEG": use_mpeg ();

 default: return Exception;

......

}

configure () = 0;configure () = 0;

("video_format",("video_format",
"MPEG");"MPEG");

Figure 7: Virtual Device

Stream establishmentis a mechanism defined by the
CORBA A/V Streaming Service specification to permit the
negotiation of QoS parameters viaproperties. Properties are
name-valuepairs, i.e., they have astring name and a cor-
responding value. The properties used by the A/V Stream-
ing Service are implemented using the CORBA Property Ser-
vice [OMG, 1996].

The CORBA A/V Streaming Service specification spec-
ifies the names of the common properties used by the
VDev objects. For instance, the propertycurrformat
is a string that contains the current encoding formate.g.,
“MPEG.” During stream establishment, eachVDev can use
the get property value operation on its peerVDev to
ensure that the peer uses the same encoding format.

When a new pair ofVDev objects are created, eachVDev
uses theconfigure operation on its peer to set the stream
configuration parameters. If the negotiation fails, the stream
can be torn down and its resources released immediately.

Section 0.2.3 describes the CORBA A/V Streaming Service
stream establishment protocol in detail.

2.3.3 Media Controller (MediaCtrl)

The Media Controller (MediaCtrl) is an IDL interface that
defines operations for controlling a stream. AMediaCtrl
interface isnotdefined by the CORBA A/V Streaming Service
specification. Instead, it is defined by multimedia application
developers to support operations for a specific stream, such as
the following IDL interface for a video service:

interface video_media_control
{

void select_video (string name_of_movie);
void play ();
void rewind (short num_frames);
void pause ();
void stop ();

};

6

The CORBA A/V Streaming Service provides develop-
ers with the flexibility to associate an application-defined
MediaCtrl interface with a stream. Thus, the A/V Stream-
ing Service can be used with an infinitely extensible variety of
streams, such as audio and video, as well as non-multimedia
streams, such as a stream of stock quotes.

The VDev object represented device-specific parameters,
such as compression format or frame rate. Likewise, the
MediaCtrl interface is device-specific since different de-
vices support different control interfaces. Therefore, the
MediaCtrl is associated with theVDev object using the
Property Service [OMG, 1996].

There is typically oneMediaCtrl per stream. In some
cases, however, application developers may choose to control
multiple streams using the sameMediaCtrl . For instance,
the video and audio streams for a movie might have a common
MediaCtrl to enable a single CORBA operation, such as
play , to start both audio and video playback simultaneously.

2.3.4 Stream Controller (StreamCtrl)

The Stream Controller (StreamCtrl) interface abstracts a
continuous media transfer between virtual devices (VDevs). It
supports operations to bind twoMMDevice objects together
using a stream. Thus, theStreamCtrl component binds the
supplier and consumer of a stream,e.g., a video-camera and a
display. It is the key participant in theStream Establishment
protocol described in Section 0.2.3.

In general, aStreamCtrl object is instantiated by an ap-
plication developer. There is oneStreamCtrl per stream,
i.e., per consumer/supplier pair.

2.3.5 Stream Endpoint (StreamEndpoint)

TheStreamEndpoint object is created by anMMDevice
in response to a request for a new stream. There is one
StreamEndpoint per stream. AStreamEndpoint en-
capsulates the data transfer-specific parameters of a stream.
For instance, a stream that uses UDP as its data transfer proto-
col will identify its StreamEndpoint via a host name and
port number.

In TAO’s A/V Streaming Service, theStreamEndpoint
implementation uses patterns, such asDouble Dispatching
andTemplate Method[Gamma et al., 1995], described in Ap-
pendix .1, to allow applications to define and exchange data
transfer-level parameters flexibly. This interaction is shown in
Figure 8 and occurs as follows:

Step 1: An A/V streaming application can inherit from
the StreamEndpoint class and override the operation
handle connection requested in the new subclass
TCP StreamEndpoint .

ConnectionConnection
RequestedRequested

returnreturn

"TCP=tango:8455""TCP=tango:8455"

connection_requested (..)
{
 handle_connection_requested ();
 return flowspec;
}

handle_connection_requested (..)
{
 create transport endpoint;
 return "TCP=tango:8455";
} TCP_StreamEndpointTCP_StreamEndpoint

StreamEndpointStreamEndpoint

Figure 8: Interaction BetweenStreamEndpoint and a
Multimedia Application

Step 2: When binding twoMMDevices, theStreamCtrl
invokesconnect on oneStreamEndpoint with the peer
TCP StreamEndpoint as a parameter.

Step 3: The StreamEndpoint then requests the
TCP StreamEndpoint to establish the connection for this
stream using the network addresses it is listening on.

Step 4: The virtual handle connection requested
operation of theTCP StreamEndpoint is invoked and
connects with the listening network address on the peer side.

Thus, by applying patterns, theStreamEndpoint design
allows each application to configure its own data transfer pro-
tocol, while reusing the generic stream establishment control
logic in TAO’s A/V Streaming Service.

2.3.6 Interaction Between Components in the CORBA
Audio/Video Streaming Service Model

The preceding discussion in Section 0.2.3 described the struc-
ture of components that constitute the CORBA A/V Streaming
Service. Below, we describe how these componentsinteractto
provide two key A/V Streaming Service features:stream es-
tablishmentandflexible stream control.

Stream establishment: Stream establishment is the process
of binding two peers who need to communicate via astream.
The CORBA A/V Streaming Service specification defines a
standard protocol for establishing a binding between streams.
Several A/V Streaming Service components are involved in
stream establishment. A key motivation for providing an elab-
orate stream establishment protocol is to allow components to
be configured independently. This allows the stream establish-
ment protocol to remain standard, and yet provide sufficient
hooks for multimedia application developers to customize this
process for a specific set of requirements. For instance, an
MMDevice can be configured to use one of several concur-
rency strategies to create stream endpoints. Thus, at each stage
of the stream establishment process, individual components
can be configured to implement desired policies.

7

The CORBA A/V Streaming Service specification identifies
two peers in stream establishment, which are known as the “A”
party and the “B” party. These terms define complimentary
relationships,i.e., a stream always has anA party at one end
and aB party at the other. TheA party may be thesink, i.e.,
the consumer, of a video stream, whereas theB party may be
thesource, i.e., the supplier, of a video stream and vice versa.

Note that the CORBA A/V Streaming Service specification
defines twodistinct IDL interfaces for theA andB party end-
points. Hence, for a given stream, there will be two distinct
types for the supplier and the consumer. Thus, the CORBA
A/V Streaming Service specification ensures that the compli-
mentary relationship between suppliers and consumers is type-
safe. An exception will be raised if a supplier tries to establish
a stream with another supplier accidentally.

Stream establishment in TAO’s A/V Streaming Service
occurs in several steps, as illustrated in Figure 9. This

1) bind_devs (aMMDev,
bMMDev);

aMMDev
bMMDev

B_EndPointA_EndPoint

aVDev bVDev

aStreamCtrl

2.1) create_A

2.2) A_Endpoint, A_Vdev 2.4) B_EndPoint, B_VDev

2.3) create_B

4) connect

5) request_connection

3) configure

Figure 9: Stream Establishment Protocol in the A/V Streaming
Service

figure shows a stream controller (aStreamCtrl) binding
the A party together with theB party of a stream. The
stream controller need not be collocated with either end of a
stream. To simplify the example, however, we assume that
the controller is collocated with theA party, and is called the
aStreamCtrl . Each step shown in Figure 9 is explained
below:

1. The aStreamCtrl binds two Multimedia Device
(MMDevice) objects together: Application developers in-
voke thebind devs operation onaStreamCtrl . They
provide the controller with the object references of two
MMDevice objects. These objects are factories that create
the twoStreamEndpoint s of the new stream.

2. Stream Endpoint creation: In this step,
aStreamCtrl requests the MMDevice objects,
i.e., aMMDevice and bMMDevice , to create the
StreamEndpoint s and VDev objects. The
aStreamCtrl invokes create A and create B op-
erations on the twoMMDevice objects. These operations

request them to createA Endpoint and B Endpoint
endpoints, respectively.

3. VDev configuration: After the two peerVDev objects
have been created, they can use theconfigure operation to
exchange device-level configuration parameters. For instance,
these parameters can be used to designate the video format and
compression technique used for subsequent stream transfers.

4. Stream setup: In this step,aStreamCtrl invokes
the connect operation on theA Endpoint . This opera-
tion instructs theA Endpoint to initiate a connection with
its peer. TheA Endpoint initializes its data transfer end-
points in response to this operation. In TAO’s A/V Stream-
ing Service, applications can customize this behavior using
the Double Dispatch[Gamma et al., 1995] pattern described
in Section 0.2.3.

5. Stream Establishment: In this step, theA Endpoint
invokes therequest connection operation on its peer
endpoint. TheA Endpoint passes its network endpoint
parameters,e.g., hostname and port number, as parame-
ters to this operation. When theB Endpoint receives the
request connection operation, it initializes its end of
the data transfer connection. It subsequently connects to the
data transfer endpoint passed to it by theA Endpoint .

After completing these five stream establishment protocol
steps, a data transfer-level stream is established between the
two endpoints of the stream. Section 0.2.3 describes how the
Media Controller(MediaCtrl) can control an established
stream,e.g., by starting or stopping the stream.

Stream control: EachMMDevice endpoint factory can be
configured with an application-definedMediaCtrl inter-
face, as described in Section 0.2.3. Each stream has one
MediaCtrl and everyMediaCtrl controls one stream.
Thus, if a particular movie has two streams, one for audio
and the other for video, it will have twoMediaCtrl s. The
MediaCtrl is anExtension Interface described in Ap-
pendix .1.

After a stream has been established by the stream con-
troller, applications can obtain object references to their
MediaCtrl s from theirVDev. These object references con-
trol the flow of data through the stream. For instance, a
video stream might support certain operations, such asplay ,
rewind , andstop , and be used as shown below:

// The Audio/Video Streaming Service invokes this
// application-defined operation to give the
// application a reference to the media controller
// for the stream.
Video_Client_VDev::set_media_ctrl

(CORBA::Object_ptr media_ctrl,
CORBA::Environment &env)

{
// "Narrow" the CORBA::Object pointer into

8

// a media controller for the video stream.
this->video_control_ =

Video_Control::_narrow (media_ctrl);
}

The video control interface can be used to control the stream,
as follows:

// Select the video to watch.
this->video_control_->select_video ("gandhi");

// Start playing the video stream.
this->video_control_->play ();

// Pause the video.
this->video_control_->stop ();

// Rewind the video 100 frames.
this->video_control_->rewind (100);

Flow specification: When binding two multimedia de-
vices, a flow specification is passed between the two
StreamEndpoints to convey per-flow information. A flow
specification represents key aspects of a flow, such as its name,
format, flow protocol being used, and the network name and
address. A flow specification string is analogous to aninter-
operable object reference(IOR) in the CORBA object model.
The syntax for the interoperable flow specifications is shown
in Figure 10. Standardizing the flow specifications ensures that

{"video\out\MIME:video/MPEG",
video\TCP=ace.cs;5678"}

S
T

R
E

A
M

E
N

D
P

O
IN

T
 A

S
T

R
E

A
M

E
N

D
P

O
IN

T
 B

{"audio\out\MIME:audio/MPEG\SFP:1.0:credit=10\UDP=ace.cs:900",
"audio\UDP=danzon.cs:9000"}

Figure 10: Flow Specification

two differentStreamEndpoints from two different imple-
mentations can interoperate. There are two different flow spec-
ifications, depending on the direction in which the flowspec is
traveling. If it is from theAparty’sStreamEndpoint to the
B party’sStreamEndpointthen it is a “forward flowspec;” the
opposite direction is the “reverse flowspec.”

