
Reducing Application Code Complexity With
Vocabulary-Specific XML Language Bindings

Jules White, Boris Kolpackov, Balachandran Natarajan, and Douglas C. Schmidt

{jules,boris,bala,schmidt}@dre.vanderbilt.edu
Department of Electrical Engineering and Computer Science,

Vanderbilt University, Nashville

Abstract
The eXtensible Markup Language (XML) has become a
ubiquitous data exchange and storage format. A variety
of tools are available for incorporating XML-based data
into applications. The most common XML tools (such as
parsers for SAX and DOM) provide low-level vocabu-
lary-independent interfaces, which can make it hard to
develop and debug robust applications. This paper ex-
amines tools for generating vocabulary-specific XML-to-
C++ language mappings and shows how they can re-
duce key sources of complexity associated with develop-
ing object-oriented XML-based applications. The paper
also presents criteria for evaluating tools that generate
vocabulary-specific language mappings and applies
these criteria to compare five tools for this purpose:
XML Spy, Xbinder, Object Link, Liquid XML Data Bind-
ing Wizard, and XML Schema Compiler (XSC). Our
results show that XSC is the only tool that provides a
complete vocabulary-specific mapping, alignment with
the C++ Standard Library, and code portability, while
also providing the most manageable generated code
base.

Keywords: XML, C++, Vocabulary-Specific
Language Binding, W3C XML Schema, DOM,
SAX

1. Introduction
XML [1] has become one of the most prevalent for-

mats for data exchange and storage for computer-based
systems. It provides a loose tree-based structure well
suited for semi-structured data [2,3]. XML’s self-de-
scribing nature, human readable element names, and
ability to reference external document specifications
allows applications to exchange and dynamically inter-
pret data without a shared set of assumptions, such as
interface definitions via header files. Applications there-
fore become less dependent on strict, statically defined
interfaces provided by their peers [4].

Developing applications that exploit the flexibility of
XML data can be complex, however, since XML only
specifies a common format for data it encapsulates and
does not specify semantics or type information [5]. This
paper evaluates two approaches to accessing XML data
from inside applications: vocabulary-independent data
access interfaces (DAIs) and vocabulary-specific DAIs.
An XML vocabulary is a specialization of XML for a

particular type of application or format that describes the
names of elements and attributes, their meaning, and the
structural relationship between them. Languages such as
XML document type definitions (DTD) and XML
Schema [6,7,8] are commonly used to define XML vo-
cabularies, such as TeXML and XML Schema.

1.1 Vocabulary-Independent DAIs

We begin our discussion of vocabulary-independent
DAIs by showing an example implementation of a C++
program designed to print the title of each book in a li-
brary written by Tolstoy. The following XML file is
used as the input to the program:

<library>
 <book>
 <title>War and Peace</title>
 <author>Tolstoy</author>
 </book>
</library>

The following implementation uses the vocabulary-inde-
pendent DOM interface provided by the Apache Soft-
ware Foundation’s C++ DOM implementation (Xerces
C++) [10]:

DOMNodeIterator i = ...//Get a book iterator
xstring title;

for (DOMNode* n = i->nextNode ();
 n != 0; n = i->nextNode ()) {
 xstring name (n->getNodeName ());
 if (name == "title") (
 title = static_cast<DOMText*>
 (i->nextNode ())->getNodeValue ();
 }
 else if (name == "author") {
 xstring author = static_cast<DOMText*>
 (i->nextNode ())->getNodeValue ();
 if (author == "Tolstoy") {
 cerr << title << endl;
 }
 }
 else {
 // error
 }
}

As shown above, vocabulary-independent DAIs focus
on generalized tree-based concepts of XML. The two
most widely used vocabulary-independent DAIs are the
Simple API for XML (SAX)[11] and the Document Ob-
ject Model (DOM) [9]. SAX uses an event-based archi-

tecture that parses XML and notifies registered observers
as the parser encounters XML elements of interest, such
as tag pairs. DOM creates an in-memory representation
of the relationships within the XML.

