
Integrated Adaptive QoS Management in Middleware: A Case Study1

Christopher D. Gill Jeanna M. Gossett and David Corman
Washington University, St. Louis, MO The Boeing Company, St. Louis, MO

cdgill@cse.wustl.edu

{jeanna.m.gossett,david.e.corman}@boeing.com

Joseph P. Loyall, Richard E. Schantz, and Michael
Atighetchi

Douglas C. Schmidt

BBN Technologies, Cambridge, MA Vanderbilt University, Nashville, TN
{jloyall,schantz,matighet}@bbn.com schmidt@dre.vanderbilt.edu

1 This work was supported in part by AFRL, NSF ITR CCR-0312859, Siemens, and DARPA/AFRL contracts
F33615-03-C-4112, F30602-98-C-0187 and F33615-00-C-1694.

Abstract

Distributed real-time and embedded (DRE) systems
in which application requirements and environmental
conditions may not be known a priori—or which may
vary at run-time—can benefit from an adaptive ap-
proach to management of quality-of-service (QoS) to
meet key constraints, such as end-to-end timeliness.
Moreover, coordinated management of multiple QoS
capabilities across multiple layers of applications and
their supporting middleware can help to achieve nec-
essary assurances of meeting these constraints.

This paper offers two contributions to the study of
adaptive DRE computing systems: (1) a case study of
our integration of multiple middleware QoS manage-
ment technologies to manage quality and timeliness of
imagery adaptively within a representative DRE avion-
ics system and (2) empirical results and analysis of the
impact of that integration on key trade-offs between
timeliness and image quality in that system.

Index terms – Empirical Case Studies, Distributed
Real-Time and Embedded (DRE) Systems, Adaptive
Middleware

1. Introduction

Distributed Object Computing (DOC) middleware has
become a widely accepted paradigm for developing
numerous applications in a wide variety of environ-
ments, including distributed real-time and embedded
(DRE) systems and applications. As DOC middleware
has matured and been applied to a variety of use cases,
there has been a natural growth in extensions, features,
and services to support these use cases. For example,
the Minimum CORBA [1] and Real-time CORBA [2]

specifications, as well as the Real-Time Specification
for Java (RTSJ) [3], are examples of standards that
have emerged from research and experience supporting
the quality of service (QoS) needs of DRE applications.

Although previous research has shown the benefits of
integrating multiple QoS management techniques in
standards-based middleware [4] and applying single-
layer adaptive resource management techniques real-
world DRE systems [5], only limited practical experi-
ence is available, however, with integrating resource
management techniques across multiple layers of stan-
dards-based DRE systems. As a step towards filling
this gap, this paper presents a case study of the vertical
integration of three layers of middleware QoS man-
agement technologies [6] within Boeing’s Bold Stroke
framework, which is a standards-based DRE avionics
platform. Bold Stroke is representative of a broader
class of DRE applications (including, e.g., mission
critical distributed audio/video processing [7] and real-
time robotic systems [8]) that require both static and
dynamic support for QoS. In this paper, we describe
the integration of our three layered QoS management
technologies, show results of their use in the Bold
Stroke avionics mission computing system, and analyze
each technology’s contribution to adaptive QoS man-
agement.

This paper is organized as follows: Section 2 de-
scribes the Bold Stroke avionics system’s application
context; Section 3 describes each of the three QoS
management technologies and examines the issues and
optimizations we discovered while integrating them
within the avionics system; Section 4 describes archi-
tectural modifications to the interaction between the
adaptive resource management and scheduling layers,
to improve inter-layer adaptation performance; Section
5 presents the methodology and overall design of our
experiments; Section 6 reports our results, and analyzes

trade-offs under different adaptation approaches; Sec-
tion 7 summarizes the lessons learned from our empiri-
cal studies; Section 8 describes work related to our
research on middleware QoS management techniques;
and Section 9 presents concluding remarks.

2. Application Overview

We conducted our experiments using the Weapons
Systems Open Architecture (WSOA) Open Experi-
mentation Platform (OEP) shown in Figure 1. The
WSOA OEP consisted of two airborne server and cli-
ent nodes (a command and control aircraft and an F-15
fighter aircraft respectively) that collaborated over a
very low-bandwidth radio data link to re-plan the cli-
ent’s mission parameters in real-time.

virtual
folder

Adaptation

P
ro

ce
ss

or
R

M

TAO

QuO

Soft RT tasks

Hard RT tasks

Server

Client

Decompress

Navigationvirtual
folder

Adaptation

P
ro

ce
ss

or
R

M

TAO

QuOQuO

Soft RT tasks

Hard RT tasks

Server

Client

Decompress

Navigation

Figure 1: Collaborative Re-planning in WSOA

Collaborative re-planning enables responding more
rapidly to situational changes in-flight, e.g., the server
(C2 node) sends links to downloadable imagery to the
client (F-15 node), which it then uses for re-planning.
In the example scenario we used to evaluate the WSOA
OEP, an off-board sensor detects time-sensitive infor-
mation that initiates re-planning and provides this in-
formation to the server node. The server node has au-
thority to initiate re-planning with the client node and
sends an alert to the client node, along with a “virtual
folder” that contains thumbnails of relevant images and
the associated links to the complete images. Personnel
on the client and server nodes collaborate to develop a
new plan, which the client then performs.

