
Application of Aspect-based Modeling and Weaving for
Complexity Reduction in Development of Automotive

Distributed Real-time Embedded System

Andrey Nechypurenko,
Egon Wuchner

Siemens AG,
Corporate Technology (SE 2)

Otto-Hahn-Ring 6
81739 Munich, Germany

{andrey.nechypurenko,
egon.wuchner}@siemens.com

Jules White,
Douglas C. Schmidt

Vanderbilt University,
Department of Electrical Engineering and

Computer Science
Box 1679 Station B

Nashville, TN, 37235, USA

{jules, schmidt}@dre.vanderbilt.edu

ABSTRACT
To meet the stringent resource and costs constraints in de-
veloping modern automotive embedded electronic systems
requires careful consideration of various aspects, such as the
target hardware structure, component collaboration model,
and timing models. An emerging trend in automotive sys-
tems is to apply Model-Driven Development (MDD) to un-
derstand and formalize these aspects. The growing size and
complexity of automotive systems, however, can yield mod-
els that are hard to develop and evolve manually without vi-
olating domain constraints, such as resource allocation lim-
its.

This paper presents our experiences applying aspect-oriented
design and modeling to develop a component-based distributed
real-time embedded (DRE) automotive system. We sum-
marize our findings and show the key technological short-
comings with conventional weaving approaches that make it
hard to leverage the full power of AOSD to design and model
large-scale DRE systems. We also evaluate the effectiveness
of various aspect merging techniques to help overcome these
shortcomings.

1. INTRODUCTION
It is hard to develop traditional real-time and embedded
systems due to extensive constraints, such as (e.g., limits
on the available memory, CPU time, and APIs) and tight
coupling between the hardware (e.g., sensors and actuators)
and the corresponding software artifacts (e.g., such as com-
ponents and libraries) [17, 9]. It is even harder to develop
larger-scale distributed real-time embedded (DRE) systems,
such as vehtronics and infotainment systems in modern au-
tomobiles [23]. These systems incur many of the same con-

AOSD ’07 Vancouver, Canada

straints as traditional real-time and embedded systems, but
also must address new scalability and networking challenges.
For example, the current generation of high-end cars (such
as the BMW 7 Series, Mercedes S-class, and Audi D3) can
have ∼80 interconnected electronic control units (ECUs)
(which are the automotive equivalent of a CPU) and ∼300
software components to deploy to the ECUs.

Due to physical restrictions, such as form-factor, power con-
sumption, and heat emission, automotive DRE system de-
signs often use hardware that is highly specialized for the
functions it performs. To satisfy the extensive constraints
on software artifacts that this type of specialized hardware
creates, developers have historically written highly propri-
etary, hardware-specific code. This code made assumptions
about many system configuration aspects (e.g., the deploy-
ment structure, available communication paths, and com-
ponent collaboration patterns) in early phases of system de-
velopment. As a result, it was extremely tedious, error-
prone, and costly to maintain existing automotive designs
and evolve these designs to meet the feature requirements
of newer car models.

To help alleviate the high cost and effort associated with
developing custom automative DRE system hardware and
software, designers are moving towards commercial-off-the-
shelf (COTS) components [20, 15], which can provide a sig-
nificantly less expensive and higher quality product, while
reducing time-to-market. As a result of advances in hard-
ware and software development, customers now expect au-
tomotive DRE systems to have significantly more function-
ality, such as parking assistance, collision avoidance, and
seamless integration of internet-enabled devices. Although
COTS components have decreased the software development
costs of automotive applications, the integration complexity
has risen significantly and is now the leading cause of auto-
motive system failures [4, 8].

To deal with this broad spectrum of complexity, developers
of automotive DRE system are increasingly using model-

driven development (MDD) technologies [12, 14], such as
Matlab [24], to capture many aspects of the system be-
ing constructed, including the target hardware structure,



component collaboration model, and timing models. These
models can then be used to automatically check, validate,
and generate many implementation artifacts, such as state
machine implementations, configuration files, and highly op-
timized middleware layers. MDD tools for automotive DRE
systems allow modelers to manipulate models using vari-
ous aspects, e.g., users can build models and switch be-
tween aspects for hardware configuration, software collabo-
ration, and software to hardware mapping. The software-to-
hardware mapping (i.e. the deployment model) then weaves
the hardware and software components together to create a
complete application.

Despite the benefits of applying MDD approaches to auto-
motive DRE system development [16, 5, 22], certain limita-
tions have become more pronounced as the size of models
increase, which is significant since the next-generation of au-
tomobiles will have thousands of components and computing
nodes. A particularly vexing problem is that conventional
MDD tools require users to manually specify relationships
between model entities to specify how weaving is done.

For example, to show where to deploy each component, a
line can be drawn from the component to the ECU that
hosts it. In models with thousands of entities, it is tedious
and error-prone to manually draw lines from components to
ECUs to specify deployment relationships. Moreover, each
component can have multiple constraints [23] (such as the
required bandwidth to exchange messages, and RAM and
CPU requirements) that restrict which ECUs can host it.
For production models, therefore, the number of modeling
entities and the complexity of the constraints makes it in-
feasible to manualy specify the mapping to weave aspects.

In prior work [26, 27], we demonstrated a tool based on
the Generic Eclipse Modeling System (GEMS), called AU-
TODeploy, that integrates a declarative constraint language
with a domain-specific modeling language for automotive
software development. We found that adding a declarative
language to specify system constraints can simplify the mod-
eling of complex automotive DRE systems. This paper ex-
plores a previously unexplored dimension of our prior work
by (1) describing our experience applying AUTODeploy to
merge the component collaboration aspect with the hard-
ware aspect in an automotive DRE system and (2) provid-
ing the following contributions on tackling the complexity
of applying AOSD to large DRE systems:

• We describe the initial challenges faced when develop-
ing an automotive modeling application and how we
addressed these challenges by using aspects to model
hardware configuration concerns (such as the available
computation nodes and buses) separately from the log-
ical component collaboration concerns (such as com-
ponent types, interfaces, and interactions).