Using vocabulary-independent DAIs in applications
can be tedious and error-prone [24]. In particular, appli-
cation code that performs computations on XML data
utilizing a vocabulary-independent DAI can be complex
and in many instances tightly coupled to the data layout
specified by the Schema/DTD (e.g., the element order).
The vocabulary-independent interfaces are low-level and
rarely provide enough application-specific semantics to
allow direct computations on the data. Developers who
use XML in applications written with third-generation
programming languages (such as C++, C#, and Java)
have traditionally been responsible for devising ad hoc
ways of implementing transformation of the data struc-
tures in the language binding to ones more suitable to
their computations [12,13]. These implementations are
typically achieved by extracting data from generic XML
DAIs and placing it into containers with interfaces spe-
cific to the vocabulary.

1.2 Vocabulary-Specific DAIs

An alternative approach to vocabulary-independent
XML data access is the vocabulary-specific DAI which
bridges generic XML concepts and the application-spe-
cific ones. The following example presents a concise and
type-safe vocabulary-specific interface for accessing
books in an object-oriented language, such as C++:

class Book {
public:
 string title () const;
 string author () const;
}

Vocabulary-specific DAIs relieve developers from the
burden of mapping data from a vocabulary-independent
DAI to application-specific data structures. Developers
can focus on the semantics of the data they are manipu-
lating, while leaving the type conversion to the vocabu-
lary-specific DAI implementation. Vocabulary-specific
DAIs can be generated automatically from Schema defi-
nitions, and when specific to a particular class of docu-
ments, provide developers with a more robust and intui-
tive interface to the underlying data. For example, our
DOM-based application to print the titles of books writ-
ten by Tolstoy could be rewritten in a more intuitive
fashion with a vocabulary-specific DAI.

The XML Schema Compiler (XSC) [14], developed
by Vanderbilt University’s Distributed Object Comput-
ing (DOC) Group, was used to generate a vocabulary-
specific DAI for books. The following code fragment
uses this DAI to print the titles of the books by Tolstoy:

Book b = ...
if (b.author () == "Tolstoy") {
 cerr << b.title () << endl; }

 This vocabulary-specific code is considerably shorter,
simpler, and more readable than its vocabulary-inde-
pendent DOM equivalent. Even in this small example,
the vocabulary-specific DAI simplifies development sig-
nificantly. More importantly, as the complexity of under-
lying data increases, there is a proportional decrease in
coding complexity using the vocabulary-specific ap-
proach as opposed to the vocabulary-independent ap-
proach.

The remainder of this paper discusses our experience
using and evaluating different vocabulary-specific DAIs.
This paper makes two main contributions: (1) we pro-
pose metrics to be used for evaluating vocabulary-spe-
cific DAIs and (2) we use those metrics to evaluate five
different tools that provide this capability for C++. Our
experience suggests that despite the popularity of XML,
the tools that provide such advanced capabilities have
different levels of maturity, which affects the quality of
next-generation applications being developed.

Section 2 of the paper provides the motivation and
overview of the different metrics used to evaluate vo-
cabulary-specific DAIs. Section 3, provides the empiri-
cal results and analysis of the data collected from the
evaluation of five different vocabulary-specific DAIs,
and we conclude this paper in Section 4.

2. Evaluating Vocabulary-specific DAI Tools
for C++

Tools such as Java Architecture for XML Binding
(JAXB) [15], Castor [16], and Xbind[17] that generate
vocabulary-specific DAIs are available for many popular
programming languages, including Java, C++ and Py-
thon. These tools can use a large number of validation
languages to generate the interface, ranging from W3C
XML Schema to DTD. Our analysis in this paper centers
on tools for generating C++ mapping using W3C XML
Schema.1 We focus on C++ since it is the language of
choice for many application domains, in particular dis-
tributed real-time and embedded (DRE) systems, which
is the focus of our research.

There are many tools to generate vocabulary-specific
C++ mapping, including Rogue Wave’s Object Link
[18], Liquid Technologies’ XML Data Binding Wizard
[19], Objective System’s Xbinder [20], XML Spy’s class
generation [21], and the XML Schema Compiler (XSC)..
Although there is no standardized interface for C++
mapping, each tool offers a basic set of accessors, mu-
tators, and sequence traversal methods for types de-
scribed in a Schema. Each tool also hides the conversion
from lexical space (i.e., XML text) to the semantic space
(i.e., instances of types).