The research described in this paper applies multi-
layer adaptive middleware techniques to alleviate key
limitations that impede successful mission re-planning:
1. Limits on radio data link bandwidth that constrain

the operational utility of existing systems to col-
laboratively re-plan missions of airborne nodes.

2. Static resource management schemes that often
rely on over-allocation strategies and reduce (and
sometimes exhaust) the amount of processor and
network resources available for mission re-plan-
ning and rehearsal.

A key goal of the WSOA OEP evaluation system il-
lustrated in Figure 1 is to use adaptation to provide the
client the same level of confidence in the re-directed
plan as in the original pre-planned version, even in the
face of dynamic environmental factors such as varia-
tions in network bandwidth and unannounced mission
re-planning alerts. Therefore, in addition to providing
the client up-to-date information detected by remote
sensors (e.g., fresh images of the new destination) and
about the environment it will encounter en-route to and
from the new destination, the OEP must manage key
trade-offs between transmission quality and latency for
that information.

Our solution is to implement QoS-managed browser-
like collaboration capabilities to (1) enable the client
and server nodes to view the same displays and infor-
mation and (2) ensure image quality and transmission
latency stay within acceptable bounds, in a manner that
is as independent as possible of the available resources
(obviously there is a minimum, below which nothing
useful can be accomplished). This common browser
view also allows server-side personnel to decorate im-
agery with annotations that will be visible on the client
node rapidly, i.e., within one second. The advantage of
this approach is that features can be located on an im-
age via an icon placed at a precise location relative to
an easily identified reference point.

This capability in turn allows personnel at the client
and server nodes to establish a common frame of ref-
erence of the plan update and the new destination en-
vironment while the client is en-route to that destina-
tion, which is far better than the voice-only radio com-
munications previously available in conventional re-
planning systems. Our solution is readily extensible to
scenarios encompassing multiple client and server
nodes, as well as other applications (such as coordina-
tion within teams of autonomous agents in rapidly
changing environments or circumventing cascades of
failures in distributed critical infrastructure) that re-
quire adaptive run-time support for collaborative re-
planning.

2.1. Design and Implementation Overview

In the WSOA OEP application, a server-side operator
first uses a user interface to send an alert to the client
along with a virtual target folder containing a set of
thumbnail images to the client. The collaboration client
application (on the fighter aircraft) also contains a vir-
tual folder manager component, which provides it ac-
cess to and storage of virtual folders and their images.
If sufficient memory is available, the virtual folder
manager can hold more than one virtual folder, though

only a single virtual folder was downloaded for our
OEP evaluation.

The client node determines which page of the virtual
folder is displayed. Personnel on the client node can
navigate the virtual folder forward and backward using
“next” and “previous” buttons on their cockpit display.
The virtual folder can also be reset to a home page by
touching another button. A thumbnail page in the vir-
tual folder allows the operator to select images to
download without the overhead of downloading each
complete image. A bar next to each thumbnail indicates
whether its corresponding image has been downloaded:
the bar is green if so and if not is red.

Server and client node personnel can then draw an-
notations and move commonly viewed individual cur-
sors during the collaboration. To avoid problems with
having both the server and client manipulate the image
simultaneously, the client is given control of image
download and manipulation during the collaboration,
including panning side-to-side, rotation, and zooming.

Server and client node personnel can move their re-
spective cursors to indicate a specific location on the
image. They are also able to draw circle, line, rectan-
gle, and triangle annotations to designate larger regions
on the image. Update messages are sent between the
collaboration server and client to update cursor posi-
tions and annotations. The server to client update mes-
sage contains server cursor movements and annotations
drawn on the server. The client to server update mes-
sage contains image manipulation information in addi-
tion to client cursor movements and client-drawn anno-
tations. Update messages are only sent as needed and
only contain updates since the last such message. Dis-
plays on both client and server are updated with the
update information to maintain a common synchro-
nized view of the virtual folder.

2.2. Improvements in the State of the Ar t

Our DOC middleware approach provides an open sys-
tems “bridge” between legacy on-board embedded avi-
onics systems and off-board information sources and
systems. The foundation of this bridge is a Real-time
CORBA Object Request Broker (ORB) [2] using a
pluggable protocol to communicate over a very low
bandwidth (approximately 2,400 baud in each direc-
tion) Link-16 tactical data network. Link-16 time slots
were allocated asymmetrically in the OEP so that the
image tiles were downloaded at close to 4,800 baud
with a small fraction of the bandwidth allocated to
carry tile requests and update messages from the client
to the server.