TAO’s CORBA A/V Streaming Service implementa-
tion defines two classes,Forward FlowSpec Entry and
Reverse FlowSpec Entry , that allow multimedia appli-
cations to construct theflow specification stringfrom their
components without worrying about the syntactic details. For
example, the entry takes the address as both anINET Addr
and astring and provides convenient parsing utilities for
strings.

2.4 The Design of a Pluggable A/V Protocol
Framework for TAO’s A/V Streaming Ser-
vice

At the heart of TAO’s A/V Streaming Service is itspluggable
A/V protocol framework, which defines a common interface
for various flow protocols, such as TCP, UDP, RTP, or ATM.
This framework provides the “glue” that integrates its ORB
components with the underlying I/O subsystem protocols and
network interfaces. In this section, we describe the design of
the pluggable A/V protocol framework provided in TAO’s A/V
Streaming Service and describe how we resolved key design
challenges that arose when developing this framework.

2.4.1 Overview of TAO’s Pluggable A/V Protocol Frame-
work

The pluggable A/V protocol framework in TAO’s A/V Stream-
ing Service consists of the components shown in Figure 11.
Each of these components is described below.

RTP RTCP SFP NULL

UDP
UDP
MCAST

ATM
AAL5

TCP

FLOW PROTOCOL
FACTORY

FLOW TRANSPORT
FACTORY

FLOW PROTOCOL COMPONENT

FLOW TRANSPORT COMPONENT

Figure 11: Pluggable A/V Protocol Components in TAO’s A/V
Streaming Service

AV Core: This singleton [Gamma et al., 1995] component
is a container for flow and data transfer protocol factories.
An application using TAO’s A/V implementation must ini-
tialize this singleton before using any of its A/V classes,
such asStreamCtrl and MMDevice. During initializa-
tion, the AV Core class loads all the flow protocol fac-
tories, control protocol factories, and data transfer facto-
ries dynamically using theService Configurator pat-
tern [Schmidt et al., 2000] and creates default instances for
each known protocol.

Data Transfer components: The components illustrated in
Figure 12 and described below are required for each data trans-
fer protocol:

9

ACE_SERVICE_OBJECT

TRANSPORT
FACTORY

TRANSPORT
ACCEPTOR

TRANSPORT
CONNECTOR

TRANSPORT
HANDLER

TRANSPORT

TAO_AV_FLOW
HANDLER

< < INSTANTIATES > >

< < INSTANTIATES > >

match_protocol(protocol_name)

Figure 12: TAO’s A/V Streaming Service Pluggable Data
Transfer Components

� Acceptor and Connector: These classes are im-
plementations of the Acceptor-Connector pat-
tern [Schmidt et al., 2000], which are used to accept
connections passively and establish connections actively,
respectively.

� Transport Factory: This class is an abstract fac-
tory [Gamma et al., 1995] that provides interfaces to create
Acceptor s andConnector s in accordance to the appro-
priate type of data transfer protocol.

� Flow Handler: All data transfer handlers derive from
the Flow Handler class, whose methods can start, stop,
and provide flow-specific functionality for timeout upcalls to
theCallback objects, which are described in the following
paragraph.

Callback interface: TAO’s A/V Streaming Service uses
this callback interface to deliver frames and to notify
FlowEndPoints of start and stop events. Multimedia ap-
plication developers subclass this interface for each flow end-
point, i.e., there are producer and consumer callbacks. TAO’s
A/V Streaming Service dispatches timeout events automati-
cally so that applications need not write event handling mech-
anisms. For example, all flow producers are automatically reg-
istered for a timer events with a Reactor. The value for the
timeout is obtained through theget timeout hook method
on the Callback interface. This hook method is called
whenever a timeout occurs since multimedia applications typ-
ically have adaptive timeout values.

Flow protocol components: Flow protocols carry in-band
information for each flow that a receiver can use to reproduce
the source stream. The following components are required for

each flow protocol supported by TAO’s A/V Streaming Ser-
vice:

� Flow Protocol Factory: This class is an abstract fac-
tory that creates flow protocol objects.

� Protocol Object: This class defines flow protocol func-
tionality. Applications use this class to send frames and the
Protocol Object uses application-specifiedCallback
objects to deliver frames.

Figure 13 illustrates the relationships among the flow proto-
col components in TAO’s pluggable A/V protocol framework.

FLOW PROTOCOL
FACTORY

PROTOCOL OBJECT

CALLBACK

FLOW HANDLER TRANSPORT

ACE SERVICE OBJECT

< < INSTANTIATES > >

Control Factory

Figure 13: TAO’s A/V Streaming Service Pluggable A/V Pro-
tocol Components

AV Connector and AV Acceptor Registry: As mentioned
above, different data transfer protocols require the creation of
corresponding data transfer factories, acceptors, and connec-
tors. TheAV Core class creates theAV Connector and
AV Acceptor registry classes to provide a facade that main-
tains and accesses the abstract flow and data transfer factories
both forlight andfull profile objects. This design gives users a
single interface that hides the complexity of creating and ma-
nipulating different data transfer factories.

2.4.2 Applying Patterns to Resolve Design Challenges for
Pluggable A/V Protocols Frameworks

Below, we outline the key design challenges faced when
developing TAO’s pluggable A/V protocol framework and
discuss how we resolved these challenges by applying var-
ious patterns [Gamma et al., 1995, Buschmann et al., 1996,
Schmidt et al., 2000].

Adding new data transfer protocols transparently:

� Context: Different multimedia applications often have
different QoS requirements. For example, a video applica-
tion over an intranet may want to take advantage of native

10

ATM protocols to reserve bandwidth. An audio application
in a video-conferencing application may want to use a reli-
able data transfer protocol, such as TCP, since loss of audio
is more visible to users than video and the bit-rate of audio
flows are low (�8 kbps using GSM compression). In con-
trast, a video application might not want the overhead of re-
transmission and slow-start congestion protocol incurred by a
TCP [Stevens, 1993]. Thus, it may want to use the facilities of
an unreliable data transfer protocol, such as UDP, since losing
a small number of frames may not affect perceived QoS.

� Problem: It should be possible to add new data transfer
protocols to TAO’s pluggable A/V protocol framework with-
out modifying the rest of TAO’s A/V Streaming Service. Thus,
the framework must be open for extensions but closed to mod-
ifications,i.e., the Open/Closed principle [Meyer, 1989]. Ide-
ally, creating a new protocol and configuring it into TAO’s
pluggable A/V protocol framework should be all that is re-
quired.

� Solution: Use a registry to maintain a collection
of abstract factoriesbased on the Abstract Factory pat-
tern [Gamma et al., 1995]. In this pattern, a single class
defines an interface for creating families of related objects,
without specifying their concrete types. Subclasses of ab-
stract factories are responsible for creating concrete classes
that collaborate amongst themselves. In the context of plug-
gable A/V protocols, each abstract factory can create concrete
Connector andAcceptor classes for a particular proto-
col.

� Applying this solution in TAO’s A/V Stream-
ing Service: In TAO’s A/V Streaming Service, the
Connector Registry plays the role of the protocol reg-
istry. This registry is created by theAV Core class. Fig-
ure 14 depicts theConnector Registry and its re-
lation to the abstract factories. These factories are ac-

TCP ATM
AAL5

UDP

A
B

S
T

R
A

C
T

F
A

C
T

O
R

Y

A
B

S
T

R
A

C
T

F
A

C
T

O
R

Y

A
B

S
T

R
A

C
T

F
A

C
T

O
R

Y

CONNECTOR REGISTRY / ACCEPTOR REGISTRY

Figure 14: Connector Registry

cessed via a facade defined according to theFacadepat-
tern [Gamma et al., 1995]. This design hides the complexity
of manipulating multiple factories behind a simpler interface.

The Connector Registry described above plays the fa-
cade role.

Adding new A/V protocols transparently:

� Context: Multimedia flows often require a flow proto-
col since most multimedia flows need to carry in-band infor-
mation for the receiver to reproduce the source stream. For
example, every frame may need a timestamp so that the re-
ceiver can play the frame at the right time. Moreover, sequence
numbers will be needed if a connectionless protocol, such as
UDP, is used so that the applications can do resequencing. In
addition, multicast flows may require information, such as a
source identification number, to demultiplex flows from dif-
ferent sources.

SFP is a simple flow protocol defined by the CORBA
A/V Streaming Service specification to transport in-
band data. Likewise, the Real-time Transport Protocol
(RTP) [Schulzrinne et al., 1994] defines facilities to transport
in-band data. RTP is Internet-centric, however, and cannot
carry CORBA IDL-typed flows directly. For example, RTP
specifies that all header fields should be in network-byte
order, whereas the SFP uses CORBA’s CDR encoding and
carries the byte-order in each header.

� Problem: Flow protocols should be able to run over dif-
ferent data transfer protocols. This configuration of a flow pro-
tocol over different data transfer protocol should be done eas-
ily and transparently to the application developers and users.

� Solution: To solve the problem of a flow protocol
running over different data transfer protocols, we applied
theLayerspattern [Buschmann et al., 1996] described in Ap-
pendix .1. We have structured the flow protocols and data
transfer protocols as two different layers. The flow protocol
layer creates the frames with the in-band flow information.
The data transfer layer performs the connection establishment
and sends the frames that are sent down from the flow proto-
col layer onto the network. The layered approach makes the
flow and data transfer protocols independent of each other and
hence it is easy to tie different flow protocols with different
data transfer protocols transparently.

� Applying this solution in TAO’s A/V Streaming Ser-
vice: TAO’s A/V Streaming Service provides a uniform
data transfer layer for a variety of flow protocols, includ-
ing UDP unicast, UDP multicast, and TCP. TAO’s A/V
Streaming Service provides a flow protocol layer using a
Protocol Object interface. Likewise, itsAV Core class
maintains a registry of A/V protocol factories.

Adding new protocols dynamically:

11

� Context: When developing new pluggable A/V proto-
cols, it is inconvenient to recompile TAO’s A/V Streaming
Service and applications just to validate a new protocol imple-
mentation. Moreover, it is often useful to experiment with dif-
ferent protocols to compare their performance, footprint size,
and QoS guarantees systematically. Moreover, in telecom sys-
tems with 24�7 availability requirements, it is important to
configure protocols dynamically, even while the system is run-
ning. This level of flexibility helps simplify upgrades and pro-
tocol enhancements.

� Problem: The user would like to populate the registry
dynamicallywith a set of factories during run-time and avoid
the inconvenience of recompiling the AV Service and the ap-
plications when different protocols are plugged in. The solu-
tion explains how we can achieve this.

� Solution: We can solve the above stated problem using
theService Configuratorpattern [Schmidt et al., 2000], which
decouples the implementation of a component from the point
in time when it is configured into the application. By using this
pattern, a pluggable A/V protocol framework can dynamically
load the set of entries in a registry. For instance, a registry can
simply parse a configuration script and dynamically link the
services listed in it.

� Applying this solution in TAO’s A/V Streaming Ser-
vice: TheAV Core class maintains all parameters specified
in a configuration script. Adding a new parameter to repre-
sent the list of protocols is straightforward,i.e., the default
registry simply examines this list and links the services into
the address-space of the application, using the ACE Service
Configurator implementation [Schmidt and Suda, 1994]. ACE
provides a rich set of reusable and efficient components for
high-performance, real-time communication, and forms the
portability layer of TAO’s A/V Streaming Service. Figure 15
depicts the connector registry and its relation to the ACE Ser-
vice Configurator framework, which is an implementation of
the Component Configurator pattern [Schmidt et al., 2000].