All five tools help reduce the difficulty of accessing
XML data. To make our discussion more rigorous, how-
ever, this section presents a series of criteria that enable

1 For brevity, we will refer to W3C XML Schema as
simply Schema throughout the rest of the paper.

systematic evaluation of the tools listed above. In par-
ticular, we describe our criteria for quantifying the level
of assistance each tool provides to ease the development
and maintenance effort associated with manipulating
XML data.
Criterion 1: Completeness of vocabulary-specific
mapping

Our first criterion allows comparison of tools based on
completeness of vocabulary-specific interface, i.e., an
interface should allow manipulation of each item in an
XML document via the equivalent C++ type mapped
from the declared type in schema. For example, a com-
plete vocabulary-specific DAI should map any XML
Schema supported simple type to an equivalent C++ type
(if one exists) and map any aggregate type to a corre-
sponding generated C++ class. The generated class
should contain member variables for each of the child
elements encompassed by the mapped XML element. A
comprehensive mapping is important to relieve applica-
tion developers from the burden of type conversion and
dynamic type checking. It also allows application devel-
opers to work with abstract data types meaningful to
their application’s working vocabulary. Vocabulary-spe-
cific DAIs reduce the number of possible errors caused
by dynamic conversion of XML text to instances of
types in the target language, thereby eliminating error-
prone constructs, such as string-based flow of control,
where conditional statements are based on comparison of
two strings.

Figure 1: Vocabulary-Specific Interface

Figure 1 shows a correspondence between an XML in-
stance and a C++ interface. C++ and Schema share most

of the same numeric types, such as short, long, and dou-
ble. Schema’s simple types also include types that are
not native to C++, including IDREF, which is a mecha-
nism similar to C++ pointers. The vocabulary-specific
DAI should also map each of these types to a useful type
in the target language. Although it is not strictly a type in
Schema, we will discus the Schema restriction “enu-
meration” in our analysis of the completeness of the vo-
cabulary-specific mapping since “enumeration” can be
conveniently mapped to a C++ enum and logically can
be viewed as part of the Schema type system.
An interface can have the following levels of complete-

ness:
• Enumerations, aggregate types, and basic types are

mapped to C++ types. IDREF is mapped to a
mechanism for obtaining a handle for the referenced
data (complete mapping).

• Enumerations, aggregate types, and basic types are
mapped to C++ types (partial mapping).

• Aggregate types and basic types are mapped to C++
types (minimal mapping).

• Aggregate types and/or basic types are not properly
mapped to C++ types (no mapping).

Criterion 2: Alignment with the C++ Standard Li-
brary. Since the generated vocabulary-specific DAI
must ultimately be integrated and used by C++ applica-
tions, the generated code should provide a standard and
intuitive interface. This criterion therefore evaluates how
well aligned the generated interface is with the C++
Standard Library. A high degree of alignment saves de-
velopers from learning a new set of containers and utility
classes and creating complex code to plug them into the
C++ Standard Library algorithms. A desirable goal is to
provide a DAI that reduces interface complexity, but not
one that reduces complexity in one area while increasing
complexity in another. Finally, C++ Standard Library
alignment allows applications to benefit transparently
from future enhancements.

For example, Xerces C++ uses its own implementation
of strings, which forces developers to learn not only how
to use Xerces C++ strings but how to map from Xerces
C++ strings to C++ Standard Library strings. This map-
ping introduces unnecessary conversion code that can be
a source of information loss and memory leaks or cor-
ruption.

A vocabulary-specific language mapping can have one
of the three levels of alignment listed below:
• Applications can directly use provided containers

and iterators with the C++ Standard Library algo-
rithms and classes. (complete alignment).

• Interfaces generated by the tool can provide con-
tainer and iterator concepts that are similar to the
Standard C++ Library, but cannot be used with C++
Standard Library facilities without adaptation logic
within the application code (partial alignment).

• Complex code is required to convert from containers
used by the interface to those used by the C++ Stan-
dard Library (no alignment).