We have applied middleware technologies at several
architectural layers to manage key resources and ensure

the timely exchange and processing of mission critical
information. In combination, these techniques support
Internet-like connectivity between server and client
nodes, with the added assurance of real-time perform-
ance in a highly resource-constrained environment.

The WSOA OEP evaluation system leverages ex-
isting open systems client and server platforms. On the
client side, we used an Operational Flight Program
(OFP) system architecture based upon commercial
hardware, software, standards, and practices [9] that
supports re-use of application components across mul-
tiple client platforms. The OFP architecture includes
the Bold Stroke avionics domain-specific middleware
layer [10] built upon The ACE ORB (TAO) [11], a
widely-used C++ Real-time CORBA implementation
available from deuce.doc.wustl.edu/Download.html.

This middleware isolates applications from the un-
derlying hardware and operating system (OS), enabling
hardware or OS advances from the commercial mar-
ketplace to be integrated more easily with the avionics
application. This architecture uses the adaptive mid-
dleware technologies described in Section 3 to address
the limitations with time-sensitive mission re-planning
noted at the beginning of this section.

2.3. System Resource Management Model

The resource management model for the WSOA OEP
evaluation system is illustrated in Figure 2. When client
personnel request an image, that request is sent from
the browser application to a QuO application delegate
[9], which then sends a series of requests for individual
tiles via TAO over a low-bandwidth Link-16 connec-
tion to the server. The delegate initially sends a burst of
requests to fill the server request queue; after that it
sends a new request each time a tile is received. For
each request, the delegate sends the tile’s desired com-
pression ratio, determined by the progress of the over-
all image download when the request is made.

On the server, the ORBExpress Ada ORB [12] re-
ceives each request from the Link-16 connection, and
from there each tile goes into a queue of pending tile
requests. A collaboration server pulls each request
from that queue, fetches the tile from the server’s vir-
tual target folder containing the image, and compresses
the tile at the ratio specified in the request. The col-
laboration server then sends the compressed tile back
through ORBExpress and across Link-16 to the client.
Server-side environmental simulation services emulate
additional workloads that would be seen on the com-
mand and control (C2) server under realistic operating
conditions.

Back on the client, each compressed tile is received
from Link-16 by TAO and delivered to a servant that

places the tile in a queue where it waits to be decom-
pressed. The tile is removed from the queue, decom-
pressed, and then delivered by client-side operations to
Image Presentation Module (IPM) hardware which
renders the tile on the cockpit display. The decom-
pression and IPM delivery operations are dispatched by
the TAO Event Channel [13] at rates selected in con-
cert by the RT-ARM [14] and the TAO Reconfigurable
Scheduler [5][15], as described in Sections 3.2 and 3.3,
respectively.

Environment
Simulation

Collaboration
Server

Virtual
Folder

Decompression
and IPM

Browser
Application

Progress
Contract

Application
Delegate

TAO ORB

Link-16 Software Link-16 Software

TAO
Scheduler

RT-ARM
QoS

Management

ORBExpress

Server
Side

Client
Side

TAO
Event Channel

Key:
QoS adaptation
request/tile path

tile request
queue

compressed
tile queue

Cockpit
Display

threads/timers

low bandwidth

link

coarsest
adaptation

finest
adaptation

2nd finest
adaptation

2nd

coarsest
adaptation

Environment
Simulation

Collaboration
Server

Virtual
Folder

Decompression
and IPM

Browser
Application

Progress
Contract

Application
Delegate

TAO ORB

Link-16 Software Link-16 Software

TAO
Scheduler

RT-ARM
QoS

Management

ORBExpress

Server
Side

Client
Side

TAO
Event Channel

Key:
QoS adaptation
request/tile path

tile request
queue

compressed
tile queue

Cockpit
Display

threads/timers

low bandwidth

link

coarsest
adaptation

finest
adaptation

2nd finest
adaptation

2nd

coarsest
adaptation

Figure 2: Resource Management Model

3. Overview of Adaptive Middleware

To address the challenges described in Section 2, we
have designed, implemented, and flight-tested an inte-
grated multi-layered QoS enforcement architecture
based on the Real-time CORBA standard. A key theme
in this architecture is that coarser-grain adaptation is
performed by higher layers of the architecture (i.e.,
closer to the application), with finer grained adaptation
at each lower layer (i.e., closer to the OS and hard-
ware). To enhance performance, our architecture tries
to handle adaptation at the lowest layer possible, mov-
ing up to higher layers only if QoS requirements cannot
be met via adaptation in the current layer.