Control protocols:

� Context: RTP has a control protocol – RTCP – asso-
ciated with it. Every RTP participant must transmit RTCP
frames that provide control information, such as the name of
the participant and the tool being used. Moreover, RTCP sends
reception reports for each of its sources.

� Problem: Certain flow protocols, such as SFP, use A/V
interfaces to exchange control interfaces. The use of RTP for
a flow necessitates it to transmit RTCP information. RTCP ex-
tracts this control information from RTP packets. Therefore,
TAO’s A/V Streaming Service must provide an extensible in-
terface for these control protocols, as well as provide a means
for interacting between the data and control protocols.

 ACCEPTOR / CONNECTOR REGISTRY

TRANSPORT FLOW PROTOCOL

RTCPTCP SFP RTPUDP
ATM
AAL5

T
C

P
 F

A
C

T
O

R
Y

S
F

P
 F

L
O

W
F

A
C

T
O

R
Y

R
T

P
 F

L
O

W
F

A
C

T
O

R
Y

U
D

P
 F

A
C

T
O

R
Y

R
T

C
P

 F
L

O
W

F
A

C
T

O
R

Y

A
A

L
5

 F
A

C
T

O
R

Y

< < I N S T A N T I A T E S > >

SERVICE CONFIGURATOR

Figure 15: Acceptor-Connector Registry and Service Config-
urator

� Solution: The solution is to make the control proto-
col information part of the flow protocol. For example, RTP
knows that RTCP is its control protocol. Therefore, to reuse
pluggability features, it may be necessary to make the control
protocol use the same interfaces as its data components.

� Applying this solution in TAO’s A/V Streaming Ser-
vice: During stream establishment,Registry objects will
first check the flow factory for the configured flow protocol.
After thelisten orconnect operation has been performed
for a particular data flow, theRegistry will check if the flow
factory has a control factory. If so, it will perform the same
processing for the control factory, except the network endpoint
port will be one value higher than the data endpoint. Since the
CORBA A/V Streaming Service specification does not define
a portable way to specify control flow endpoint information,
we followed this approach as a temporary solution until the
OMG comes up with a portable solution.

The RTCP implementation in TAO’s A/V Streaming Ser-
vice uses the same interfaces that RTP does, including
the Flow Protocol Factory and Protocol Object
classes. Thus, RTP will call thehandle control input
method on the RTCPProtocol Object when a RTP frame
is received. This method enables the RTCP object to extract
the necessary control information, such as the sequence num-
ber of the last frame.

Interface for variations in flow protocols:

� Context: Above, we explained how TAO’s pluggable
A/V protocol framework factors out different flow protocols
and provides a uniform flow protocol interface. In certain
cases, however, there are inherent variations in such protocols.

12

For example, RTP must transmit the payload type,i.e., the for-
mat of the flow in each frame, whereas SFP uses the control
and management interface in TAO’s A/V Streaming Service to
set and get the format values for a flow.

Similarly, the RTP control protocol, RTCP, periodically
transmits participant information, such as the senders name
and email address, whereas SFP does not transmit such infor-
mation. Such information does not changed with every frame,
however. For example, the name and email address of a partic-
ipant in a conference will not change for a session. In addition,
the properties of the transfer may need to be controlled by ap-
plications. For instance, a conferencing application may not
want to have multicast loopback.

� Problem: An A/V Streaming Service should allow end-
users to set protocol-specific variations, while still providing
a single interface for different flow protocols. Moreover, this
interface should be open to changes with the addition of new
flow protocol and data transfer protocols.

� Solution: The solution to the above problem is to apply
theCORBA Policyframework defined in the CORBA specifi-
cation [Object Management Group, 1999]. The CORBA Pol-
icy framework allows the protocol component developer to de-
fine policy objects that control the behavior of the protocol
component. The policy object is derived from the CORBA
Policy interface [Object Management Group, 1999] which
stores the Policy Type [Object Management Group, 1999] and
the associated values.

� Applying this solution in TAO’s A/V Streaming Ser-
vice: By defining a policy framework, which is extensible
and follows the CORBA Policy model, the users will have
shorter learning curve to the API and be able to add new
flow protocols flexibly. We have defined different policy types
used by different flow protocols that can be accessed by the
specific transport and flow protocol components during frame
creation and dispatching. For example we have defined the
TAO AV PAYLOAD TYPE POLICY which allows the RTP
protocol to specify the payload type.

3 Case Study: Developing Multime-
dia Applications using TAO’s A/V
Streaming Service

To evaluate the capabilities of the CORBA-based A/V Stream-
ing Service, we have developed several multimedia applica-
tions that use the components and interfaces described in Sec-
tion 0.2. Thus, this section describes the design of two dis-
tributed multimedia applications that use TAO’s A/V Stream-
ing Service and pluggable A/V protocol framework to estab-
lish and control MPEG and interactive audio/video streams.

3.1 Case Study 1: an MPEG A/V Streaming
Application

This application is an enhanced version of a non-CORBA
MPEG player developed at the Oregon Graduate Insti-
tute [Chen et al., 1995]. Our application plays movies using
theMPEG-1video format [ISO, 1993] and the SunULAWau-
dio format [SUN Microsystems, 1992]. Figure 16 shows the
architecture of our A/V streaming application.

Naming ServiceNaming Service

`

MMOVIESOVIES

MPEG

MOV

JPEG

MMDeviceMMDevice

ControlControl
(Media(Media

Controller)Controller)

Media
(UDP)

SupplierSupplierConsumerConsumer

RegisterRegisterResolveResolve

Figure 16: Architecture of the MPEG A/V Streaming Appli-
cation

The MPEG player application uses a supplier/consumer de-
sign implemented using TAO. The consumer locates the sup-
plier using the CORBA Naming Service [OMG, 1997b] or the
Trading Service [OMG, 1997b] to find suppliers that match
the consumer’s requirements. For instance, a consumer might
want to locate a supplier that has a particular movie or a sup-
plier with the least number of consumers currently connected
to it.

Once a consumer obtains the supplier’sMMDevice object
reference it requests the supplier to establish two streams,i.e.,
a video stream and an audio stream, for a particular movie.
These streams are established using the protocol described in
Section 0.2.3. The consumer then uses theMediaCtrl to
control the stream, as described in Section 0.2.3.

The supplier is responsible for sending A/V packets via
UDP to the consumer. For each consumer, the supplier trans-
mits two streams, one for the MPEG video packets and one for
the Sun ULAW audio packets. The consumer decodes these
streams and plays these packets in a viewer, as shown in Fig-
ure 17.

This section describes the various components of the con-
sumer and supplier. The following table illustrates the number
of lines of C++ source required to develop this system and ap-
plication.

Component Lines of code
TAO CORBA ORB 61,524
TAO Audio/Video (A/V) Streaming Service 3,208
TAO MPEG video application 47,782

13

Figure 17: A TAO-enabled Audio/Video player

Using the ORB and the A/V Streaming Service greatly re-
duced the amount of software that otherwise would have been
written manually.

3.1.1 Supplier Architecture

The supplier in the A/V streaming application is responsible
for streamingMPEG-1video frames andULAWaudio samples
to the consumer. The files can be stored in a filesystem acces-
sible to the supplier process. Alternately, the video frames and
the audio packets can be sent by live source, such as a video
camera. Our experience with the supplier indicates that it can
support�10 concurrent consumers simultaneously on a dual-
CPU 187 Mhz Sun Ultrasparc-II with 256 MB of RAM over a
155 mbps ATM network.

The role of the supplier is to read audio and video frames
from a file, encode them, and transmit them to the consumer
across the network. Figure 18 depicts the key components in
the supplier architecture.

MMOVIESOVIES

CCONTROLONTROL

DDATAATA

CCONTROLONTROL

DDATAATA

VVIDEOIDEO AAUDIOUDIO

CCONNECTION ONNECTION HHANDLERSANDLERS

createscreates
SSERVERERVER

PPROCESSROCESS

Figure 18: TAO Audio/Video Supplier Architecture

The main supplier process contains anMMDevice endpoint
factory described in Section 0.2.3. ThisMMDevice creates
connection handlers in response to consumer connections, us-
ing process-based concurrency strategy. Each connection trig-
gers the creation of one audio process and one video process.
These processes respond to multiple events. For instance, the
video supplier process responds to CORBA operations, such
asplay andrewind , and sends video frames periodically in
response to timer events.

Each component in the supplier architecture is described be-
low:

The Media controller component: This component in the
supplier process is a servant that implements the Media Con-
troller interface (MediaCtrl) described in Section 0.2.3.
The Media Controller responds to CORBA operations from
the consumer. The interface exported by theMediaCtrl
component represents the various operations supported by the
supplier, such asplay , rewind , andstop .

At any point in time, the supplier can be in several states,
such asPLAYING, REWINDING, or STOPPED. Depending on
the supplier’s state, its behavior may change in response to
consumer operations. For instance, the supplier ignores a
consumer’splay operation when the supplier is already in
the PLAYING state. Conversely, when the supplier is in the
STOPPEDstate, a consumerrewind operation transitions the
supplier to theREWINDING state.

The key design forces that must be resolved while imple-
mentingMediaCtrl s for A/V streaming are (1) allowing the
same object to respond differently, based on its current state,
(2) providing hooks to add new states, and (3) providing ex-
tensible operations to change the current state.

To provide a flexible design that meet these requirements,
the control component of our MPEG player application is im-
plemented using theStatepattern [Gamma et al., 1995]. This
implementation is shown in

Figure 19. TheMediaCtrl has astate object pointer.

Media Controller

play ()
rewind ()
stop ()

Media State

play () = 0;
rewind () = 0;
stop () = 0;

Playing State

play ()
rewind ()
stop ()

Stopped State

play ()
rewind ()
stop ()

state

state->play ();

Figure 19: State Pattern Implementation of the Media Con-
troller

The object being pointed to by the Media Controller’sstate
pointer represents the current state. For simplicity, the fig-

14

ure shows thePlaying State and theStopped State ,
which are subclasses of theMedia State abstract base
class. Additional states, such as theRewinding State ,
can be added by subclassing fromMedia State .

The diagram lists three operations:play , rewind and
stop . When the consumer invokes an operation on the
Media Controller , this class delegates the operation to
the state object. A state object implements the response to
each operation in a particular state. For instance, therewind
operation in thePlaying State contains the response of
the media controller to therewind operation when it is in the
PLAYING state. State transitions can be made by changing the
object being pointed to by thestate pointer of theMedia
Controller .

In response to consumer operations, the currentstate ob-
ject instructs the data transfer component discussed in Sec-
tion 0.3.1 to modify the stream flow. For instance, when
the consumer invokes therewind operation on theMedia
Controller while in theSTOPPEDstate, therewind oper-
ation in theStopped State object instructs the data com-
ponent to play frames in reverse chronological order.

The Data transfer component: The data component is re-
sponsible for transferring data to the consumer. Our MPEG
supplier application reads video frames from aMPEG-1file
and audio frames from a SunULAWaudio file. It sends these
frames to the consumer, fragmenting long frames if necessary.
The current implementation of the data component uses the
UDP protocol to send A/V frames.

A key design challenge related to data transfer is to have the
application respond to CORBA operations for the stream con-
trol objects,e.g, theMediaCtrl , as well as the data transfer
events,e.g., video frame timer events. An effective way to
do this is to use theReactorpattern [Schmidt et al., 2000], as
shown in Figure 20. TheReactor pattern is described in
Appendix .1.