• We describe the significant challenges faced when man-
ually weaving these automotive aspects together to
produce a deployment model that met the stringent
component configuration and resource constraints re-
quired in automotive systems. We motivate why weav-
ing must take domain-constraints into consideration
and must be automated to handle production auto-

motive applications.

• We summarize our experience leveraging constraint
solvers to produce the mapping for automotive aspects
and provide constraint- and semantic-aware weaving.

Throughout the paper we summarize our experiences de-
composing and composing automotive systems based on con-
cerns and present the lessons learned while working on the
project.

The rest of the paper elaborates on these topics as follows:
Section 2 presents an overview of the structure, functional-
ity, and scope of the automotive project that provides the
context for our work; Section 3 describes the problems we
faced when applying a multi-aspect development approach
to our automotive project; Section 4 examines the tech-
niques we used to address these challenges, which involved
building a constraint-aware aspect weaver based on seman-
tic pointcuts; Section 5 compares our approach with related
work; and Section 6 presents concluding remarks and sum-
marizes lessons learned.

2. AUTOMOTIVE SYSTEM OVERVIEW
This section presents an overview of the structure, function-
ality, and scope of the automotive project that provides the
context for our experience reported in this paper. The goal
of this project was to provide a modeling environment to
support the specification of complex automotive electronic
systems. Users of the modeling environment need to spec-
ify the component types in their application, the interac-
tion of the components, the hardware resources available
for running the components, and the mapping from compo-
nent instances to hardware units. From these various sys-
tem aspects, the modeling environment generates software
artifacts, such as XML component deployment descriptors,
XML configuration descriptors, component interfaces, and
component skeletons. Figure 1 represents a view of an ex-
ample system.

Figure 1: Example of Interconnected ECUs and

Components

Figure 1 shows the hardware configuration for a system with



three ECUs interconnected through a Controller Area Net-
work (CAN) bus. The BodyClimateControl ECU hosts com-
ponents responsible for measuring internal temperature and
controlling ventilation and the air conditioner. The Wiper-

Washer ECU runs different software components required
to control the forward and rear wipers and washers. The
third ECU hosts the set of components that receive raw
sensor information (such as speed) and convert it for view-
ing on driver displays (such as the dash speedometer and
tachometer).

Figure 1 also shows the set of components hosted on each
ECU. Since this diagram depicts the Deployment aspect,
there are no explicit connections shown between collabo-
rating components, though most components communicate
with each other. The interaction between the components
is defined via views from other aspects. For example, the
rain sensor provides measurements that are processed by
the wiper/washer controllers to decide whether to turn the
corresponding actuators on or off. Likewise, the body tem-
perature sensor provides information to the instrument pan-
nel. Each aspect allows modelers to focus on a specific sys-
tem concern, such as deployment, software collaboration, or
hardware infrastructure.

Each software component within the system has a set of
requirements that must be met when deciding which hard-
ware component can host it. In addition to simple CPU and
RAM requirements, components may require certain actu-
ators and sensors be connected to a hosting ECU, or that
the communication channel between the hosting ECU and
the hosting ECU of another component provided a mini-
mum guaranteed bandwidth. For example, the Anti-lock
Braking System (ABS) will mix multiple constraint types in
the requirements specification for its hosting ECU. The ABS
component will have fault-tolerance constraints that restrict
its host’s distance from the perimiter of the car, connectiv-
ity requirements to ensure that it can activate the brake
actuators, resource requirements to ensure it has sufficient
processing power to calcuate how the brakes should be ap-
plied, and infrastructure requirements specifying the types
of APIs or middleware on its host.

We designed AUTODeploy to focus on a specific set of these
requirement types that are particularly challenging to ad-
dress during the development of an automotive application.
The main automotive concerns AUTODeploy focused on
were:

• Physical hardware configuration concerns, in-
cluding the available ECUs, communication busses and
connection topology, connected devices, such as actu-
ators and controllers.

• Logical component collaboration concerns, in-
cluding specifying the interfaces exposed by software
components and the dependencies between components.

• Component requirement concerns, including spec-
ifying the constraints that must be met by a valid de-
ployment of components to ECUs.

• Hardware resource concerns, which capture the
capabilities of each ECU, their interconnecting buses,

and their available resources.

The initial AUTODeploy prototype encompassed 28,292
lines of Java code and 2,751 lines of Prolog code for solver
implementations. Three developers produced the prototype
over the course of three months. The work was part of a
larger effort to build tools to support the modeling of large-
scale automotive systems.

The remainder of this paper concentrates on the challenges
we faced while weaving these concerns of the automotive
DRE system to produce the correct and consistent software-
to-hardware mapping. In particular, a key task for automo-
tive system developers using AUTODeploy is to specify on
which ECU each component should run. This mapping from
components in the logical to physical structure (the deploy-
ment model) can be specified graphically in AUTODeploy.
Figure 2 shows a mapping from the logical collaboration
structure to the physical deployment structure using AU-
TODeploy.

Figure 2: Mapping Logical Component Collabora-

tion to Physical Deployment Structure

A key goal for our automotive project was to use the multi-
ple aspects supported by AUTODeploy to reduce the com-
plexity of developing software compoents, particularly for
determining how software components should be deployed
to hardware units in an automotive application. Another
goal was to ensure that our multi-aspect modeling approach
could support next-generation production automotive sys-
tem models, which will be significantly larger and more com-
plex.