Figure 2 illustrates the resource adaptation architec-
ture of the WSOA OEP evaluation platforms and mid-
dleware. The finest granularity of adaptation in the
WSOA system architecture is the lowest priority dy-
namic scheduling of non-critical operations [5] by the
dispatcher of the TAO Real-Time Event Channel,
which we developed in previous research [13]. The
second finest level of adaptation granularity is achieved
by a Real Time Adaptive Resource Manager (RT-
ARM) [14] and the TAO Reconfigurable Scheduler

[5][15], which re-schedule rates of invocation of appli-
cation components while maintaining deadline-feasible
scheduling of critical operations. The second coarsest
level of adaptation is performed by the Quality Objects
(QuO) framework [9], which monitors progress
downloading and processing image tiles toward the
desired deadline for the entire image.

While QuO represents the highest middleware layer
in the OEP system architecture, the highest layer at
which adaptation can be performed is the application
layer, where the client personnel can specify coarsest
grain requirements for image quality and timeliness.
The remainder of this section describes each middle-
ware layer outlined above in detail, ranging from the
coarsest to the finest granularity of adaptation.

3.1. QuO: 2nd Coarsest Grain Adaptation

QuO is an aspect-oriented middleware framework cre-
ated by BBN Technologies to support the development
of QoS behavior of a system separate from – but in
conjunction with – the development of its functional
behavior.

Figure 3: QuO Architecture Overview

The following QuO components are shown in Figure 3
and used in the WSOA OEP test-bed:
1. Contracts specify desired and available QoS,

along with the policies for controlling QoS and
adapting to changes.

2. Delegates are remote object proxies, with well-
defined points to insert adaptive behaviors into
end-to-end paths.

3. System condition objects provide interfaces to
parts of the system that must be measured or con-
trolled by contracts.

Since QuO is general-purpose framework that can
support a variety of adaptation strategies, we developed
a reactive QoS adaptation policy [16] for the OEP
evaluation system that manages the overall trade-offs of
timeliness versus image quality. When the client node
requests an image from the server node, a QuO dele-

gate breaks the image request up into a sequence of
separate tile requests—each tile is a smaller-sized piece
of the entire image for which a separate compression
ratio can be assigned. The number of tiles requested by
the delegate is based upon the image size, while the
compression level of an individual tile can be adjusted
dynamically based upon the deadline for receiving the
full image and the expected download time for the tile.
The image is tiled from the point of interest first, with
the early tiles containing the most important data, so
that decreased quality of later tiles will have minimal
impact on the overall mission re-planning capabilities.

In the OEP evaluation system, a QuO delegate
adapts the compression level of the next tile requested.
A QuO contract monitors progress of the image
download through system condition objects and influ-
ences the compression level of subsequent tiles based
upon whether the image is behind schedule, on sched-
ule, or ahead of schedule. If the processing of the im-
age tiles falls behind schedule, the contract prompts the
RT-ARM (described in Section 3.2) to attempt to ad-
just invocation rates to allocate more CPU cycles to tile
decompression.

The delegate first determines the number of tiles into
which the image will be broken. Due to constraints on
both the server tiling software and the client display
software, in the OEP evaluation system the choices
were limited to 1, 16, or 64 tiles. Our experiments (de-
scribed in Section 5) revealed that breaking a 512 x
512 pixel image into 64 tiles introduced too much
overhead, which increased the download time dramati-
cally. We therefore always requested either 16 tiles or
the entire image.

The delegate also determines the initial compression
ratio for the image. We used the lowest compression
ratio available for the initial tiles, because tiles are re-
quested starting from the region of interest first and
subsequent tiles are not as valuable. It therefore is most
likely for the application to download image tiles at
compression ratios greater than or equal to that of the
region of interest, which is the model we adopted for
our experiments described in Section 5.

After the number and initial compression ratio of
tiles have been set, the delegate makes several calls to
the server to request the first set of tiles. The number of
tiles requested initially is determined by the size of a
tile request queue that holds outstanding tiles requested
from the server, but not yet received by the client. This
queue enables the QuO encoded policy to delay re-
questing tiles until necessary to provide the maximum
impact of compression ratio adaptation, while ensuring
that there is always a tile request ready for the server to
process.

Finally, the delegate initiates periodic callbacks to its
methods, so that it can perform contract evaluation,
adjust compression ratios, and request subsequent tiles
as needed to fill the tile request queue. As tiles are re-
ceived from the server node, QuO system conditions
count the tiles received, processed, and displayed.

There are four operating regions specified by the
QuO contract: inactive, early, on time, and late. The
inactive operating region is entered when the entire
image has been downloaded. The on time operating
region indicates that the image is on pace to complete
before – but close to – its deadline. Similarly, the early
region indicates that the image is on pace to finish well
before its deadline and the late operating region indi-
cates that the image will finish after the deadline at the
current rate of progress.

There is no change in the compression ratio if the
current operating region is on time. If the current re-
gion is early, then the compression ratio is lowered to
the initial compression ratio, so that the remaining tiles
can have the same quality as the initial tiles. If the cur-
rent operating region is late, and the compression ratio
is not already at the highest possible compression of
100:1, the compression ratio is increased by an incre-
ment of 25:1 from its current position in the range
[50:1, 75:1, 100:1]. After checking progress – and if
necessary setting a new compression ratio and notifying
the RT-ARM of any changes in the operating region –
QuO checks the request queue’s depth and requests
additional tiles until the tile request queue is full or the
last tile has been requested. QuO can be downloaded in
open-source format from quo.bbn.com.