ORBORB
DescriptorDescriptor

TimerTimer Data (UDP)Data (UDP)

OS EVENT DEMULTIPLEXING INTERFACE

: Periodic: Periodic
Video frameVideo frame
transmittertransmitter

: Reactor: Reactor

: Feedback: Feedback
HandlerHandler

CORBA ORBCORBA ORB

: Media: Media
ControllerController

Figure 20: Reactive Architecture of the Video Supplier

The video supplier registers two event handlers with TAO’s

ORB Reactor . One is a signal handler for the video frame
timer events. The other is a UDP socket event handler for
feedback events coming from the consumer. The frames sent
by the data component correspond to the current state of the
MediaCtrl object, as outlined above. Thus, in thePLAYING

state, the data component plays the audio and video frames in
chronological order.

Future implementations of the data transfer component in
our MPEG player application will support multiple encoding
protocols via the simple flow protocol (SFP) [OMG, 1997a].
SFP encoding encapsulates frames of various protocols within
an SFP frame. It provides standard framing and sequence
numbering mechanisms. SFP uses the CORBA CDR encoding
mechanism to encode frame headers and uses a simplecredit-
basedflow control mechanism described in [OMG, 1997a].

3.1.2 Consumer Architecture

The role of the consumer is to read audio and video frames off
the network, decode them, and play them synchronously. The
audio and video servers stream the frames separately. A/V
frame synchronization is performed on consumer. Figure 21
depicts the key components in the consumer architecture:

VVIDEOIDEO

BBUFFERUFFER

AAUDIOUDIO

BBUFFERUFFER

VVIDEOIDEO

DDECODEECODE

"R"RAWAW""

PPACKETSACKETS

DDECODED ECODED MMPEGPEG

VVIDEO IDEO PPACKETSACKETS

Video ControlVideo Control

Audio ControlAudio Control

CCONTROLONTROL/A/AUDIOUDIO

GUI/VGUI/VIDEOIDEO

CommandsCommands

Figure 21: TAO Audio/Video Consumer Architecture

The original non-CORBA MPEG con-
sumer [Chen et al., 1995] used a process-based concurrency
architecture. Our CORBA-based consumer maintain this
architecture to minimize changes to the code. Separate pro-
cesses are used to do the buffering, decoding, and playback,
as explained below:

1. Video buffer: The video buffering process is responsi-
ble for reading UDP packets from the network and enqueueing
them in shared memory. The Video Decoder process dequeues
these packets and performs MPEG decoding operations on
them.

2. Audio buffer: Similarly, the audio buffering process
is responsible for reading UDP packets of the network and
enqueueing them in shared memory. The Control/Audio

15

Playback process dequeues these packets and sends them to
/dev/audio .

3. Video decoder: The video decoding process reads the
raw packets sent to it by the Video Buffer process and decodes
them according to the MPEG-1 video specification. These de-
coded packets are sent to the GUI/Video process, which dis-
plays them.

4. GUI/Video process: The GUI/Video process is responsi-
ble for the following two tasks:

� GUI: It provides a GUI to the user, where the user can
select operations likeplay , stop , andrewind . These op-
erations are sent to the Control/Audio process via a UNIX do-
main socket [Stevens, 1998].

� Video: This component is responsible for displaying
video frames to the user. The decoded video frames are stored
in a shared memory queue.

5. Control/Audio playback process: The Control/Audio
process is responsible for the following tasks:

� Control: This component receives control messages
from the GUI process and sends the appropriate CORBA op-
eration to theMediaCtrl servant in the supplier process.

� Audio playback: The audio playback component is re-
sponsible for dequeueing audio packets from the Audio Buffer
process and playing them back using the multimedia sound
hardware. Decoding is unnecessary because the supplier uses
the ULAW format. Therefore, the data received can be directly
written to the sound port, which is/dev/audio on Solaris.

3.2 Case Study 2: The Vic Video-Conferencing
Application

Vic [McCanne and Jacobson, 1995] is a video-conferencing
application developed at the University of California, Berke-
ley. We have adapted Vic to use TAO’s A/V Streaming Ser-
vice components and its pluggable A/V protocol framework
described in Section 0.2. The Vic implementation in TAO uses
RTP/RTCP as its flow and data transfer protocols.

3.2.1 Architecture of Vic
Vic provides a video-conferencing application. Audio con-
ferencing is done with another tool, Vat [NRG, LBNL, 1995].
The Vic family of tools synchronize media streams using a
conference bus mechanism, which is the “localhost” synchro-
nization mechanisms used via loopback sockets.

The Architecture of Vic is driven largely by the
TclObject interface [McCanne and Jacobson, 1995].
TclObject provides operations so that operations on the
object can be invoked from a Tcl script. By using Tcl,

Vic allows rapid prototyping and reconfiguration of its
encode/decode paths.

One design challenge we faced while adapting Vic to use
TAO’s A/V Streaming Service was to integrate both the GUI
and ORB event loops. This was solved using the Reactor
pattern [Schmidt et al., 2000]. In particular, we developed a
Reactor wrapper facade [Schmidt et al., 2000] that unified the
GUI and ORB into a single event loop.

3.2.2 Implementing Vic using TAO’s A/V Streaming Ser-
vice

Below, we discuss the steps we followed to adapt Vic to use
TAO’s A/V Streaming Service.

1. Structuring of conferencing protocols: In this step, we
decomposed the flow, control and data transfer protocols us-
ing TAO’s pluggable A/V protocol framework. The original
Vic application was highly coupled with RTP. For instance,
its encoders and decoders were aware of the RTP headers.
We decoupled the dependencies of the encoders/decoders from
RTP-specific details by using theframe info structure and
using TAO’s A/V Streaming ServiceProtocol Object in-
terface. The modified Vic still preserves the application-level
framing (ALF) [Clark and Tennenhouse, 1990] model embod-
ied in RTP. Moreover, Vic’s RTCP functionality was ab-
stracted into the TAO’s pluggable A/V protocol framework, so
the framework automatically defines a RTCP flow for a RTP
flow. The modified Vic is independent from the network spe-
cific details of opening connections and I/O handling since
it uses the pluggable A/V protocol framework provided by
TAO’s A/V Streaming Service.

Vic uses the multipoint-to-multipoint binding provided by
TAO’s A/V Streaming Service, which is described in Ap-
pendix .3. Thus, our first step when integrating into TAO
was to determine the proper abstraction for the conference
device. A video-conferencing application like Vic serves as
both a source and sink; thus, we needed a source and sink
MMDevice. Moreover, to be extensible for future integration
with Vat and other multimedia tools, Vic uses flow interfaces,
i.e., video is considered as a flow within the conference stream.
Since Vat runs in a separate address space, its flow interfaces
must be exposed using TAO’s full profile flow interfaces,i.e.,
FDev, FlowProducer , andFlowConsumer .

2. Define callback objects: In this step, we de-
fined Callback objects for all the source and sink
FlowEndPoint s. TheSource Callback uses the timer
functionality to schedule timer events to send the frames. Fig-
ure 22 illustrates the sequence of events that trigger the send-
ing of frames. When the input becomes ready on the video
card, the grabber reads it and gives it to thetransmitter .

16

RENDERER

DECODERS

H.261 JPEG CELLB

RTP
CALLBACK

RTCP
CALLBACK

RTP
OBJECT

RTP
TRANSPORT
HANDLER

RTCP
TRANSPORT

HANDLER

RTCP
OBJECT

RTCP
OBJECT

TRANSPORT

ENCODERS

RTP
OBJECT

TRANSPORT

CAPTURE

H.261 JPEG CELLB

Bitrate Buffer

T
im

e
o

u
t

Video

Input Input1

2

3

Timeout

Frame Ready

NETWORK

NETWORK

REACTOR

Figure 22: Architecture of Vic using TAO’s A/V Streaming
Service

The transmitter then uses theSource Callback ob-
ject to schedule a timer to send the frames at the requested bit
rate using a bitrate buffer.

On the sink-side, when a packet arrives on the network the
receive frame upcall is done on theSink Callback
object which using theframe info structure gives it to the
right Source object , which then passes it to the right de-
coder. To implement RTCP functionality, Vic implements a
RTCPCallback to provide Vic-specific source objects.

3. Select a centralized or distributed conference config-
uration: In this step, we have ensured that Vic can func-
tion both as a participant in a centralized conference, as well
as a loosely-coupled distributed conference. This flexibil-
ity is achieved by checking for aStreamCtrl object in
the Naming Service and creating newStreamCtrl if one
is not found in the Naming Service. Thus, by running a
StreamCtrl control process that registers itself with the
Naming Service, all Vic participants will become part of a
centralized conference, which can be controlled from the con-
trol process. Conversely, when no such process is run, Vic
reverts to the loosely controlled model by creating its own
Streamctrl and transmitting on the multicast address.

4 Performance Results

This section describes the design and results of three perfor-
mance experiments we conducted using TAO’s A/V Streaming
Service.

4.1 CORBA/ATM Testbed

The experiments in this section were conducted using a
FORE systems ASX-1000 ATM switch connected to two
dual-processor UltraSPARC-2s running Solaris 2.5.1. The
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each
UltraSPARC-2 contains a 300 MHz Super SPARC CPUs with
a 1 Megabyte cache per-CPU. The Solaris 2.5.1 TCP/IP proto-
col stack is implemented using the STREAMS communication
framework [Ritchie, 1984].

Each UltraSPARC-2 has 256 Mbytes of RAM and an ENI-
155s-MF ATM adaptor card, which supports 155 Megabits
per-sec (Mbps) SONET multimode fiber. The Maximum
Transmission Unit (MTU) on the ENI ATM adaptor is 9,180
bytes. Each ENI card has 512 Kbytes of on-board memory.
A maximum of 32 Kbytes is allotted per ATM virtual circuit
connection for receiving and transmitting frames (for a total of
64 Kb). This allows up to eight switched virtual connections
per card. The CORBA/ATM hardware platform is shown in
Figure 23.

FORE SYSTEMSFORE SYSTEMS

ASX ASX 200200BXBX

ATM SWITCHATM SWITCH

(16(16 PORT PORT,, OC3OC3
155155MBPSMBPS//PORTPORT,,

9,1809,180 MTU MTU))ULTRAULTRA
SPARCSPARC 22
((FORE ATMFORE ATM

ADAPTORSADAPTORS

AND ETHERNETAND ETHERNET))

Figure 23: Hardware for the CORBA/ATM Testbed

4.2 CPU Usage of the MPEG decoder

The aim of this experiment is to determine the CPU overhead
associated with decoding and playing MPEG-1 frames in soft-

17

ware. To measure this, we used the MPEG/ULAW A/V player
application described in Section 0.3.

We used the application to view two movies, one of size
128x96 pixels and the other of size 352x240 pixels. We mea-
sured the percentage CPU usage for differentframe rates. The
frame rate is the number of video frames displayed by the
viewer per second.

The results are shown in Figure 24. These results indicate

0

10

20

30

40

50

60

70

80

90

100

6 9 12 15 18 24 30
Frames per second

P
er

ce
nt

ag
e

C
P

U
 u

se
d

128x96 frame size

352x240 frame size

Figure 24: CPU Usage of the MPEG Decoder

that for large frame sizes (352x240), MPEG decoding in soft-
ware becomes expensive, and the CPU usage becomes 100%
while playing 12 frames per second, or higher. However, for
smaller frame sizes (128x96), MPEG decoding in software
does not cause heavy CPU utilization. At 30 frames per sec-
ond, CPU utilization is�38%.

4.3 A/V Stream Throughput

The aim of this experiment is to illustrate that TAO’s A/V
Streaming Service does not introduce appreciable overhead in
transporting data. To demonstrate this, we wrote a TCP-based
data streaming component and integrated it with TAO’s A/V
service. The producer in this application establishes a stream
with the consumer, using the stream establishment mechanism
discussed in Section 0.2.3. Once the stream is established, it
streams data via TCP to the consumer.