Criterion 3: Code portability. The third criterion we
examine is code portability, which is defined as the abil-
ity to compile the generated DAI code on multiple OS
platforms that support standard-compliant C++ compil-
ers. Although not all applications require code portabil-
ity, it is desirable that generative tools for DAIs produce
portable code which can be compiled and executed on a
variety of OS platforms. In particular, the generated code
should not restrict the application code any more than
the underlying XML parsing layer (if any). We also con-
sider it a positive attribute if the code generator itself can
be executed on multiple OS platforms.

Vocabulary-specific DAI tools can have the following
levels of portability:
• The tool can generate one code base that can com-

pile on multiple platforms without modification
(complete portability).

• The tool supports generating code for several plat-
forms but a separate code base must be generated
for each platform (partial portability).

• The tool does not generate portable code out of the
box but can do so through customization (no port-
ability).

Since the goal of these tools is to simplify development
they should not force developers to maintain multiple
code bases or spend time customizing the tool output .
Criterion 4: Manageability of generated code. Our
fourth and final criterion considers manageability by
measuring the amount of generated code needed to pro-
vide an equivalent set of vocabulary-specific interface
features. For each line of code generated by the tools,
there will be a corresponding complexity increase in
each of the following five areas:
1. Source control, i.e., each line of generated code will

need to be integrated into the source control proce-
dures for the application

2. Documentation, i.e., the purpose and use of the gen-
erated interface will need to be incorporated into the
API documentation

3. Build configuration, i.e., the code will need to be
integrated into the application build process

4. Compilation time, i.e., poorly designed headers and
interfaces when included into the application source
can increase compilation (and recompilation) time
during development.

5. Binary size, i.e., the more code integrated into the
application, the larger the application binary.

To enhance manageability, therefore, it is important that
the generated DAIs are efficient and require as few files
and lines of code as possible.

Another measure of manageability of code is how
schema definition inclusions (file inclusion of an exter-
nal schema) are handled. Anywhere that the schema has
been broken into modular pieces, and aggregate docu-
ments have been constructed through file inclusion, the

generated code should also be separated into reusable
libraries. Decoupling the generated interfaces in this way
helps to (1) mirror the intent of the developer to separate
the schema into manageable pieces and (2) create more
modular and reusable code.

Vocabulary-specific DAI tools can have various levels
of manageability:
• The tool generates separate interfaces for each

schema and file inclusion is used to aggregate the
functionality (complete manageability/extensibility).

• One interface is generated that aggregates the func-
tionality by directly combining the interfaces in the
same file (partial manageability/extensibility).

• Schema inclusion is not supported (no manageabil-
ity/extensiblity).

In general, a more manageable way to generate code for
schema A and B would be to have separate interfaces
and let A’s interface use B’s. If separate interfaces are
not generated and the application later needed to use B’s
interface separately, an entirely new interface would
need to be generated for B, which would increase the
size of the generated code base and create unneeded
code duplication. Generating separate interfaces avoids
this problem.

3. Empirical Tool Comparison and Analysis
of Results

This section reports the results of evaluating five tools
that generate vocabulary-specific DAIs XSC, Object
Link, XML Spy’s Code Generator, Xbinder, and the
Liquid XML Data Binding Wizard for a simple library
example against the criteria presented in Section 2. In
particular, we expand our simple book example from
Section 1.1 to create a library that contains 1…N books.
Each book stores the author, main characters, ISBN,
genre, title, availability, and a unique id. The complete
schema is available at www.dre.vanderbilt.edu/~jules/
library.xsd. Particular items of interest in our schema are
(1) the “Genre,” which maps to an enumeration, and (2)
the “id,” which allows other elements to refer to a par-
ticular book. Since books are catalogued in a library, we
want to ensure that all of our books are only classified by
genres that we use to organize the library. Our genre
enumeration will help enforce this constraint. The “id”
will be used to implement a recommendation system that
allows a reader to see books each author recommends.

Each tool handled the mapping of schema basic types
to their equivalent C++ types. The interfaces they gener-
ated and the completeness of the vocabulary-specific
mapping varied significantly, however. The remainder
of this section presents the results of applying the four
criteria described in Section 2 to the code generated by
the tools to evaluate provided reductions in code com-
plexity and ease of integration into C++ applications.
The results in this section show that the tools possess a
wide range of capabilities. In particular, the complete-
ness of the vocabulary-specific mapping varies from

www.dre.vanderbilt.edu/~jules/ library.xsd.
www.dre.vanderbilt.edu/~jules/ library.xsd.

poor to excellent between the tools. Figure 2 summarizes
the results of our evaluation.