3.2. RT-ARM: 2nd Finest Grain Adaptation

The RT-ARM is a reactive resource adaptation service
developed by Honeywell Technologies and used in the
WSOA OEP to manage the progress of the thread(s)
for decompressing received tiles and delivering them to
the application by the client of the OEP. When trig-
gered to react, the RT-ARM manipulates the CPU us-
age of key operations on the request/tile path, such as
tile decompression and delivery of tiles to the IPM
processor in the cockpit. The RT-ARM does this by
manipulating subsets of task invocation event rates
from application-specified available rate sets, as Figure
4 illustrates.

Figure 4: RT-ARM Service

If image tile processing falls behind schedule, the
QuO contract prompts the RT-ARM to adjust ranges of
invocation rates to re-allocate more CPU cycles to de-
compressing remaining tiles. In response to changing
environmental conditions, the RT-ARM can trigger
such adaptation in two ways: (1) reactively when the
QuO contract notifies the RT-ARM that the operating
region boundary has changed or (2) proactively when it
periodically checks the status of the system and notices
a current or impending violation of the operating region
limits. We distinguish the case where the RT-ARM
simply evaluates its operating status and takes no ac-
tion from the case where that evaluation triggers a
change in rate ranges and a corresponding re-
computation of rates and priorities by the TAO Re-
configurable Scheduler described in Section 3.3.

The RT-ARM attempts to keep operations within the
on time QoS region by shrinking or expanding their
respective ranges of selectable rates. This strategy was
implemented by computing the average number of dis-
patches required by an operation at a given time, then
discarding the rates that would cause the operation to
complete too early or too late. As a result, rates of im-
age processing operations that begin to veer towards
the “early” and “ late” regions are forced to adapt. If
this level of adaptation is insufficient to keep the over-
all image download on time, QuO steps in and adjusts
both the RT-ARM operating region and the compres-
sion level of the next tile.

3.3. TAO Reconfigurable Scheduler : 2nd Finest
Grain Adaptation

The TAO Reconfigurable Scheduler is a CORBA
scheduling service implementation designed for flexi-
ble support of hybrid static/dynamic scheduling [5],

developed by Washington University, St. Louis. The
TAO Reconfigurable Scheduler selects a feasible set of
rates of operation invocation and assigns priorities to
the operations according to the scheduling strategy with
which it was configured.

Figure 5: Reconfigurable Scheduler and Event

Channel Dispatcher Interoperation in TAO

When the RT-ARM modifies the ranges of invoca-

tion rates, the TAO Reconfigurable Scheduler first
provides criticality assurance for the hard real-time
operations by ensuring each operation is scheduled at a
rate in its available range and that all critical operations
can be feasibly scheduled at those rates. The TAO Re-
configurable Scheduler then adds non-critical process-
ing and optimizes processor utilization for the image
processing operations by maximizing their rates subject
to schedule feasibility. In this application, operations
associated with re-planning are non-critical.

In the earlier Adaptive Software Test Demonstration
(ASTD) program [17], we tried a simple integration of
the TAO Reconfigurable Scheduler with the RT-ARM,
in which the RT-ARM would propose a set of rates for
operations and TAO’s Reconfigurable Scheduler would
generate a schedule and then evaluate that schedule’s
feasibility. Unfortunately, that approach proved compu-
tationally inefficient since RT-ARM and TAO’s sched-
uler operated too independently. Those results, how-
ever, pointed to the solution pursued in this work:
closer integration of adaptation mechanisms. We
evolved the TAO Reconfigurable Scheduler so that the
rate selection mechanism was pushed down into it,
while the policy for rate selection was supplied by the
RT-ARM. Specifically, the RT-ARM provided a spe-
cific rate selection strategy to the TAO Reconfigurable
Scheduler at system initialization time based upon op-
eration criticality and available rates.

We describe the design and implementation of these
architectural improvements in detail, in Section 4.
These revisions are released in TAO’s Reconfigurable
Scheduler, which can be downloaded as open-source at

deuce.doc.wustl.edu/Download.html, along with the
rest of the TAO middleware.

4. Architectural Improvements to Optimize
RT-ARM and TAO Scheduler Interaction

The first revision we made to the TAO Reconfigurable
Scheduler for the WSOA OEP case study was to refac-
tor its implementation for greater re-configurability,
extending similar efforts started during the ASTD pro-
gram. The original implementation of hybrid
static/dynamic scheduling in TAO used a single recur-
sive algorithm to traverse the graph of operation de-
pendencies. Although this worked well for simple de-
pendency relationships between operations, it was dif-
ficult to (1) integrate new actions such as rate and criti-
cality propagation across dependencies, or to (2) select
which actions were relevant to – and so should be ap-
plied with – different scheduling policies. We there-
fore refactored the monolithic algorithm to apply dif-
ferent actions as visitors, as illustrated in Figure 5.