We measured the throughput,i.e., the number of bytes per
second sent by the supplier to the consumer, obtained by this
streaming application. We then compared this throughput with
the following two configurations:

� TCP transfer– i.e., by a pair of application processes that
do not use the CORBA A/V Streaming Service stream es-
tablishment protocol. In this case, Sockets and TCP were
the network programming API and data transfer proto-
col, respectively. This is the “ideal” case since there is no
additional ORB-related or presentation layer overhead.

� ORB transfer – i.e., the throughput obtained by a
stream that used anoctet streampassed through the
TAO [Schmidt et al., 1998a] CORBA ORB. In this case,
the IIOP data path was the data transfer mechanism.

We measured the throughput obtained by varying the buffer
size of the sender,i.e., the number of bytes written by the sup-
plier in onewrite system call. In each stream, the supplier
sent 64 megabytes of data to the consumer.

The results shown in Figure 25 indicate that, as expected,
the A/V Streaming Service does not introduce any appre-
ciable overhead to streaming the data. In the case of us-

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

Sender buffer size in Kbytes

T
hr

ou
gh

pu
t i

n
M

eg
ab

its
/s

ec

TCP "ideal" case
A/V Stream (via TCP)
Octet Stream (via ORB)

Figure 25: Throughput Results

18

ing IIOP as the data transfer layer, the benchmark incurs ad-
ditional performance overhead. This overhead arises from
the dynamic memory allocation, data-copying, and mar-
shaling/demarshaling performed by the ORB’s IIOP proto-
col engine [Gokhale and Schmidt, 1996]. In general, how-
ever, a well-designed ORB can achieve performance equiv-
alent to sockets for higher buffer sizes due to various opti-
mizations, such as eliding (de)marshaling overhead for octet
data [Gokhale and Schmidt, 1999]

The largest disparity occurred for smaller buffer sizes,
where the performance of the ORB was approximately half
that of the TCP and A/V streaming implementations. As
the buffer size increases, however, the ORB performance im-
proves considerably and attains nearly the same throughput as
TCP and A/V streaming. Clearly, there is a fixed amount of
overhead in the ORB that is amortized and minimized as the
size of the data payload increases.

4.4 Stream Establishment Latency

This experiment measures the time required to establish a
stream using TAO’s implementation of the CORBA A/V
stream establishment protocol described in Section 0.2.3. We
measured the stream establishment latency for the two concur-
rency strategies, process-based strategy and reactive strategy,
described in Section 0.2.3.

The timer starts when the consumer gets the object refer-
ence for the supplier’sMMDevice servant from the Naming
Service. The timer stops when the stream has been established,
i.e., when a TCP connection has been established between the
consumer and the supplier.

We measured the stream establishment time as the num-
ber of concurrent consumers establishs connections with the
supplier increased from 1 to 10. The results are shown in
Figure 26. When the supplier’sMMDevice is configured to
use the process-based concurrency strategy (described in Sec-
tion 0.2.3), the time taken to establish the stream is higher,
due to the overhead of process creation. For instance, when 10
concurrent consumers establish a stream with the producer si-
multaneously, the average latency observed is about 2.25 sec-
onds with the process-based concurrency strategy. With the
reactive concurrency strategy, the latency is only about 0.4 sec-
onds.

The process-based strategy is well-suited for supplier de-
vices that have multiple streams,e.g., a video camera that
broadcasts a live feed to many clients. In contrast, the reac-
tive concurrency strategy is well-suited for consumer devices
that have few streams,e.g., a display device that has only one
or two streams.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

Number of concurrent bind operations

S
tr

ea
m

 e
st

ab
lis

hm
en

t t
im

e
in

 s
ec

on
ds

Process-based concurrency strategy

Reactive concurrency strategy

Figure 26: Stream Establishment Latency Results

5 Concluding Remarks

The demand for high quality multimedia streaming is grow-
ing, both over the Internet and for intranets. Distributed object
computing is also maturing at a rapid rate due to middleware
technologies like CORBA. The flexibility and adaptability of-
fered by CORBA makes it very attractive for use in stream-
ing technologies, as long as the requirements of performance-
sensitive multimedia applications can be met.This chapter il-
lustrates an approach to building standards-based, flexible,
adaptive, multimedia streaming applications using CORBA.

Furthermore, there is a lot of activity in the codec commu-
nity in designing new formats for audio and video transmis-
sion. Active research is also being done in designing new flow
and data transfer protocols for multimedia. In such situations,
a flexible framework which makes use of the A/V interfaces
and also abstracts the network/protocol details is needed to
adapt to the new developments. In this chapter we have pre-
sented a pluggable A/V protocol framework which provides
the capability to rapidly adapt to new flow and data transfer
protocols.

With growing demand for real-time multimedia streaming
and conferencing with increase in network bandwidth and the

19

spread of the Internet, TAO provides the first freely-available,
open-source implementation of the CORBA Audio/Video
Streaming Service specificationi.e., flow interfaces, point-to-
multipoint binding and multipoint-to-multipoint binding for
conferencing applications. Our experience with TAO’s A/V
implementation indicates that the standard CORBA specifica-
tion defines a flexible and efficient model for developing flexi-
ble and high-performance multimedia streaming applications.

While designing and implementing the CORBA A/V
Streaming Service, we learned a number of lessons:

1: We found that CORBA simplifies a number of common
network programming tasks, such as parsing untyped data and
performing byte-order conversions.

2: We found that using CORBA to define the operations sup-
ported by a supplier in an IDL interface made it much easier
to express the capabilities of the application, as described in
Section 0.2.3.

3: Our measurements presented in Section 0.4 revealed that
while CORBA provides solutions to many recurring problems
in network programming, using CORBA for data transfer in
bandwidth-intensive applications is not as efficient as using
lower-level protocols like TCP, UDP, or ATM directly. Thus,
an important benefit of the TAO A/V Streaming Service is to
provide applications the advantages of using CORBA IIOP in
their stream establishment and control modules, while allow-
ing the use of more efficient data transfer protocols for multi-
media streaming.

4: Enhancing an existing A/V streaming application to use
CORBA was a key design challenge. By applying patterns,
such as theState, Strategy, [Gamma et al., 1995] andReac-
tor [Schmidt et al., 2000], we found it was much easier to ad-
dress these design issues. Thus, the use of patterns helped us
rework the architecture of an existing MPEG A/V player and
make it more amenable to distributed object computing mid-
dleware, such as CORBA.

5: Building the CORBA A/V Streaming Service also helped
us improve TAO, the CORBA ORB used to implement the
service. An important feature added to TAO was support for
nested upcalls. This feature allows a CORBA-enabled appli-
cation to respond to incoming CORBA operations, while it is
making a CORBA operation on a remote object. During the
development of the A/V Streaming Service, we also applied
many optimizations to TAO and its IDL compiler, particularly
for sequences ofoctet s and theCORBA::Any type.

All the C++ source code, documentation, and bench-
marks for TAO and its A/V Streaming Service is available at
www.cs.wustl.edu/ �schmidt/TAO.html .

References
[Arulanthu et al., 2000] Arulanthu, A. B., O’Ryan, C., Schmidt, D. C.,

Kircher, M., and Parsons, J. (2000). The Design and Performance of a
Scalable ORB Architecture for CORBA Asynchronous Messaging. In
Proceedings of the Middleware 2000 Conference. ACM/IFIP.

[Box, 1997] Box, D. (1997).Essential COM. Addison-Wesley, Reading,
Massachusetts.

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H.,
Sommerlad, P., and Stal, M. (1996).Pattern-Oriented Software
Architecture – A System of Patterns. Wiley and Sons, New York.

[Chen et al., 1995] Chen, S., Pu, C., Staehli, R., Cowan, C., and Walpole, J.
(1995). A Distributed Real-Time MPEG Video Audio Player. InFifth
International Workshop on Network and Operating System Support of
Digital Audio and Video.

[Clark and Tennenhouse, 1990] Clark, D. D. and Tennenhouse, D. L.
(1990). Architectural Considerations for a New Generation of Protocols.
In Proceedings of the Symposium on Communications Architectures and
Protocols (SIGCOMM), pages 200–208, Philadelphia, PA. ACM.

[Deering and Cheriton, 1990] Deering, S. E. and Cheriton, D. R. (May
1990). Multicast routing in datagram internetworks and extended LANs.
ACM Transactions on Computer Systems, 8(2):85–110.

[Eide et al., 1997] Eide, E., Frei, K., Ford, B., Lepreau, J., and Lindstrom,
G. (1997). Flick: A Flexible, Optimizing IDL Compiler. InProceedings
of ACM SIGPLAN ’97 Conference on Programming Language Design
and Implementation (PLDI), Las Vegas, NV. ACM.

[et al., 1996] et al., D. D. (1996). Vaudeville: A High Performance, Voice
Activated Teleconferencing Application. Department of Computer
Science, Technical Report WUCS-96-18, Washington University, St.
Louis.

[Fan et al., 1998] Fan, L., Cao, P., Almeida, J., and Broder, A. (1998).
Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol. In
SIGCOMM 98, pages 254–265. SIGS.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995).Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, Massachusetts.

[Gill et al., 2001] Gill, C. D., Levine, D. L., and Schmidt, D. C. (2001). The
Design and Performance of a Real-Time CORBA Scheduling Service.
Real-Time Systems, The International Journal of Time-Critical
Computing Systems, special issue on Real-Time Middleware, 20(2).

[Gokhale and Schmidt, 1996] Gokhale, A. and Schmidt, D. C. (1996).
Measuring the Performance of Communication Middleware on
High-Speed Networks. InProceedings of SIGCOMM ’96, pages
306–317, Stanford, CA. ACM.

[Gokhale and Schmidt, 1998] Gokhale, A. and Schmidt, D. C. (1998).
Measuring and Optimizing CORBA Latency and Scalability Over
High-speed Networks.Transactions on Computing, 47(4).

[Gokhale and Schmidt, 1999] Gokhale, A. and Schmidt, D. C. (1999).
Optimizing a CORBA IIOP Protocol Engine for Minimal Footprint
Multimedia Systems.Journal on Selected Areas in Communications
special issue on Service Enabling Platforms for Networked Multimedia
Systems, 17(9).

[Harrison et al., 1997] Harrison, T. H., Levine, D. L., and Schmidt, D. C.
(1997). The Design and Performance of a Real-time CORBA Event
Service. InProceedings of OOPSLA ’97, pages 184–199, Atlanta, GA.
ACM.

[Henning and Vinoski, 1999] Henning, M. and Vinoski, S. (1999).
Advanced CORBA Programming With C++. Addison-Wesley, Reading,
Massachusetts.

[Hu et al., 1998] Hu, J., Mungee, S., and Schmidt, D. C. (1998). Principles
for Developing and Measuring High-performance Web Servers over
ATM. In Proceedings of INFOCOM ’98.

20

[Hu et al., 1997] Hu, J., Pyarali, I., and Schmidt, D. C. (1997). Measuring
the Impact of Event Dispatching and Concurrency Models on Web Server
Performance Over High-speed Networks. InProceedings of the2nd

Global Internet Conference. IEEE.

[Huard and Lazar, 1998] Huard, J.-F. and Lazar, A. (1998). A
Programmable Transport Architecture with QOS Guarantees.IEEE
Communications Magazine, 36(10):54–62.

[Internet Engineering Task Force, 2000a] Internet Engineering Task Force
(2000a). Differentiated Services Working Group (diffserv) Charter.
www.ietf.org/html.charters/diffserv-charter.html.

[Internet Engineering Task Force, 2000b] Internet Engineering Task Force
(2000b). Integrated Services Working Group (intserv) Charter.
www.ietf.org/html.charters/intserv-charter.html.