3. CHALLENGES OF APPLYING AOSD TO
AUTOMOTIVE MODELING

This section provides a detailed description of the prob-
lems we faced when applying a multi-aspect development
approach to our DRE automotive system. To meet the re-
quirements and functionality outlined in Section 2, we com-
bined an MDD approach with the concept of concern sepa-

ration. In particular, we applied the concept of HyperSlices
[21, 19], which are a geometric analogue to hyperplanes in a
multi-dimensional space. Each concern of an application is
dealt with as a separate slice cutting across all designated
dimensions of the system (e.g., different dimensions of class



entities, whereby each hyperslice might only contain seman-
tically cohesive methods of the representing concern).

We used AUTODeploy to model the hardware configura-
tion (such as available ECUs) and available communication
channels (such as CAN-buses) as one concern. We also used
AUTODeploy to model the set of software components that
implemented the application logic—and the logical collab-
orations between them—as another concern. After model-
ing these two aspects separately, weaving was performed to
merge the concerns. The weaving process resulted in a new
model—composed of the two concerns—that showed how to
deploy the software components on the available hardware.

A key complexity with our AOSD approach was that the
weaving must respect the various requirements of the com-
ponents. For example, each component was annotated with
information about its memory usage and required CPU power
measured during the testing process. There were many
domain-specific semantic constraints, such as any ECU that
runs a safety critical component (e.g., an Anti-lock Braking
System (ABS) or airbag control) must be located at maxi-
mum distance from the car perimeter to reduce the probabil-
ity of failure in an accident. The weaving process needed to
produce a model where components were allocated to nodes
without violating their resource, configuration, and fault-
tolerance constraints. We quickly discovered, however, that
manually specifying how to merge the models scaled poorly.

To illustrate the scalability problems, consider a group of
components that must be deployed to ECUs within a car.
Part of the complexity of this domain is how quickly the
solution spaces grow as the number of model elements in-
creases. Figure 3 visualizes the speed at which the solution
spaces grows for our automotive example.

Figure 3: Measuring Modeling Complexity

With 9 components and 9 ECUs we have a total of 387,420,489
unique deployments. It appears from the left-hand graph in
Figure 3 that the solution space size is relatively flat when
there are less than 6 components and 6 nodes. The right-
hand graph in Figure 3, however, shows that the solution
space is actually not flat at all from 0-6 components/nodes,
but only appears flat when scaled in comparison to 9 com-
ponents/nodes. Clearly, any approach to finding a deploy-
ment that observes the deployment constraints must be ef-
ficient and employ a form of pruning to reduce the time
taken to search the solution space. Often, pruning strate-
gies can leverage domain-speicific information to create a set

of heuristics for searching the solution space.

A manual approach may work for a model with 5 or so el-
ements. As shown in Figure 3, however, the solution space
can increase rapidly as the number of elements grows. Typ-
ically, each component in an automobile will have multiple
constraints governing its placement. Not only must the ABS
be hosted by a controller at least a certain distance from the
perimeter of the car, it will also have requirements govern-
ing the CPU, memory, and bus bandwidth available on its
host. When these constraints are considered for all the com-
ponents, it becomes infeasible for modelers to handcraft a
model that merges these concerns.

After developing some prototypes, we discovered that al-
though we could apply AOSD techniques to separate con-
cerns, the weaving of various concerns into a deployment
model had to account for the semantic relations between
model entities. These relationships are specified in form of
domain-specific constraints. For our automotive project, we
needed a weaver that could consider all these constraints, de-
duce the proper merging strategy based on the component
requirements, and then update the internal model represen-
tation to establish new relationships between hardware and
software elements.

This merging process introduced a conceptual and technical
challenge because current approaches [1, 2] to specify con-
cern composition rules rely primarily on syntactic match-
ing and do not adequately capture semantic constraints and
rules. For example, it is not possible with wildcard, method
signature, or type-based pointcuts to specify that a weav-
ing should ensure each ECU’s memory capacity is not ex-
ceeded by the components allocated to it in the resulting
model. To compose different concerns in an automotive sys-
tem, we identified numerous semantic constraints that the
weaver needed to leverage to deduce the proper composition
strategy. These constraints underscore that manual weaving
does not work effectively for mapping software components
to ECUs.

The domain analysis briefly presented above led us to create
a set of desirable properties and requirements for an effective
and scalable automotive modeling solution. The following
list represents the most important requirements and chal-
lenges we identified:

1. Support for capturing complex semantically-

enriched concern composition rules exposed as

domain constraints. For example, to deduce the
proper composition, the concern weaver must combine
and leverage certain statements, such as “the value
of the OSVersion property should be greater then or
equal to N ” or “the cumulative RAM usage of all com-
ponents assigned to an ECU should not exceed the
available amount of RAM.”

2. Support a combination of automatic and man-

ual weaving. It is hard to formalize certain compo-
sition decisions, such as those guided by historical or
political constraints. For example, a particular ECU
may come pre-loaded with a software component for
controlling the windshield wipers. Although it may



be possible to relocate the windshield wiper software
component to another ECU, it requires an extra soft-
ware configuration step during manufacturing and is
thus undesirable. In these situations, it must be pos-
sible for modelers to partially specify the composition
manually and then complete weaving automatically.