The use of visitors for different actions greatly sim-
plified implementation of our second revision to the
TAO Reconfigurable Scheduler. In the second revision
we incorporated rate selection into the schedule genera-
tion and feasibility analysis steps to determine an or-
dering of key operation characteristics used by a par-
ticular scheduling heuristic, assign both rates and pri-
orities through different forms of sorting, and apply the
most efficient sorting algorithm for each case. This
strategy in turn allows one scheduler to be used for
efficient rate selection and priority assignment, all
adaptively at run-time. Figure 6 illustrates the four
optimizations made to the TAO Reconfigurable Sched-
uler to support efficient adaptive rescheduling of both
operation rates and operation priorities under a range
of scheduling and rate selection policies.
A. De-normalized operation descr iptors: We de-
normalize the available rate set and fixed characteris-
tics for each operation into a sequence of flat tuples of
characteristics (containing e.g., the operation handle, a
particular rate, the execution time at that rate). We then
derive information that facilitates sorting for and utili-
zation bounds checking. For example, we specify the
index of a tuple within an operation’s ordered set of
rates, and the utilization difference for an operation
between each pair of its consecutively indexed tuples.
This optimization can help meet our goal to trade per-
formance of individual elements (i.e., rate of execution)
for overall performance objectives (i.e., maximizing
the number of feasible operations).

Figure 6: Scheduler Adaptation Optimizations

B. Rate and pr ior ity sor ting: We recast rate and pri-
ority assignment as a sorting problem over operation
characteristics, with at worst an O(nlog(n)) bound on worst-case
performance, and an O(n) bound on worst-case performance
in certain special instances of the more general prob-
lem. Since our scheduling approach applies to arbitrary
collections of operation characteristics, for some com-
binations of operations and scheduling strategies an
O(nlog(n)) comparison sort may be needed. For our tar-
get avionics application, however, all operations are
known in advance and the value spaces of the charac-
teristics of interest (e.g., whether an operation is man-
datory, its available periods) are small, so the more
efficient O(n) radix sorts are applicable in many cases.
This optimization can help meet our system goal to
perform adaptive resource reallocations within firmly
bounded time-scales.
C. Rate assignment policies: We encapsulate specific
sort ordering strategies as policies for rate assignment,
much as we have done previously for scheduling poli-
cies [15]. To illustrate the range of possible strategies
for ordering tuples during rate selection, we present
two canonical strategies, based on two different views
of fairness:
• FAIR strategy: In the first strategy, called Fair As-

signment by Indexed Rate (FAIR), we emphasize
fairness across all operations, ordering tuples by as-
cending rate index, then descending criticality, then
mean rate, and finally (to ensure a total ordering of
tuples) by descriptor handle. This strategy selects the
lowest rate for each operation, for mandatory first
operations and then optional operations, then the
next rate for each mandatory operation and the each
optional operation, and so forth.

• CB-FAIR strategy: In the second strategy, called
Criticality-Biased FAIR (CB-FAIR), we emphasize
criticality partitioning, and order tuples first by de-
scending criticality, then by ascending rate index in-
dex, then mean rate, and finally (again to ensure a to-

tal ordering of tuples) by descriptor handle. This op-
timization adds flexibility to meet our goal to im-
prove real-time performance across heterogeneous
criteria, i.e., both rate and criticality.

D. Rate Selection: Once the tuples are sorted, we per-
form a single O(n) traversal of the tuples to select the rate of
each operation and determine expected utilization val-
ues based on the rates selected and the advertised exe-
cution times. As we iterate through the sorted tuples,
we maintain variables for (1) the total utilization by
mandatory operations, and (2) the total utilization by
all operations, based on the tuples selected so far. A
tuple is selected if and only if the additional utilization,
compared to the utilization for the previously admitted
tuple for that operation, will still fit within the utiliza-
tion threshold associated with that tuple. The highest
rate of any tuple selected for an operation becomes the
assigned rate for that operation. This optimization can
help meet our goals to trade performance of individual
elements for overall real-time objectives, and to per-
form adaptive resource reallocations within firmly
bounded time-scales.

5. Methodology for Empir ical Studies

This section introduces the objectives and approach to
a set of adaptive middleware experiments completed
during post-flight ground tests of the WSOA OEP in
January 2003, which followed the actual flight tests
conducted in December 2002. The four primary goals
of our experiments were to (1) quantify the ability of
multiple layered QoS management mechanisms within
the Bold Stroke middleware framework to maximize
image fidelity while meeting download deadlines, (2)
offer preliminary assessment of the relative contribu-
tions of the different QoS management mechanisms
outlined above, (3) profile the temporal performance of
those mechanisms, and (4) quantify the relative benefits
of this approach compared to the same application run-
ning without adaptation.