[ISO, 1993] ISO (1993).Coding Of Moving Pictures And Audio For Digital
Storage Media At Up To About 1.5 Mbit/s. International Organisation for
Standardisation.

[Kuhns et al., 1999] Kuhns, F., Schmidt, D. C., and Levine, D. L. (1999).
The Design and Performance of a Real-time I/O Subsystem. In
Proceedings of the5th IEEE Real-Time Technology and Applications
Symposium, pages 154–163, Vancouver, British Columbia, Canada. IEEE.

[Kuhns et al., 2000] Kuhns, F., Schmidt, D. C., O’Ryan, C., and Levine, D.
(2000). Supporting High-performance I/O in QoS-enabled ORB
Middleware.Cluster Computing: the Journal on Networks, Software, and
Applications, 3(3).

[McCanne and Jacobson, 1995] McCanne, S. and Jacobson, V. (1995). Vic:
A Flexible Framework for Packet Video. InACM Multimedia 95, pages
511–522, New York. ACM Press.

[Meyer, 1989] Meyer, B. (1989).Object Oriented Software Construction.
Prentice Hall, Englewood Cliffs, NJ.

[Mungee et al., 1999] Mungee, S., Surendran, N., and Schmidt, D. C.
(1999). The Design and Performance of a CORBA Audio/Video
Streaming Service. InProceedings of the Hawaiian International
Conference on System Sciences.

[NRG, LBNL, 1995] NRG, LBNL (1995). LBNL Audio Conferencing Tool
(vat). ftp://ftp.ee.lbl.gov/conferencing/vat/.

[Object Management Group, 1999] Object Management Group (1999).The
Common Object Request Broker: Architecture and Specification. Object
Management Group, 2.3 edition.

[Object Management Group, 2000] Object Management Group (2000).The
Common Object Request Broker: Architecture and Specification. Object
Management Group, 2.4 edition.

[Object Management Group, 2001] Object Management Group (2001).The
Common Object Request Broker: Architecture and Specification. Object
Management Group, 2.6 edition.

[OMG, 1996] OMG (1996).Property Service Specification. Object
Management Group, 1.0 edition.

[OMG, 1997a] OMG (1997a).Control and Management of A/V Streams
specification. Object Management Group, OMG Document
telecom/97-05-07 edition.

[OMG, 1997b] OMG (1997b).CORBAServices: Common Object Services
Specification, Revised Edition. Object Management Group, 97-12-02
edition.

[O’Ryan et al., 2000] O’Ryan, C., Kuhns, F., Schmidt, D. C., Othman, O.,
and Parsons, J. (2000). The Design and Performance of a Pluggable
Protocols Framework for Real-time Distributed Object Computing
Middleware. InProceedings of the Middleware 2000 Conference.
ACM/IFIP.

[Pyarali et al., 1996] Pyarali, I., Harrison, T. H., and Schmidt, D. C. (1996).
Design and Performance of an Object-Oriented Framework for
High-Performance Electronic Medical Imaging.USENIX Computing
Systems, 9(4).

[Pyarali et al., 1999] Pyarali, I., O’Ryan, C., Schmidt, D. C., Wang, N.,
Kachroo, V., and Gokhale, A. (1999). Applying Optimization Patterns to
the Design of Real-time ORBs. InProceedings of the5th Conference on
Object-Oriented Technologies and Systems, San Diego, CA. USENIX.

[RealNetworks, 1998] RealNetworks (1998). Realvideo player.
www.real.com.

[Ritchie, 1984] Ritchie, D. (1984). A Stream Input–Output System.AT&T
Bell Labs Technical Journal, 63(8):311–324.

[Schmidt, 1995] Schmidt, D. C. (1995). Reactor: An Object Behavioral
Pattern for Concurrent Event Demultiplexing and Event Handler
Dispatching. In Coplien, J. O. and Schmidt, D. C., editors,Pattern
Languages of Program Design, pages 529–545. Addison-Wesley,
Reading, Massachusetts.

[Schmidt et al., 1998a] Schmidt, D. C., Levine, D. L., and Mungee, S.
(1998a). The Design and Performance of Real-Time Object Request
Brokers.Computer Communications, 21(4):294–324.

[Schmidt et al., 1998b] Schmidt, D. C., Mungee, S., Flores-Gaitan, S., and
Gokhale, A. (1998b). Alleviating Priority Inversion and Non-determinism
in Real-time CORBA ORB Core Architectures. InProceedings of the4th

IEEE Real-Time Technology and Applications Symposium, Denver, CO.
IEEE.

[Schmidt et al., 2001] Schmidt, D. C., Mungee, S., Flores-Gaitan, S., and
Gokhale, A. (2001). Software Architectures for Reducing Priority
Inversion and Non-determinism in Real-time Object Request Brokers.
Journal of Real-time Systems, special issue on Real-time Computing in
the Age of the Web and the Internet, 21(2).

[Schmidt et al., 2000] Schmidt, D. C., Stal, M., Rohnert, H., and
Buschmann, F. (2000).Pattern-Oriented Software Architecture: Patterns
for Concurrent and Networked Objects, Volume 2. Wiley & Sons, New
York.

[Schmidt and Suda, 1994] Schmidt, D. C. and Suda, T. (1994). An
Object-Oriented Framework for Dynamically Configuring Extensible
Distributed Communication Systems.IEE/BCS Distributed Systems
Engineering Journal (Special Issue on Configurable Distributed Systems),
2:280–293.

[Schulzrinne et al., 1994] Schulzrinne, H., Casner, S., Frederick, R., and
Jacobson, V. (1994). RTP: A Transport Protocol for Real-Time
Applications. Internet-Draft.

[Stevens, 1993] Stevens, W. R. (1993).TCP/IP Illustrated, Volume 1.
Addison-Wesley, Reading, Massachusetts.

[Stevens, 1998] Stevens, W. R. (1998).UNIX Network Programming,
Volume 1: Networking APIs: Sockets and XTI, Second Edition.
Prentice-Hall, Englewood Cliffs, NJ.

[SUN Microsystems, 1992] SUN Microsystems, I. (1992).Sun Audio File
Format. Sun Microsystems, Inc.

[Vxtreme, 1998] Vxtreme (1998). Vxtreme player.
www.microsoft.com/netshow/vxtreme/.

[Wollrath et al., 1996] Wollrath, A., Riggs, R., and Waldo, J. (1996). A
Distributed Object Model for the Java System.USENIX Computing
Systems, 9(4).

A Design Patterns used in the TAO
A/V Streaming Service

This section outlines the intents of all the patterns used in
TAO’s A/V Streaming Service and its pluggable A/V proto-
col framework. The references explore each pattern in greater
depth.

21

Abstract Factory pattern [Gamma et al., 1995]: This pat-
tern provides an interface for creating families of related or
dependent objects without specifying their concrete classes.

Acceptor-Connector pattern [Schmidt et al., 2000]: This
pattern decouples the connection and initialization of cooper-
ating peer services in a distributed system from the processing
performed by these peer services once they are connected and
initialized.

Adapter [Gamma et al., 1995]: This pattern allows two
classes to collaborate that were not designed originally to work
together.

Component Configurator [Schmidt et al., 2000]: This
pattern decouples the implementation of services from the
time when they are configured.

Double Dispatching [Gamma et al., 1995]: In this pattern,
when a call is dispatched to a method on a target object from
a parent object, the target object in turn makes method calls
on the parent object to access certain attributes in the parent
object.

Extension Interface [Schmidt et al., 2000]: This pattern
prevents bloating of interfaces and breaking of client code
when developers add or modify functionality to existing com-
ponents. Multiple extensions can be attached to the same com-
ponent, each defining a contract between the component and
its clients.

Facade pattern [Gamma et al., 1995] : This pattern pro-
vides a unified higher-level interface to a set of interfaces in a
subsystem that makes the subsystem easier to use.

Factory Method pattern [Gamma et al., 1995]: This de-
fines an interface for creating objects, but lets subclasses de-
cide which class to instantiate.

Leader/Follower pattern [Schmidt et al., 2000]: This pat-
tern provides a concurrency model where multiple threads ef-
ficiently demultiplex events received on I/O handles shared by
the threads and dispatch event handlers that process the events.

Layer pattern [Buschmann et al., 1996]: This pattern
helps to structure applications that can be decomposed into
groups of subtasks in which each group of subtasks is at a par-
ticular level of abstraction.

Reactor pattern [Schmidt et al., 2000]: This pattern de-
multiplexes and dispatches requests that are delivered concur-
rently to an application by one or more clients.

State pattern [Gamma et al., 1995]: This pattern allows an
object to alter its behavior when its internal state changes. The
object will appear to change its class.

Strategy pattern [Gamma et al., 1995]: This pattern de-
fines and encapsulates a family of algorithms and makes them
interchangeable.

Template Method [Gamma et al., 1995]: This pattern de-
fines the skeleton of an algorithm in an operation, deferring
certain steps to subclasses.

B Overview of the CORBA Reference
Model

CORBA Object Request Brokers (ORBs) allow clients
to invoke operations on distributed objects without con-
cern for object location, programming language, OS plat-
form, communication protocols and interconnects, and
hardware [Henning and Vinoski, 1999]. Figure 27 il-
lustrates the key components in the CORBA reference
model [Object Management Group, 2001] that collaborate to
provide this degree of portability, interoperability, and trans-
parency.1 Each component in the CORBA reference model is

ORB CORE

OBJECT

ADAPTER

GIOP/IIOP

IDL
STUBS

operation()
in argsin args

out args + return valueout args + return value

CLIENTCLIENT
OBJECTOBJECT
((SERVANTSERVANT))

OBJOBJ

REFREF

STANDARD INTERFACESTANDARD INTERFACE STANDARD LANGUAGE MAPPINGSTANDARD LANGUAGE MAPPING

ORB-ORB-SPECIFIC INTERFACESPECIFIC INTERFACE STANDARD PROTOCOLSTANDARD PROTOCOL

IDLIDL
SKELETONSKELETON

IDL
COMPILER

IDL
COMPILER

Figure 27: Key components in the CORBA 2.x reference
model

outlined below:

Client: A client is a role that obtains references to objects
and invokes operations on them to perform application tasks.
A client has no knowledge of the implementation of the ob-
ject but does know its logical structure according to its inter-
face. It also doesn’t know of the object’s location - objects
can be remote or collocated relative to the client. Ideally, a
client can access a remote object just like a local object,i.e.,
object !operation(args) . Figure 27 shows how the
underlying ORB components described below transmit remote
operation requests transparently from client to object.

Object: In CORBA, an object is an instance of an OMG
Interface Definition Language (IDL) interface. Each object
is identified by anobject reference, which associates one or
more paths through which a client can access an object on a

1This overview only focuses on the CORBA components relevant
to this paper. For a complete synopsis of CORBA’s components
see [Object Management Group, 2000].

22

server. Anobject ID associates an object with its implemen-
tation, called a servant, and is unique within the scope of an
Object Adapter. Over its lifetime, an object has one or more
servants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but
always through objects identified by object references.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
An ORB Core is implemented as a run-time library linked
into client and server applications. For objects executing re-
motely, a CORBA-compliant ORB Core communicates via a
version of the General Inter-ORB Protocol (GIOP), such as
the Internet Inter-ORB Protocol (IIOP) that runs atop the TCP
transport protocol. In addition, custom Environment-Specific
Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skele-
tons serve as a “glue” between the client and servants, re-
spectively, and the ORB. Stubs implement theProxy pat-
tern [Gamma et al., 1995] and marshal application parame-
ters into a common message-level representation. Conversely,
skeletons implement theAdapterpattern [Gamma et al., 1995]
and demarshal the message-level representation back into
typed parameters that are meaningful to an application.