3. Support model repairs. A large set of semantic
composition rules may yield situations where no valid
composition can be found and where modelers may not
understand how to fix the problem. In cases where
rules conflict, or other forces prevent successful merg-
ing, reasonable feedback must be provided to modelers
so they can repair the model and enable weaving to
succeed. It is therefore critical to have the ability to
automatically reason about the problem and provide
suggestions on how to reconcile the conflicting forces
in each concern. For example, if there is a component
that requires a certain amount of RAM, but there is no
ECU with a sufficient amount available, the tool could
suggest increasing the amount of RAM on an ECU or
reduce RAM consumption on the component side.

We built the AUTODeploy tool on top of a generic model-
ing framework (i.e., not specific to deployment) that allows
modelers to define model aspects, specify concern compo-
sition rules using a declarative composition and constraint
definition language, and then automatically generate a con-
straint compliant weaver using a set of constraint solvers.
The rule definitions in this constraint language are suffi-
ciently general to specify conventional merging rules based
on known techniques, such as pattern matching for model
entity names. In addition, it is possible to specify advanced
semantic rules, such as do not allow the sum of the memory
demands of the components hosted by a node to exceed the
RAM available on the node or do not allow this component
to be deployed to a node that is less than a quarter me-
ter from the perimeter of the car. Definitions are based on
domain constraints defined by application domain experts,
such as the minimum distance from the car perimeter, op-
erating system of the hosting ECU, or required memory al-
location.

4. CONSTRAINT-AWARE CONCERN WEAV-
ING

This section describes techniques we used to address the
challenges outlined in Section 3. We chose the open-source
Generic Eclipse Modeling System (GEMS) [26, 27], which
is a part of the Eclipse Generative Modeling Technologies
(GMT) project, as the basis for our AUTODeploy tool.
GEMS provides a convenient way to define the metamodel,
i.e., the visual syntax of the modeling language. Based on
the metamodel, GEMS automatically generates a graphi-
cal editor that enforces the grammar specified in the meta-
model.

GEMS enables the definition of aspects in its metamodel
that can be used to specify concern boundaries and views
in a modeling language. We used these aspects extensively
when modeling the various automotive system concerns de-
scribed in Section 3. To facilitate code generation, GEMS
also provides an infrastructure for model traversal and event

listening that can be used in conjunction with other MDD
tools, such as ATL [10] or open Architecture Ware (oAW) [3].

Although GEMS supports the definition of various mod-
eling aspects, it originally did not support the extensive
constraint-aware weaving required for our automotive DRE
system project. During the development of AUTODeploy,
therefore, we extended GEMS with a generic mechanism
to automatically weave metamodel-defined aspects together
based on domain constraints. A key implementation and
conceptual challenge we faced, however, was how to spec-
ify the domain constraints so that they could be used to
not only check the correctness of the model, but also be
leveraged by our weaver to automatically merge concerns

together without violating constraints. We considered vari-
ous approaches for constraint specification, including Java,
the OMG Object Constraint Language (OCL), and Prolog.
To evaluate the pros and cons of each approach, we imple-
mented our composition constraints in each of these three
languages.

After an extensive evaluation [18, 25], we selected Prolog
since it provided both constraint checking on already wo-
ven models and the ability to deduce composition strategies
(constraint solving), based on domain constraints, for un-
woven models. In particular, Prolog can return the com-
bination of known facts from a knowledge base that lead a
conjunction of constraints to evaluate to “true,” i.e., a Pro-
log constraint can be invoked both as a constraint check and
as a constaint solver.

In contrast to Prolog, Java and OCL have no equivalent
to forward and backward chaining (constraint checking and
solving). OCL is easier to write rules with than Java, but
we could not find any constraint solvers that allowed us to
specify constraints as OCL, so we could only check to see if
a woven model was valid. With Java, we could leverage a
constraint solver and specify constraints, but the semantic
gap between the input format of the constraint solver and
the modeling tool was large and required significant work to
overcome.

For example, to solve a configuration constraint using a Java
constraint solver, the constraint must be transformed into
a system of linear equations. We found this transforma-
tion prohibitively expensive and inflexible for our system.
Moreover, the specialized knowledge required to perform
this transformation prevented domain experts, i.e., auto-
motive engineers, from specifying constraints.

Our model-driven approach to constraint-aware weaving was
the key that allowed us to raise the level of abstraction and
allow domain experts to apply Prolog constraint solvers suc-
cessfully. Without the domain-specific predicates and the
ability to display constraint solving results graphically in
the modeling tool, we found that Prolog was too hard for
domain experts to use effectively since they were forced to
learn predicate logic without a concrete sense of how to build
predicates and map them to their application domain.

With the appropriate domain-specific predicates and graphi-
cal feedback provided by GEMS, however, we found that do-
main experts could quickly grasp how the predicates applied



to their model and easily write complex domain constraints.
Moreover, when users manually specified predicates with
bare Prolog, they were also forced to manually specify how
to map model instances to these predicates. Manually spec-
ifying this mapping required significant work and required
developers to update the mapping each time the metamodel
changed.

We often found the need to add constraints to specific model
instances. For example, a component implementation by
a vendor could have superior performance characteristics
when paired with hardware by the same vendor. Encod-
ing constraints for a specific model instance in a format for
a Java constraint solver was prohibitively expensive. We
found that Prolog combined the declarative expressivity of
OCL (which allowed domain experts to specify constraints)
with the power of a Java constraint solver (which allowed the
modeling tool to derive solutions to the domain constraints).
In fact, the standard Prolog distributions we tried had im-
plementations of constraint solvers with features comparable
or superior to the Java constraint solver we evaluated.