Figure 2: Summary of Experimental Results

Criterion 1 results: Completeness of vocabulary-spe-
cific mapping. Although all tools correctly converted
the simple types to their corresponding C++ types and
aggregate types to classes, XML Spy’s generated code
created a DAI that disregarded the quantifier restrictions
within the library schema. For example, a long and an
array of type long are different types. A compilation
error would occur if one attempted to index into a long
using the subscript operator. The “title” element of
“book” in our example schema can occur exactly once
but the XML Spy generated code provided two inter-
faces to access the title: CTitle GettitleAt(int
nIndex) and CTitle Gettitle(), which gives a
developer the ability to write code such as:

CTitle book_title = book.GettitleAt (2).
//Equivalent to :
//long mylong =…;
//long b = mylong[2];

As discussed in Section 2, Criterion 1, the purpose of the
vocabulary-specific DAI is to prevent developers from
creating run-time errors by migrating type-checking to
compile-time rather than run-time. By allowing applica-
tion developers to write code that violates the cardinality
restrictions within the schema, the generated code was
creating a less complete vocabulary-specific interface.

The code shown above should be flagged as a typing
violation at compile-time. With XML Spy’s generated
code, however, there is no compile-time error since the
interface provides a method to get any title from 1...N.
For the completeness of the vocabulary-specific mapping
criterion, therefore, all except XML Spy passed the con-

version test from schema types to C++ types. XML Spy
provides developers with the ability to customize the
code generation template, which allows developers to fix
this problem with additional effort. All other tools, how-
ever, generated proper mappings without customization.

We next consider a more complex type mapping from
schema enumeration to C++ enumeration. The conver-
sion from enumeration was much less uniform between
tools. XSC and the Liquid XML Data Binding Wizard
mapped enumerations to C++ enumerations. XML Spy
and Object Link mapped the enumerations to strings.
Finally, Xbinder mapped the enumerations to integer
types. Bindings to C++ enumeration alone offer true vo-
cabulary specificity. For example, application developers
could produce code such as the following with the enu-
meration-to-string mapping:

if (strcmp (book.genre (), ”suspense”) == 0)
{
 //…
}

If “suspense” was not a valid enumeration value, the
code would still compile; the same is true for the integer
mapping. An application developer could easily test the
value of genre against any integer regardless of whether
it was a valid enumeration value. With XSC and the Liq-
uid XML Data Binding Wizard’s enumeration mapping,
a comparison to any value other than the ones defined by
the schema enumeration results in a compilation error.

A more complex case for the vocabulary-specific
mapping arises with ID’s and IDREF. The ID/IDREF
attributes provide a mechanism by which one element
can refer to another element using its unique ID. This
presents an interesting challenge for the mapping tools.
Since the IDREF’s can refer to any arbitrary element, it
is hard for a tool to generate a vocabulary-specific map-
ping. Tools therefore use one of two approaches:
• Return the string value of the referenced ID. This

approach does not provide any actual vocabulary-
specificity. Once the ID string is obtained, the ap-
plication must iterate over all the nodes that could
be referred to (possibly every node in the document)
doing a string comparison on each element’s ID to
find the referenced instance. This approach is simi-
lar to DOM-based implementations, though it can be
even more complex than a DOM-based approach
since the reference can be to any other element in
the document and we no longer have a generic inter-
face with which to manipulate the data.

• Return the actual instance referenced. This ap-
proach is more strongly typed, but requires the in-
stance be returned in the form of a reference to a
common base class. This reference can then be cast
to the desired derived class, which alleviates devel-
opers from writing generic traversal code to search
for the referenced instance. XSC is the only tool we
tested that returns the actual instance referenced
rather than the string value of the IDREF.