IDL Compiler: An IDL compiler transforms OMG IDL
definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [Eide et al., 1997].

Object Adapter: An Object Adapter is a composite compo-
nent that associates servants with objects, creates object refer-
ences, demultiplexes incoming requests to servants, and col-
laborates with the IDL skeleton to dispatch the appropriate
operation upcall on a servant. Object Adapters enable ORBs
to support various types of servants that possess similar re-
quirements. This design results in a smaller and simpler ORB
that can support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties. Even
though different types of Object Adapters may be used by an
ORB, the only Object Adapter defined in the CORBA specifi-
cation is the Portable Object Adapter (POA).

C Supporting Multiple Endpoint Bind-
ing Semantics in TAO’s A/V Stream-
ing Service

The CORBA A/V Streaming Service can construct differ-
ent topologies for establishing streams between stream end-
points. For instance, one-to-one, one-to-many, many-to-one,
and many-to-many sources and sinks may need to be con-
figured in the same stream binding. The need for certain
stream endpoint bindings is dictated by the multimedia ap-
plications. For example, a video-on-demand application may
require a point-to-point binding when sources and sinks are
pre-selected. However, a video-conferencing application may
require a multipoint-to-multipoint binding to receive from and
transmit to various sources and sinks simultaneously.

This section illustrates the various stream and flow endpoint
bindings that have been implemented in TAO’s A/V Stream-
ing Service and shows how stream endpoints are created and
the connections are established. In TAO’s A/V Streaming Ser-
vice, we have implemented the standard point-to-point and
point-to-multipoint bindings of the stream endpoints. In ad-
dition, we have used these configurations as building blocks
for multipoint-to-multipoint bindings.

C.1 Point-to-Point Binding

Below, we describe the sequence of steps during a point-to-
point stream establishment, as defined by the CORBA A/V
specification and implemented in TAO’s A/V Streaming Ser-
vice. In our example, we consider the stream establishment
in a video-on-demand (VoD) application that is similar to
the MPEG player application described in Section 0.3.1. As
shown in Figure 28, the VoD server and VoD client device
with two audio and video flows. The audio flow is carried

WUGS HIGH- SPEED
NETWORK

TAO QOS-ENABLED ORB

RIO SUBSYSTEM

SUPPLIER
CONSUMER

TAO QOS-ENABLED ORB

RIO SUBSYSTEM

Figure 28: Video-on-Demand Consumer and Supplier

over TCP and video over UDP. The client must first locate the
ServerMMDevice reference and then pass itsMMDevice as
the A party and the ServerMMDevice as theB party to the
StreamCtrl .

23

Endpoint creation: At this point, the VDev and
StreamEndpoint are created for this stream from the
MMDevices. The client and server applications can choose
eitherProcess Strategy , where the endpoints are created
in a separate process, or aReactive Strategy , where the
endpoints are created in the same process. The pluggable A/V
protocol framework in TAO’s A/V Streaming Service pro-
vides flexibleConcurrency Strategies[Mungee et al., 1999]
to create the endpoints, as described in Section 0.2.3.

Creation of flowendpoints: To create a full profile, an
MMDevice can act as a container forFDevs . In this
case, theMMDevice will create a FlowProducer or
FlowConsumer from theFDev, depending on the direction
of the flow specified in the flow specification parameter. The
flow direction is always with respect to theA side. Thus, the
direction “out” means that the flow originates from theA side
to theB side, whereas “in” means that the flow originates from
theB side to theA side.

In the above case, the server is streaming the data to the
client. Therefore, the direction of the flow for both au-
dio and video will be “in” and theMMDevice will cre-
ate a Flowproducer from the audio and videoFDevs
on the server and aFlowConsumer from the audio and
video FDevs on the client. TheseFlowProducers and
FlowConsumers are then added to theStreamEndpoint
using theadd fep call.

The advantage of using the flow interfaces is that theFDevs
can be shared across different applications. In our VoD server
example, the audio and video processes could be running as
two different processes and contain only the flow objects and a
control process could add theFDevs from these two processes
to the stream. Both flows can now be controlled through the
sameStreamCtrl interface. This configuration is a much
more scalable and extensible approach than the implementa-
tion of a MPEG player described in Section 0.3.1, where the
audio and video were treated as two separate streams.

VDev configuration: The StreamCtrl then calls
set peer on each of theVDevs with the otherVDevs.
For light profiles, multimedia application developers are
responsible for implementing theset peer call to check if
all flows are compatible. For full profiles, theVDev interface
is not used because theFlowEndPoint contain these
configuration operations.

Stream setup: During this step the actual connections for
the different flows are established. For light profiles, the
flows do not have any interfaces and the flow specification
should contain the transfer information for each flow. For
example, the following flow specs are typically passed to the
bind devs call from the VoD client:

“audioninnMIME:audio/mpegnnTCP=ace.cs.wustl.edu;10000”

and
“videoninnMIME:video/mpegnnUDP=ace.cs.wustl.edu;8080”

In these flow specs, the client is offering to listen for a TCP
connection and the server will connect to the client. This
configuration might be useful if the server is behind a fire-
wall. The StreamCtrl calls connect on one of the
StreamEndpoints passing the otherStreamEndpoint ,
QoS, and the flow spec.

Stream QoS negotiation: The StreamEndpoint will
first check if the the otherStreamEndpoint has a nego-
tiator property defined. If it does,StreamEndpoint calls
negotiate on the negotiator and the client and server can
negotiate the QoS. TAO’s A/V Streaming Service provides a
default implementation that can be overridden by the appli-
cations. TheStreamEndpoint then queries the “Avail-
ableProtocols” property on the otherStreamEndpoint . If
there is no common protocol the Stream setup will fail and the
exceptionStreamOpDenied will be thrown.

Light profile connection establishment: The A party
StreamEndpoint will then try to setup the stream for all
its flows. For light profiles, the following steps are done for
each flow:

1: TheStreamEndpoint will extract the flow protocol
and data transfer protocol information from the flow spec entry
for this flow. If a network address is not specified then a default
stream endpoint is picked.

2: The StreamEndpoint then does the following ac-
tions.

3: It goes through the list of flow protocol factories in the
AV Core instance to find if there is any matching flow proto-
col. If no flow protocol is specified, it passes the protocol as
the flow protocol string. TAO’s A/V Streaming Service pro-
vides “no-op” implementations for all data transfer protocols
so that the layering of the architecture is preserved and a uni-
form API is presented to the application. These no-op flow
protocols do not process the frames – they simply pass them
to the underlying data transfer protocol.

4: If a flow protocol factory matches the specified
flow protocol/transfer protocol, theStreamEndpoint then
checks for the data transfer protocol factory that matches the
protocol specified for this flow.

5: After finding a matching data transfer protocol factory,
it creates a one-shot acceptor for this flow passing theFlow-
ProtocolFactoryto the acceptor.

6: If the flow protocol factory has an associated control
protocol factory, theStreamEndpoint then tries to match
the data transfer factory for that, as well.

24

1 . open(flowspec_entry)

2. create_acceptor()
3. open(flowspecentry,flow_factory)

ACCEPTOR REGISTRY

TRANSPORT FACTORY ACCEPTOR

4. on accept

make_protocol_object(entry,endpoint,handler,transport)

FLOW FACTORY

5. get_callback 6.callback

TAO_Base_Endpoint

Figure 29: Acceptor Registry

Figure 29 illustrates the sequence of steps outlined above.
In each step, theStreamEndpoint uses base interfaces,
such asProtocol Factory , Transport Factory , and
AV Acceptor . Therefore, it can be extended easily to sup-
port new flow and data transfer protocols. In addition, the ad-
dress information is opaque to theStreamEndpoint and is
passed down to theAcceptor that knows how to interpret
it. Moreover, since the flow and data transfer protocols can be
linked dynamically via the ACE Service Configurator mecha-
nisms, applications can take advantage of these protocols by
simply changing the name of the protocols in the flow spec.

After completing the preceding steps, the
StreamEndpoint then calls therequest connection
operation on theB StreamEndpoint with the flowspec.
The StreamEndpoint B performs the following steps for
each of the flow:

1: It extracts the flow and data transfer protocol informa-
tion from the flow spec entry for this flow. If a network address
is not specified then a default stream endpoint is picked.

2: TheStreamEndpoint then performs the following
actions.

3: Finds a flow protocol factory matching the flow proto-
col specified for this flow and in the absence of a flow protocol
tries to match a null flow protocol for the specified data trans-
fer protocol.

4: Finds a matching data transfer protocol factory and cre-
ates a connector for it. Then it callsconnect on the connec-
tor, passing it the flow protocol factory.

5: Upon establishing a data transfer connection, the con-
nector creates a protocol object for this flow.

6: The flow protocol factory typically creates the
application-level callback object and sets the protocol object
on theBase EndPoint interface passed to it.

7: If an address was not specified for this flow then
the StreamEndpoint does the similar steps for listen-
ing for those flows and extracts the network endpoints
and inserts it into the flowspec to be sent back to theA
StreamEndpoint .

The A StreamEndpoint after receiving the reverse
flowspec does theconnect for all the flows for whichB
StreamEndpoint is listening and also sets the peer address
for connectionless protocols, such as UDP.

Full profile connection establishment: In the full profile,
the flow specification does not contain the data transfer infor-
mation for each flow since the flows are represented by flow
interfaces and they need not be collocated in the same process.
A StreamCtrl can be used to control different flows, each
of which could reside on a different machine. In this case,
eachFlowEndPoint will need to know the network address
information. In the full profile stream setup,bind is called on
theStreamCtrl , passing the twoStreamEndpoints .

Figure 30 illustrates the sequence of steps performed for a
full profile point-to-point stream setup.

1.
 g

et
_f

ep

Flo
w
End

Poi
nt

3
 .
 is

_
fe

p
_
c
o
m

p
a
tib

le

STREAMCTRL

A_STREAMENDPOINT

B_STREAMENDPOINT

FLOW CONNECTION

FLOWENDPOINT
 A

FLOWENDPOINT
 B

4.2 open(flow_spec_entry)

ACCEPTOR REGISTRY CONNECTOR REGISTRY

4.4 connect(flow_spec_entry)

3.1 get_property(protocols)

3.2 get_property(format)

1
.

 .

.
 n

1 . . . n

4.
1

go
_t

o_
lis

te
n 4.3 connect_to_peer

2
. g

e
t_

fe
p

F
lo

w
E

n
d
P

o
in

t

4
 . c

o
n
n
e
c
t(A

,B
)

bind(A_StreamEndpoint,B_StreamEndPoint)

Figure 30: Full Profile Point to Point Stream Establishment

1: Flow endpoint matching: TheStreamCtrl obtains
the flow names in eachStreamEndpoint by querying
the “flows” property. For each flow name, it then obtains
the FlowEndPoint using the get fep method on the
StreamEndpoint . If the flowspec is empty all the flows
are considered. Otherwise, only the specified flows are con-
sidered for stream establishment.

25

It then goes through the list ofFlowEndPoints try-
ing to find a match between theFlowEndPoints on the
A and B side. Two FlowEndPoints are said to match
if is fep compatible returns true. This call checks
to make sure that the format and the protocols of the two
FlowEndPoints match. Applications can override this
behavior to do more complex checks, such as checking for
semantic nuances of device parameters. For example, the
FlowEndPoint may want only a French audio stream,
whereas the otherFlowEndPoint may support only En-
glish. These requested semantics can be checked by query-
ing the property “devParams” and by checking the value for
“language.”