Our experiments found no significant performance difference
between the Java solvers and the Prolog solvers that jus-
tified the increased development cost of writing Java con-
straints. Moreover, we found that having the right type
of solver was more important than the implementation lan-
guage. Since many constraints, particularly resource con-
straints, were highly combinatorial, constant differences in
performance coefficients between the languages was not nearly
as significant as large algorithmic improvements that could
be obtained by using the right solver for the problem. Pro-
log provided significantly more solver implementations than
Java.

Our AUTODeploy solution allowed domain experts to spec-
ify the rules governing concern composition as a series of
declarative rules using Prolog. When two aspects were wo-
ven together, the constraint solver was invoked to find an as-
signment of the constraints’ variables that would satisfy the
domain constraints. For example, when mapping compo-
nents to ECUs, we would invoke the deployment constraint
and have Prolog return an assignment of components to
ECUs that would satisfy the resource and configuration con-
straints specified in the model. The weaver would then take
this assignment of components to nodes to merge the com-
ponent collaboration and physical hardware concerns into
a deployment model. Figure 4 shows the inovcation of the
constraint-aware weaver and the presentation of a merger
solution to the user.

The remainder of this section summarizes the lessons learned
while implementing the AUTODeploy-based solution pre-
sented above. This solution addresses the list of require-
ments presented in Section 3.

4.1 Capturing Semantically-enriched Concern
Composition Rules

As outlined in Section 4, we found domain experts had a
hard time providing domain constraints for specifying con-
cern composition rules by programming conventional con-
straint solvers written in C or Java. We alleviated this
problem with AUTODeploy by generating a Domain Spe-

Figure 4: Constraint Solver Guided Weaving

cific Knowledge Base (DSKB) in Prolog, which respected
the domain-specific concepts from the concerns and provided
a flexible mechanism for specifying both solvers and con-
straints using domain notations. AUTODeploy’s domain-
specific format is created automatically from the AUTODe-
ploy metamodel we specified in GEMS and requires no ex-
plicit user specification or generation. As we continue to
evolve AUTODeploy, and the metamodel changes, GEMS
automatically updates the underlying Prolog DSKB format.

We found that AUTODeploy users can easily leverage the
automotive-specific notation to define composition rules and
constraints. In particular, for most types of weaving con-
straints, existing constraint solvers can be used. Users there-
fore did not require constraint solver experts to specify so-
lution strategies, but instead specified how AUTODeploy
and GEMS should map their constraints to the appropriate
existing probem types, such as mapping the assignment of
components to nodes, while respecting resource constraints,
to bin-packing. AUTODeploy and GEMS would then take
care of choosing the appropriate solver for the problem.

AUTODeploy views the concern models as a set of model en-
tites and the role-based relationships between them. For ex-
ample, Node (ECU), Component, and DeploymentPlan are
entities. Each entity may participate in multiple role-based
relationships. Relationships that cross concern boundaries,
such as Deployment (the mapping from an element in the
logical collaboration concern to an element in the physical
hardware concern), indicate mergers that must take place.

For example, a deployment relationship between a Compo-
nent instance and an ECU specifies that in the merger of
the software and hardware concerns of the system into a de-
ployment model, the ECU should become the target host



of the component. Each relationship that crosses concern
boundaries may have Prolog constraints bound to it. Be-
fore weaving occurs, the Prolog constraint solvers are used
to find the valid endpoints for each of these cross-concern
relationships. The valid endpoints are then provided to the
weaver to perform the actual concern merging.

To generate a DSKB format for each concern model, GEMS
parameterizes a Prolog KB using these metamodel-specified
entities and roles. For each entity, we generate a unique
id and a predicate statement specifying the type associated
with it. For example, a component is transformed into the
predicate statement

self_type(id,component)

, where id is the unique id for the component. For each in-
stance of a role-based relationship in the model, a predicate
statement is generated that takes the id of the entity it is
relating and the value it is relating it to.

For example, if a component with id 23 has a TargetHost

relationship with a node with id 25 the predicate statement

self_targethost(23,25)

is generated. This predicate statement specifies that the en-
tity with id 25 is a TargetHost of the entity with id 23. Each
KB provides a domain-specific set of predicate statements.

Users create rules, based on the DSKB format, to bind con-
straints to the various cross-concern relationships. For ex-
ample, in AUTODeploy, the rule

is_a_valid_component_targethost(Component,ECU) :-

self_requiredOS(Component,RequiredOS),

self_providedOS(ECU,RequiredOS).

could be used to specify that a correct Component to ECU
mapping requires that the target ECU provide the correct
OS for the Component. This rule can be used by the con-
straint solver to collect all valid ECUs for each component,
solve the various global constraints, such as resource con-
sumption, and produce a valid mapping from Components
to ECUs. The mapping from Components to ECUs is then
input into the weaver to perform the concern model merg-
ing and produce a deployment plan. The deployment plan
can then be leveraged by code generators to produce XML
deployment descriptors to drive a deployment and configu-
ration framework, such as DAnCE [11].

4.2 Semi-Automatic Concern Weaving
As described in Section 4.1, modelers can use AUTODeploy
to specify user-defined constraints, based on the domain-
specific knowledge base, in the form of Prolog rules for each
kind of cross-concern relationship. As an example, consider
the following constraint to check whether a node is a valid
host of a component:

is_a_valid_component_targethost(Component, Node).

This constraint can be used to check a Component-Node or
concern merging combination, i.e.:

is_a_valid_component_targethost(23,[25]).

It can also be used to find valid Nodes that can play the
TargetHost role (a join point) for a particular component
solution, i.e.:

is_a_valid_component_targethost(23, Nodes).