Criterion 2 results: Alignment with the C++ Stan-
dard Library. The interfaces generated by XSC, Object
Link, and the Liquid XML Data Binding Wizard are all
aligned with the C++ Standard Library conventions, i.e.,
they either directly use C++ Standard Library containers
or they provide iterators that are interoperable with the
C++ Standard Library. XML Spy and Xbinder, however,
use proprietary containers and do not provide mecha-
nisms to use C++ Standard Library
Criterion 3 results: Code portability. All the tools
tested have the ability to generate platform-independent
DAIs, though XML Spy does not generate platform-in-
dependent code by default (its generated code is specific
to Windows). Instead, developers must customize its
proprietary code templates to obtain platform portability.
One code base from each tool supports multiple plat-
forms. The developer is not required to maintain a differ-
ent set of binding code for different platforms. The code
generators themselves, however, were not all platform
independent, i.e., XML Spy and the Liquid XML Data
Binding Wizard only support Windows.

Criterion 4 results: Manageability of generated code.
We used the SLOCCount (Source Lines of Code Count)
tool [22] to determine how large of a code base develop-
ers would need to incorporate into their applications. We
counted the total lines of code for each of the vocabu-
lary-specific DAIs generated for our library example.
The results are listed in Figure 3. The generated code
varied quite a bit in size. The largest code base, gener-
ated by the Liquid XML Data Binding Wizard, was al-
most twice the size of the smallest generated by XSC.
The larger code bases also resulted in a larger number of
source files. The smallest code bases compacted the code
into two source files, while the larger code bases gener-
ated a dozen or more. XSC and Xbinder generated the
smallest code bases. XSC’s code base was roughly 70
lines smaller than Xbinder.

Figure 3: Generated Lines of Code

We also tested the schema inclusion mechanism dis-
cussed in Section 2, Criterion 4. We created a copy of
the original schema with a different target namespace.
We then included the copy within the original schema

and changed the book element’s character child to refer-
ence the Character type in the copy schema. XSC,
Object Link, and the Liquid XML Data Binding Wizard
all generated separate interfaces for the two schemas and
included the copy’s interface, via file inclusion, within
the original. XML Spy also handled the schema file in-
clusion, but generated the included schema’s interface
within the main interface, which created redundant
classes and made the copy’s interface unusable on its
own. Xbinder also tried to include the referenced schema
but did not properly handle namespaces. Its generated
code allowed a naming collision between the original
Character and the copy’s Character.

4. Concluding Remarks
The flexibility of XML motivates its popularity as a

useful data exchange and storage format. The most
prevalent approaches to XML however, use vocabulary-
independent data access interfaces (DAIs) geared to-
wards low-level manipulation of XML with generic
XML concepts (elements/attributes). It can therefore be
non-intuitive, tedious, and error-prone to incorporate
these DAIs into object-oriented applications. This paper
describes and evaluates a set of tools that help to solve
this problem by providing richer vocabulary-specific
DAIs. These tools generate vocabulary-specific code for
accessing XML data via a developer’s programming
language of choice. These generated DAIs can reduce
the complexity of data access code significantly.

To systematically evaluate vocabulary-specific DAI
tools, we devised four criteria that evaluate the reduction
in data access complexity. These criteria evaluated the
ease with which both the tool and generated code can be
incorporated into object-oriented C++ applications. The
criteria also analyzed the types of errors common to vo-
cabulary-independent DAI approaches for XML that can
be eliminated via vocabulary-specific DAIs. By applying
our criteria to five of tools in the context of a sample
application, we found significant variation in the tools
available to generate C++ DAIs.

Our tests found that XSC was the only tool that gener-
ated comprehensive vocabulary-specific DAIs. The Liq-
uid XML Data Binding Wizard had the second most
complete mapping with its support for enumerations.
Almost all of the tools provided data access using the
C++ equivalents of the Schema declared types. We also
found that XSC produced the smallest code base.

Our tests relied on an example schema that covered a
range of possible schema elements. Our future work will
extend this testing to cover an even broader range of
schemas, along with tests to evaluate other important
quality and performance measures, such as compilation
time, data access time, and memory footprint. In addition
to conducting these tests, we also plan to enhance XSC
to support generation of interfaces in other target lan-
guages, including Java and the Object Management
Group’s Interface Definition Language.