The StreamEndpoint then tries to obtain a
FlowConnection from the StreamCtrl . The ap-
plication developer can set theFlowConnection object
for each flow using theStreamCtrl . All operations on a
stream are applied to the containedFlowConnections
and by setting specializedFlowConnections the user
can customize the behavior of the stream operations. If
the stream does not have aFlowConnection then a
default FlowConnection is created and set for that
flow. The StreamEndpoint then calls connect on
the FlowConnection with the producer and consumer
endpoints with the flow QoS.

2: Flow configuration: TheFlowConnection calls
set peer on each of theFlowEndPoints during the
connect operation and this will let theFlowEndPoints to
check and set the peerFlowEndpoint’s configuration. For
example, a video consumer can check theColourModel ,
ColourDepth , and VideoResolution and allocate a
window for the specified resolution and also other display re-
sources,i.e., colormap, etc. In the case of audio, the quantiza-
tion property can be used by the consumer to allocate appro-
priate decoder resources.

3: Flow connection establishment: In this step, the
FlowConnection calls go to listen on one of the
FlowEndPoints with the is mcast parameter set to
false and also passes the flow protocol that was set on
the FlowConnection using theuse flow protocol
operation. TheFlowEndPoint can raise an exception
failedToListen in which case theFlowConnection
callsgo to listen on the otherFlowEndPoint .

In TAO’s implementation thego to listen does the
sequence of operations shown in Figure 29 to accept on
the selected flow protocol and data transfer protocol and
also if needed the control protocol for the flow. Since the
FlowEndPoint also derives fromBase EndPoint the
Callback andProtocol Objects will be set on the end-
point. In the case of theFlowProducer the gettimeout
will be called on theCallback object to register for timeout

events.
The FlowConnection then callsconnect to peer

on the otherFlowEndPoint with the address returned by
the listeningFlowEndPoint and also the flowname. In the
case of connectionless protocols, such as UDP, the listening
FlowEndPoint may need to know the reverse channel to
send the data in which case it can call theget rev channel
operation to get it.

When FlowEndPoint calls connect to peer , se-
quence of steps shown in Figure 31 will occur to connect to
the listening endpoint. With the above sequence of steps a

1 . connect

2 . create_connector() /
get_connector()

3 . open(flowspec,flow_factory)

CONNECTOR REGISTRY

TRANSPORT FACTORY CONNECTOR

4 . make_protocol_object

FLOW FACTORY

5 . get_callback

Endpoint

Figure 31: Connector Registry

stream will be established in a point-to-point binding between
two multimedia devices.

C.2 Point-to-Multipoint Binding

TAO’s point-to-multipoint binding support is essential to han-
dle broadcast/multicast streaming servers. With new tech-
nologies, such as Web Caching [Fan et al., 1998], multicast
updates of web pages and streaming media files is becom-
ing common place. In addition, it has become common on
websites to broadcast live events using technologies like Re-
alPlayer. For example, during the World Cup Cricket 99,
millions of people listened to the live commentaries of the
matches from the BBC website.

In such cases, it would be ideal for the servers to use mul-
ticast technologies like IP multicast to reduce server connec-
tions and load. TAO’s point-to-multipoint binding essentially
provides such an interface for a source to multicast the flows
to multiple sinks as shown in figure 32. TAO’s A/V Streaming
Service implementation provides a binding based on IP multi-
cast [Deering and Cheriton, 1990]. In this section we explain
the sequence of steps that lead to a point-to-multipoint stream
establishment both in the light and full profiles.

26

LIVESTREAM ENDPOINT

VIDEO FLOW
PRODUCER

ENGLISH
FLOW
PRODUCER

SPANISH
FLOW
PRODUCER

STREAMCTRL

VIDEO FLOW ENGLISH FLOW SPANISH FLOW

VIDEO

FLOW

CONSUMER

ENG

FLOW

CONSUMER

E
n

g
li
s
h

V
id

e
o

S
p

a
n

is
h

ENG

FLOW

CONSUMER

VIDEO

FLOW

CONSUMER

ENG

FLOW

CONSUMER

TV DEVICE
TV DEVICE

V
id

eo
E
ng

lis
h

E
n

g
li
s
h

S
panish

V
ideo

TV ENDPOINT
TV ENDPOINTRADIO ENDPOINT

Figure 32: Point-to-Multipoint Binding

Adding a multipoint source: A multipoint source
MMDevice must be added before any sinks can be added to
the Stream. For example, the multicast server could add itself
to theStreamCtrl and expose theStreamCtrl interface
through a standard CORBA object location service, such as
Naming or Trading. If theB party MMDevice parameter to
bind devs is nil, the source is assumed to be a multicast
source. As with a point-to-point stream, the endpoints for
the source device are created,i.e., the StreamEndpoint
and VDev for light profiles, and theStreamEndpoint
containing FlowProducers for the full profile. Un-
like the point-to-point stream, however, there can only be
FlowProducers in the MMDevice. Figure 33 shows the
creation of endpoints in point-to-multipoint bindings.

Multicast configuration interface: In the case of a mul-
tipoint binding there can be numerous sinks. Therefore,
the CORBA A/V Streaming Service specification provides
an MCastConfigIf interface, which is used instead of
using point-to-pointVDev configurations. Upon addition
of a multipoint source, theStreamCtrl creates a new
MCastConfigIf interface and sets it as the multicast peer
of the sourceVDev. This design allows the stream binding to
use multicasting technologies to distribute the stream config-
uration information instead of using numerous point-to-point
configurations.

The MCastConfigIf interface provides operations to
set the initial configuration of the stream example via
the set initial configuration operation. This op-
eration can be called by the sourceVDev during the

MPOINT SOURCE

FDEV
A - ENDPOINT

B_VDEV

FDEV

MPOINT SINK

B - ENDPOINT

2.
1

C
re

at
e

- A

A
_E

nd
po

in
t,A

_V
D
ev 3.1 C

reate - B

2
.2

 C
re

a
te

 P
ro

d
u
ce

r
2
.3

 F
lo

w
 P

ro
d
u
ce

r

2
.4

 A
d
d
_
F

e
p

3
.2

 C
re

a
te

 C
o
n
s
u
m

e
r 3

.3
 F

lo
w

 C
o
n
s
u
m

e
r 3

.4
 A

d
d
_
F

e
p

Light Profile

Full Profile
STREAM CTRL

A_VDEV

MCAST CONFIG IF

S
e
t
M

c
a
s
t
P

e
e
r A

d
d
 P

e
e
r

A . bind_devs (Mpoint_source,Nil)

B . bind_devs (Nil,Mpoint_sink)

B
_E

ndpoint,B
_V

D
ev

1 . . . n

1 . . . n

Figure 33: Creation of Endpoints in the Point-to-Multipoint
Binding

set MCast peer call. This information is conveyed to
the multicast sinkVDev during theset peer call on the
MCastConfigIf when a multicast sink is added. The
MCastConfigIf performs the configuration operation us-
ing point-to-point invocation on all sinkVDevs.

Adding multicast sinks: When a sink wants to join a stream
as a multicast sink, it can callbind devs with a nil A
party MMDevice. This call will create the endpoints for
the multicast sink,i.e. the StreamEndpoint and the
VDev. For full profiles, theStreamEndpoint will contain
FlowConsumers . For light profiles, theVDev is added to
theMCastConfigIf .

Multicast connection establishment: The StreamCtrl
then callsconnect leaf on the multicast source endpoint
for the multicast sink endpoint. In TAO, theconnect leaf
operation will throw thenotSupported exception. The
StreamCtrl will then try the IP multicast model using
themulticonnect call on the sourceStreamEndpoint .
The following steps occur whenmulticonnect is called on
a StreamEndpoint A for each flow in the full profile:

1: TheStreamEndpoint makes sure that the endpoint
is indeed aFlowProducer .

2: It then checks to see if aFlowConnection interface
exists for this flow in theStreamCtrl , which is obtained
through theRelated StreamCtrl property.

27

3: In the absence of aFlowConnection , the
StreamEndpoint A will create aFlowConnection and
set the multicast address to be used for this flow on the
FlowConnection . An application configure this ad-
dress by passing it to theStreamEndpoint during its
initialization. The A/V specification does not define how
multicast addresses are allocated to flows. Thus, TAO’s
StreamEndpoint uses a base multicast address and assigns
different ports for the flows and sets theFlowConnection
on theStreamCtrl . We ultimately plan to strategize this al-
location so applications can decide on the multicast addresses
to use for each flow.

4: The StreamEndpoint then callsadd producer
onFlowConnection .

5: The call to add producer will result in a
connect mcast on theFlowProducer , passing the mul-
ticast address with which to connect. TheFlowProducer
then returns the address to which it will multicast the flow. If
the return address is complete with network address, then IP
Multicast is used. In contrast, if the return address specifies
only the protocol name an ATM-style multicast is used.

6: In addition, the FlowConnection creates a
MCastConfigIf if it has not been created and sets it as
the multicast peer on theFlowProducer . Since the same
MCastConfigIf is used for bothFlowEndPoint and
VDev, the parameters toMCastConfigIf are passed as
CORBA objects. It is the responsibility ofMCastConfigIf
to check whether the peer is aVDev or aFlowEndpoint .

7: The connect mcast does the actual connection to
the multicast address and results in the sequence of steps for
multicast accept using the pluggable A/V protocols.

Figure 34 illustrates these steps graphically. The steps de-
scribed above occur for each multipoint sink that is added to
the stream. TAO’s pluggable A/V protocol framework is con-
figured with both full profile and light profile objects. It is
also configured in the point-to-point and point-to-multipoint
bindings. Thus, the control and management implementation
objects can be closed for modifications, yet new flow and data
transfer protocols can be added flexibly to the framework with-
out modification to these interface implementations. A similar
set of steps happens whenmulticonnect is called on the
StreamEndpoint B.

C.3 Multipoint-to-Multipoint Binding

The multipoint-to-multipoint binding is important for appli-
cations, such as video-conferencing, where there are multiple
source and sink participants. The CORBA A/V Streaming Ser-
vice specification does not mandate any particular protocol for
multipoint-to-multipoint binding, leaving it to implementors

STREAMCTRL

A_ENDPOINT B_ENDPOINT

FLOWCONNECTION

FLOW PRODUCER

ACCEPTOR
REGISTRY

MCASTCONFIGIF

FLOW CONSUMER

CONNECTOR
REGISTRY

1
.
M

u
lti

co
n
n
e
ct

 (
flo

w
s)

1.1 add_producer

1
.2

 C
o
n
n
e
ct

 M
ca

st

1
.3

 A
d
d
re

ss

open(flow_spec_entry)

1
.4

 S
e
t_

M
ca

st
_
p
e
e
r

1
.1

 O
p
e
n
(f

lo
w

_
s
p
e
c
_
e
n
tr

y
)

1
.2

 F
lo

w
_
s
p
e
c
_
e
n
tr

y

1.
5,

1.
3

F
lo

w
_s

pe
c

2.1 M
ulticonnect

2.
2

ad
d_

co
ns

um
er

2.5 set_peer

2
.2

 o
p
e
n
(flo

w
_
s
p
e
c
_
e
n
try

)

2
.4

 c
o
n
n
e
c
t
(f

lo
w

_
s
p
e
c
_
e
n
tr

y
)

2.
3

co
nn

ec
t_

to
_p

ee
r

Figure 34: Connection Establishment in the Point-to-
Multipoint Binding

to provide this feature. In TAO, we provide a multipoint-to-
multipoint binding by extending the point-to-multipoint bind-
ing based on IP multicast. We assume a Leader/Follower
pattern [Schmidt et al., 2000] for the sources, where the first
source that is added to the stream will become theleaderfor
the multipoint-to-multipoint binding, and every other source
become afollower. This design implies that all stream proper-
ties, such as format and codec, will be selected by the leader.

28