We note that perceivable image quality decreases
monotonically as image compression increases over the
range from 50:1 to 100:1. Moreover, our assessment of
the compression quality achieved for a given image is
weighted by whether or not it met its deadline. These
experiments also measure trade-offs between timeliness
and image quality in a relatively sanitary system envi-
ronment, to remove all influences outside the scope of
the metrics considered here. In doing so, we established
a baseline against which realistic parameters (e.g., net-
work latency jitter, traffic loads, or other factors) can
be varied in a managed way and their contributions to
system behavior also quantified.

Section 5.1 first introduces the metrics we used to
evaluate the OEP architecture. Section 5.2 then de-
scribes the design of the experiments themselves,
grouped into the following four distinct studies of
adaptive QoS management: (1) the OEP system with no
adaptation (which serves as an experimental baseline),
(2) the QoS management approach described in Section
3, with reactive adaptation of both image compression
levels and scheduling (rates and priorities) of image tile
processing operations, (3) the same approach but with
scheduling adaptation turned off, and (4) a simple con-
trol-based approach to image compression adaptation
that explored the system’s response to this kind of con-
trol. Finally, Section 5.3 describes the platform on
which the experiments were run. The results of these
experiments are presented in Section 6.

5.1. Evaluation Metr ics

The key metrics assessed by our experiments were:
1. Timeliness of image download, i.e., whether the

entire image was downloaded and displayed before
an advertised deadline relative to the time of the
image request from the application.

2. Quality of the downloaded image in terms of the
compression ratios of the image tiles, compared to
the uncompressed version of each tile, and

3. Scalability of the resource management approach,
in terms of the overheads of specific mechanisms
in the critical path of the resource management
services, i.e., the QuO infrastructure, the RT-ARM
service, and the TAO Reconfigurable Scheduler.

The first two metrics assess the ability of the OEP to
manage multiple QoS properties simultaneously, as
perceived by the collaborative mission re-planning
application, while the third metric assesses the under-
lying middleware infrastructure itself.

In addition to studying our overall resource man-
agement approach, we also sought to examine the rela-
tive contributions of the individual mechanisms. In
particular, we sought to isolate the impacts of mecha-
nisms for (1) end-to-end reactive image compression
management and (2) client-side reactive rescheduling
of tile processing operation rates.

5.2. Exper iment Design

Our experiments were conducted using the server and
client software systems developed for the WSOA OEP
evaluations, including a representative Operational
Flight Program (OFP) on the F-15 fighter airplane cli-
ent and a representative imagery server on the com-
mand and control (C2) airplane. Resource management

was conducted primarily on the client side, which is
where we have focused the bulk of our analysis.

The experiments were run on realistic hardware in
the Avionics Integration Center (AIC) laboratory at
Boeing, St. Louis. We ran each experiment using the
client and server system terminals in that laboratory
and ran each set of trials over a range of download
deadlines. Each experiment consisted of requesting a
virtual folder containing compressed thumbnails of the
actual images being downloaded from the server. When
the virtual folder arrived at the client, it then immedi-
ately requested four images in succession from the
server.

Within each experiment, the same trial was then re-
peated with different deadlines, except for the case of
experiments without adaptation where instead we set
the compression ratio explicitly, and measured the
download time at each of 3 fixed image compression
ratios, i.e., 50:1, 75:1, and 100:1. Compression ratios
of 50:1 and 100:1 were selected by Boeing system en-
gineers as upper and lower boundaries of image quality
for the experiment.

There was no noticeable degradation in image qual-
ity below 50:1 compression (thus making it a baseline
calibration point for adaptation), while degradation was
significant at 100:1. Due to time and cost constraints,
we did not seek to examine the effects of different
characteristics of the images themselves, but instead
experimented with an assortment of images so that we
could (1) quantify performance of the adaptation tech-
niques over a range of image effects and (2) give pre-
liminary indications of sensitivity to image makeup for
future study.

In the experiments, processing is initiated by trans-
mission of an Alert from the server to the client, fol-
lowed by a virtual folder with two thumbnail images.
Each thumbnail serves as an additional icon to distin-
guish that image from the others in the virtual folder.
For evaluating the performance of the WSOA adapta-
tion architecture we confine our attention to the images
themselves, though for completeness we also measured
thumbnail download latencies and present them in Sec-
tion 6.

To assess the viability of the individual QoS adap-
tation technologies and the overall WSOA architecture,
we ran the four experiment trials described below. In
each trial the image was divided into 16 tiles, which
were sent from the region of interest outward. For each
tile, a message was sent from the client to the server
with a request for the tile to be sent at a given com-
pression ratio. The server selected the closest achiev-
able compression ratio to that requested, transmitted
the tile to the client, and recorded the ratio actually

used. When a tile was received by the client, it was
queued pending processing by an operation which de-
compressed the tile then delivered it via an image trans-
fer operation to the IPM for display on the client.