References
[1] T. Bray, J. Paoli, C. Sperberg-McQueen, “Extensible

Markup Language (XML) 1.0 (Second Edition),” World
Wide Web Consortium (W3C), October 2000.

[2] F. Simeoni, P. Manghi, R. Connor, D. Lievens, S. Neely,
“An Approach to High-level Language Bindings to XML”.
Special Issues of the Information & Software Technology,
Elsevier Ed. (4), 2002.

[3] P. Buneman, “Semistructured Data,” in Proceedings of the
Sixteenth ACM SIGACT - SIGMOD - SIGART Symposium
on Principles of Database Systems, 1997.

[4] F. Simeoni, D. Lievens, et al., “Language bindings to
XML,” IEEE Internet Computing, Jan 2003.

[5] P. Buneman, W. Fan, J. Simeon, S. Weinstein, “Constraints
for Semistructured Data and XML,” SIGMOD Record
(ACM Special Interest Group on Management of Data),
2001

[6] D. Lee, W. Chu, “Comparative Analysis of Six XML
Schema Languages,” SIGMOD Record (ACM Special In-
terest Group on Management of Data), 2000

[7] P. Biron, A. Malhotra, “XML Schema Part 1 Structures”
World Wide Web Consortium (W3C) Working Draft, De-
cember 1999.

[8] P. Biron, A. Malhotra, “XML Schema Part 2 Datatypes”
World Wide Web Consortium (W3C) Working Draft, De-
cember 1999.

[9] A. Le Hors, P. Le Hgaret, et al, “Document Object Model
(DOM) Level 2 Core Specification (Version 1.0),” W3C
Recommendation, World Wide Web Consortium
(http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-
20001113/), 2000.

[10] The Apache Software Foundation, “Xerces-C++,” 2004
(http://xml.apache.org/xerces-c/)

[11] Megginson Technologies Ltd, “SAX 2.0: The Simple API
for XML (http://megginson.com/SAX/)”, (2000).

[12] T. Milo, S. Zohar, “Using Schema Matching to Simplify
Heterogeneous Data Translation,” in Proceedings of the
24th International Conference on Very Large Data Bases,
VLDB, 1998

[13] C. Beeri, T. Milo, “Schemas for Integration and Transla-
tion of Structured and Semi-Structured Data,” Lecture
Notes in Computer Science, 1999

[14] Distributed Object Computing Group at Vanderbilt,
“XML Schema Compiler,” 2004
(http://www.dre.vanderbilt.edu/~boris/xsc/).

[15] Sun Microsystems, Inc., Java Architecture for XML Bind-
ing (JAXB), 2001
(http://java.sun.com/xml/downloads/jaxb.html).

[16] ExoLab Group, The Castor Project, 2004
(http://www.castor.org).

[17] P. Prescod, Xbind 0.7 Tutorial, 2004
(http://www.prescod.net/xml/xbind/).

[18] Rogue Wave Software, “LEIF: Data Tier, Object Link,”
2004 (http://www.roguewave.com/products/leif/data.cfm).

[19] Liquid Technologies, “XML Data Binding Wizard 3,”
2004 (http://www.liquid-technologies.com/Products.htm).

[20] Objective Systems, “Xbinder,” 2004 (http://www.obj-
sys.com/products_xbinder.shtml).

[21] Altova, “XML Spy,” 2004 (http://www.xmlSpy.com).

[22] D. Wheeler, “SLOCCount,” 2004
(http://www.dwheeler.com/sloccount/).

[23] F. Simeoni, D. Lievens, R. Connor and P. Manghi, “Lan-
guage Bindings to XML”, IEEE Internet Computing, Vol 7,
Issue 1, 2003.

http://xml.apache.org/xerces-c/
http://www.dwheeler.com/sloccount/

	Reducing Application Code Complexity With
	Vocabulary-Specific XML Language Bindings
	Jules White, Boris Kolpackov, Balachandran Natarajan, and Do

	1. Introduction
	1.1 Vocabulary-Independent DAIs
	1.2 Vocabulary-Specific DAIs

	2. Evaluating Vocabulary-specific DAI Tools for C++
	Figure 1: Vocabulary-Specific Interface

	3. Empirical Tool Comparison and Analysis of Results
	4. Concluding Remarks
	References