In this example, the Nodes variable will be assigned the list
of all nodes for the TargetHost role of the specified com-
ponent that satisfy its deployment constraints. We initially
used a single-layered approach to deducing a concern merg-
ing strategy. The single-layer would invoke the local rules
to find valid endpoints for each element in the concerns be-
ing merged that was involved in a cross-concern relation-
ship. When resource and other global constraints began
being added, we had to adopt a multi-layered approach to
solve for merging strategies.

As can be seen in Figure 5, local constraint solving is the
initial step of our automatic constraint-aware weaving. In

Figure 5: Iteratively Reducing the Concern Merging

Solution Space

AUTODeploy, the local constraints correspond to the con-
figuration constraints, such as required OS, that impact only
the valid hosting sites for a single component. The solution
space initially contains many millions or more possible con-
cern merging combinations, as seen in step 1 of Figure 5.
Any global constraint-aware weaving has to start by iterat-
ing over each unassigned component and considering only
valid ECUs respecting the configuration constraints. After
pruning the solution space, global constraints, such as re-
source requirements, are considered, as shown in step 2 of
Figure 5. After solving the global constriants, AUTODeploy
is left with a drastically reduced number of concern merging
solutions to select from. At this point, depending on the
number of solutions available, optimization algorithms can
be applied to select a solution that optimizes a particular
critera, such as the number of nodes used.



Even after implementing this multi-layered solving approach,
finding a merger that met the global constraints could still
take a long time. What makes the situation complicated
is the fact that a blind iteration approach through possible
solutions may be initiated very far from a valid solution.
The key to quickly finding a solution is to start as near as
possible to it.

For example, 20% of the components may be computation-
ally intensive and require substantial CPU, but less RAM
than the other 80% of the components that store a large
amount of state in memory. The second type of compo-
nents have high RAM requirements and only a medium de-
mand of CPU usage. We found that AUTODeploy could
find a merging strategy in significantly less time by develop-
ing domain-specific heuristics for distinguishing CPU- and
RAM-intensive components and assigning them to nodes
having comparable proportions of each resource. Moreover,
as described in [7], by choosing the right search strategy,
different guarantees can be made on the optimality of the
solution found. AUTODeploy’s solver uses a domain-specific
heuristic to prioritize the assignment of components and
their respective ECU candidates by selecting the largest
weighted average of each component’s required resources
and each ECU’s remaining resources.

In many cases, we observed that domain experts could not
formally specify certain types of constraints, such as polit-
ical, legacy, or vendor-specific constraints. For these types
of situations, we found it was essential to allow modelers
to fix certain parts of the mappings between concerns. We
introduced a mechanism into AUTODeploy so that develop-
ers could first fix the deployment locations of certain com-
ponents with unspecifiable constraints an then use the con-
straint solver to complete the partially specified deployment.

A liability of allowing developers to manually assign compo-
nents to nodes is that it can easily lead to situations where
the fixed component-node mappings makes finding a valid
concern merger impossible. For these cases, strategies for
repairing the model automatically were needed. These AU-
TODeploy’s merger repair mechanisms are discussed next.

4.3 Model Repair
It quickly became apparent that an AUTODeploy model
could be defined with various errors, such as conflicting con-
straints or insufficient resources, that would make weaving
impossible. With numerous complex composition rules guid-
ing the weaving process, it was extremely hard for modelers
to figure out why there was no valid way of merging concerns
and how to repair the model to overcome the problem. Sim-
ply failing to weave the model and not providing an expla-
nation would leave the reasoning of the underlying cause to
modelers, without any hints on possible modifications (such
as resource expansions) to make it work. In these situations,
deducing the errors in the model could be as hard as finding
a valid concern composition manually.

A key question was what type of feedback should be pro-
vided to modelers. One approach we evaluated was mark-
ing model elements, such as components, that could not sat-
isfy their domain constraints. For example, we considered
marking components with resource requirements exceeding

the available resources of any available ECU. We found this
approach unsatisfactory for the following reasons:

• For global constraints, such as resource constraints,
the overall state of the system determines whether or
not the constraint succeeds. In the automotive do-
main, if the ECUs do not provide sufficient resources
to host all of the components, it is not necessarily a
single component that is causing the problem. Mark-
ing the first component that could not be placed would
not make sense since different packing orders could re-
sult in different components marked as the cause of
failure.

• Even if the cause of the failure was marked in some
manner, the modeler would still need to manually fig-
ure out how to modify the model from its present state
to make it compliant with its constraints. Although
fixing the model might appear trivial when the fail-
ing constraint was identified, changing the model could
have unforseen affects on the other domain constraints.
Again, manual approaches do not scale for these types
of constraint satisfaction problems.

We adopted a strategy of allowing modelers to express a set
of legal model modifications that could be performed, which
we call “repair operations,” and using AUTODeploy’s con-
straint solver to apply these repair operations to the model
to make weaving possible. For example, a repair operator
IncreaseCPUPower could be used to allow the constraint
solver to place a component on a node or if no suitable node
was found to increase the CPU power (a suggestion to im-
prove the hardware) of an upgradable ECU. By specifying a
series of repair operations, such as IncreaseCPUPower and
AddECU, the constraint solver could first try to upgrade an
existing ECU or if none could be upgraded, add an ECU to
the merged model.

Suggesting corrective model changes can be applied to both
failed local constraints or global constraints. For instance,
modelers could try to deploy a component manually and
find that the automatic weaving guidance does not provide
any valid EPUs. This failure might occur if no EPU match-
ing the configuration requirements of the component (e.g.,
the required operating system or hosting server type). An-
other reason for the failure could be that all resources of
valid EPUs have been exhausted by previous component as-
signments. Corresponding suggestions could therefore be to
create a compliant EPU or to increase respective resources
of a single EPU. On the other hand, a global solver may use
the repair operations to apply a batch of corrections to the
model to make weaving possible.

The key concept enabling repair operations was the exten-
sion of the automatic role-based constraint solvers by adding
additional parameters for the repair operations. For exam-
ple, consider the format of the component-targethost con-
straint again:

is_a_valid_component_targethost(

Component, Node,

RepairOperations,

DoneModificationOperatorL).



It can be used to pass the following operator to a call of
is a valid component targethost :

modify_resource_increment_by_factor(

Component, Node,

ApplicationMode,

InputArgs, OutputArgs).

which uses the same pair of Component/Node variables. In
addition, there are some input arguments and output ar-
guments. The third application mode parameter specifies
whether

• The correction operator should check the repair opera-
tion’s applicability (Mode = try) to the current model,

• Perform the repair operation and record them in the
Prolog record database (Mode = do), or

• Undo a repair operation that has already been per-
formed (Mode = undo) by removing the respective
previous repair recordings.

Distinguishing these three modes is essential to keep the
modularity of all correction related activities.

A modification solver capable of increasing a resource ca-
pacity of a node must first check whether the currently con-
sidered invalid component/node pair is caused by a lack of
resources on the node and wether or not the insufficient
resources can be increased. Once the repair operation is
deemed appropriate, it is applied to the model using the
’do’ mode. Calling the modification solver with the ’undo’
mode allows it to remove a suggested modification from the
Prolog recording database, which allows it to undo all the
repairs performed by an operator. This mechanism is es-
sential since the Prolog constraint solver may discover that
the repair operations it has performed must be undone to
allow it to backtrack and undo some component to node
assignments it has made.

The AUTODeploy model repair capabilities described above
go beyond standard Prolog tracing. Standard Prolog tracing
would track execution down to the point of any assignment
problem and force the modeler to figure out the reason be-
hind a weaving failure. In contrast, AUTODeploy model
repair raises the level of abstraction by specifying possible
domain-specific corrections within the underlying domain
structure and domain entities.

5. RELATED WORK
This section compares our AUTODeploy approach with re-
lated work. The techniques we have developed to solve the
concern merging challenges for AUTODeploy build on the
techniques presented by Clarke in [6]. Clarke presents a
method for decomposing and composing models based on
subject oriented design concerns. One of the key ideas pre-
sented in their paper are mechanisms for model merger and
model conflict resolution.

Our work is a complementary enhancement of Clarke’s work.
We provide a framework for handling the complexity of do-
mains, such as the automotive domain, where many types of

constraints are too combinatorial in nature to handle with-
out a constraint solver. We also enable a constraint solver
to resolve model conflicts, which allows far more complex
model repair strategies. Another key difference between our
work and Clarke’s is that [6] focuses on UML, whereas we
have created domain-specific modeling languages for each
concern we are merging.

In [13], Georg et al. present a method for composing aspects
that can handle composition conflicts by obeying user speci-
fied merger directives. Our AUTODeploy tool acknowledges
and handles the complexities and frequent conflicts in aspect
merger identified by Georg et al. Our approach is similiar
in that it allows users to specify a series of repair operators,
to apply in the case that conflicts prevent a merger. More-
over, our approach provides the flexibility of allowing users
to override and force particular merging decisions. The key
difference between AUTODeploy and the work described in
[13] is that AUTODeploy can use multiple constraint solvers
to merge complex concerns that would be unmanagable us-
ing manual methods or traditional algorithms.

6. CONCLUDING REMARKS
This paper presents the results of applying the AUTODe-
ploy aspect-oriented design and modeling tool to develop a
component-based automotive DRE system. The following
is a summary of our lessons learned from this project:

• The complexity of DRE systems can be managed effec-
tively by applying the principle of separation of con-
cerns at the model level. Our initial model-driven ap-
proach separated concerns with respect to specifying
and merging the component collaboration aspect and
the hardware aspect. Merging these concern models
to map software to hardware components is compli-
cated, however, and cannot be done manually in the
automotive domain due to (1) the size of each concern
model, which can comprise hundreds of entities, and
(2) the complexity of domain constraints that must
be met when merging different concern models. We
discovered that augmenting our weaver with guidance
from a constraint solver helped to overcome problems.

• Java and C constraints use notations and concepts that
are not intuitive to experts in the automotive domain,
who are a key source of knowledge on domain con-
straints that guide concern composition. For instance,
the engineers developing a specific automobile model
are intimately familiar with values about a safe dis-
tance for an ECU from the car perimeter and tolerable
resource allocation values. Although we initially hoped
to use a Java- or C-based constraint solver, we found
that they were not well-suited for domain experts since
they require assistance from constraint solver experts
when domain experts needed to introduce new compo-
sition constraints.

• When augmented with the right model-driven abstrac-
tions and predicates, Prolog’s declarative nature makes
an effective choice as a constraint solver framework for
domain experts. We found that using Prolog’s declar-
ative expressivity to implement constraint solvers al-
lowed domain experts to write constraints. Prolog’s



role-based domain constraints are a type of semantic
pointcut specification that form the basis of our ap-
proach to weaving. A modeling-based approach and
domain-specific abstractions are the key to making
Prolog amenable by domain-experts.

• Standard Prolog tracing is not sufficient to debug weav-
ing problems for this domain. In order to handle weav-
ing failures, the repair operator framework we imple-
mented in Prolog is needed to make deducing weaving
strategies, as well as debugging weaving failures, pos-
sible.

• Even though semantic weaving mechanisms are pow-
erful, domain experts tend to devise new and more
difficult constraint types, such as guaranteeing paths
between components with various characteristics, that
are not well supported by current solvers.

• We have found that it is extremely important to have
a flexible and powerful concern composition language
that provides the ability to capture complex semantic
composition rules, i.e., semantic pointcuts. Most con-
ventional AOSD tools provide only syntactic means
to describe composition rules. For large-scale DRE
systems with complex constraints, however, semantic
knowledge must be leveraged to deduce proper weav-
ing strategy. The approach taken for our project is
one possible direction to overcome this problem. Our
experience shows that combining a Prolog knowledge
base generated from models with a Prolog-based set of
constraints and weaving rules can scaleup to support
the larger-scale models in next-generation automotive
DRE systems.

GEMS and the AUTODeploy prototype are opensource projects
available from: http://www.sf.net/projects/gems.

7. REFERENCES
[1] Aspectj, http://www.eclipse.org/aspectj/.

[2] Hyperj, http://www.alphaworks.ibm.com/tech/hyperj.

[3] The openarchitectureware.
http://www.eclipse.org/gmt/oaw.

[4] B. Boehm and C. Abts. Cots integration: Plug and pray?
IEEE Computer, 32(1):135–138, 1999.

[5] D. Chen, J. Elkhoury, and M. Trngren. A modelling
framework for automotive embedded control systems. In
SAE World Congress, 2003.

[6] S. Clarke. Extending standard UML with model
composition semantics. Science of Computer Programming,
44(1):71–100, 2002.

[7] E. Coffman Jr, G. Galambos, S. Martello, and D. Vigo. Bin
packing approximation algorithms: combinatorial analysis.
Handbook of Combinatorial Optimization. Kluwer
Academic Publishers, 1998.

[8] I. Crnkovic, J. Axelsson, S. Graf, M. Larsson, R. van
Ommering, and K. Wallnau. Cots component-based
embedded systems–a dream or reality?

[9] G. De Michell and R. Gupta. Hardware/software co-design.
Proceedings of the IEEE, 85(3):349–365, 1997.

[10] M. Del Fabro, J. Bzivin, and P. Valduriez. Weaving models
with the eclipse amw plugin. In Eclipse Modeling
Symposium, Eclipse Summit Europe 2006, 2006.

[11] G. Deng, J. Balasubramanian, W. Otte, D. Schmidt, and
A. Gokhale. Dance: A qos-enabled component deployment
and configuration engine. Proceedings of the 3rd Working
Conference on Component Deployment, 2005.

[12] H. H. et al. Autosar current results and preparations for
exploitation. In 7th EUROFORUM conference, may 2006.

[13] G. Georg, R. France, and I. Ray. Composing aspect models.
The 4th AOSD Modeling With UML Workshop, 2003.

[14] S. Gérard, F. Terrier, and Y. Tanguy. Using the model
paradigm for real-time systems development: Accord/uml.
Proceedings of the Workshops on Advances in
Object-Oriented Information Systems, pages 260–269, 2002.

[15] B. Hall, B. Sellner, and R. Maier. Automated safety critical
software development for distributed control systems: A
cots approach. SAE transactions, 110(7):293–302, 2001.

[16] P. Hastono and S. Huss. Automatic generation of
executable models from structured approach real-time
specifications. In To Appear at The 25th IEEE
International Real-Time Systems Symposium (RTSS),
2004.

[17] Kopetz and Hermann. Real-Time Systems : Design
Principles for Distributed Embedded Applications (The
International Series in Engineering and Computer
Science). Springenr, April 1997.

[18] A. Nechypurenko, J. White, E. Wuchner, and D. C.
Schmidt. Applying model intelligence frameworks to
deployment problems in real-time and embedded systems.
In Proceedings of MARTES: Modeling and Analysis of
Real-Time and Embedded Systems at the 9th International
Conference on Model Driven Engineering Languages and
Systems, MoDELS/UML 2006, 2006.

[19] H. Ossher and P. Tarr. Multi-dimensional separation of
concerns using hyperspaces. IBM Research Report 21452,
1999.

[20] J. Srinivasan and K. Lundqvist. Real-time architecture
analysis: a cots perspective. Digital Avionics Systems
Conference, 2002. Proceedings. The 21st, 1, 2002.

[21] P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr. N
degrees of separation: Multi-dimensional separation of
concerns. In Proceedings of the International Conference
on Software Engineering (ICSE’99), 1999.

[22] M. Trngren, P. Johanessen, and N. Adamsson. Lessons
learned from model based development of a distributed
embedded automotive control system. In SAE World
Congress, 2003.

[23] M. Weber and J. Weisbrod. Requirements engineering in
automotive development-experiences and challenges. pages
331–340, 2002.

[24] R. Weeks and J. Moskwa. Automotive engine modeling for
real-time control using matlab/simulink. SAE paper,
950417:123–137, 1995.

[25] J. White, A. Nechypurenko, E. Wuchner, and D. C.
Schmidt. Intelligence frameworks for assisting modelers in
combinatorically challenging domains. In Proceedings of the
Workshop on Generative Programming and Component
Engineering for QoS Provisioning in Distributed Systems
at the Fifth International Conference on Generative
Programming and Component Engineering (GPCE 2006),
2006.

[26] J. White, D. Schmidt, and A. Gokhale. The j3 process for
building autonomic enterprise java bean systems. icac,
00:363–364, 2005.

[27] J. White and D. C. Schmidt. Simplifying the development
of product-line customization tools via mdd. In Workshop:
MDD for Software Product Lines, ACM/IEEE 8th
International Conference on Model Driven Engineering
Languages and Systems, October 2005.