For these experiments, we found that 38, 42, 46, 50,
54, and 58 seconds represented a covering set of image
download deadlines for the trials with both com-
pression and scheduling adaptation. We therefore ran
only those deadlines for the two remaining trials with
compression adaptation but not scheduling adaptation.

Tr ial 1: No Adaptation of Compression or Sched-
uling. We first benchmarked the OEP application per-
formance without adaptation to establish a baseline
against which we measure improvement for the three
other experiment trials. We measured the download
time of each of the 4 images at each of three compres-
sion ratios (50:1, 75:1, and 100:1).

Tr ial 2: Reactive Compression + Scheduling Ad-
aptation. We then measured the OEP system with ad-
aptation of both image compression parameters and
operation scheduling parameters. We instrumented the
system to record the (1) end-to-end performance of the
application, (2) performance of particular segments of
the data and computation paths affecting end-to-end
performance, and (3) overhead for key adaptation
mechanisms in the infrastructure.

Tr ial 3: Reactive Compression Adaptation Only.
To assess the relative contributions of compression vs.
scheduling adaptation, we ran the same set of experi-
ments used in the second set of trials, but with sched-
uling adaptation turned off. The need for this set of
experiments was reinforced late in the system devel-
opment phase when Boeing engineers noticed the con-
tribution of scheduling adaptation to end-to-end per-
formance was not evident in the Boeing Windows NT-
based Desktop Test Environment (DTE). As the results
in Section 6 reveal, this was solely an artifact of the
non-real-time performance of the DTE, i.e., when the
VxWorks real-time OS was used in the ground and
flight environments, the contribution of scheduling
adaptation to end-to-end timeliness became clear.

Tr ial 4: L inear Control Law Exper iments. We
noticed that the reactive style of compression adapta-
tion used in the system design resulted in very coarse-
grained transitions in the image tile compression ratios,
albeit with the resulting performance being suitable to
the specific collaboration application. To further ex-
plore applicability of our approach outside the particu-
lar application studied, we conducted a narrowly fo-
cused set of experiments to examine the responsiveness
of the OEP evaluation system to finer-grained image
tile compression management.

Since imagery tiling was done from the point of in-
terest and radiating outward, the net effect of the re-
active adaptation policy was to show the largest possi-
ble area around the point of interest at highest quality
and then degrade the remaining tiles as a step function
to a lower resolution. While this approach is suitable
for our avionics application, other applications (such as
opportunistic recognition of features from real-time
imagery) might show less bias toward a particular sin-
gle location in an image, and thus could benefit from
maximizing the quality of all tiles.

We therefore experimented with replacing the reac-
tive tile compression adaptation strategy encoded in the
QuO contract with a simple controller that sought to
minimize image tile compression while still meeting
the image download deadline. When each tile was re-
ceived, the controller calculated a new minimum feasi-
ble compression ratio based on the image deadline and
the download progress to that point.

5.3. Exper imental Platform

In the WSOA experiments, the client platform was a
400 MHz Dy-4 PPC 750 processor with 128 MB of
memory, running the VxWorks real-time OS, version
5.3.1, with TAO version 1.0.7. The server was hosted
on a flight-ready chassis with multiple Alpha proces-
sors running the DEC Unix OS and ORB-express/RT
Ada version 2.0.2. A Boeing-owned console with dual
Digital Alpha 480 MHz single board computers was
used by the server-side operator.

System components were distributed across both
computers, using a simulated Link-16 network over
100Base-T Ethernet cabling. The majority of server
functionality was inherited from a legacy Boeing pro-
ject, whose software was tested on Digital Alpha and
Sun Solaris variants of the UNIX OS. At the time of
system design, only the Alpha platform was available
in a ruggedized, flight-worthy package. Alpha UNIX is
also representative of a broader class of high-per-
formance, soft real-time operating systems.

6. Empir ical Results

This section presents the results of the experiments
described in Section 5. We first examine baseline end-
to-end download latencies for images compressed at
the fixed ratios of 50:1, 75:1, and 100:1 and then pre-
sent latencies when using the adaptation techniques
described in Section 3. We next examine image tile
compression adaptation response under different
strategies and present image tile queueing latencies
measured on the client node. We finally explore the
overhead of the adaptation techniques and characterize

the interactions between the integrated RT-ARM and
TAO Reconfigurable Scheduler described in Section 4.

End-to-End Image Latency at Fixed Compression
Ratios. We first measure the total time from initial
request to receive and process each image. We use this
baseline information to compare results of the other
trials to assess the effectiveness of adaptation and es-
tablish quantitative bounds on the image quality and
download time trade-offs achievable by adaptation in
the OEP evaluation system. Figure 7 summarizes
those results.

Figure 7: Image Latency without Adaptation

In Trial 1, over the bandwidth-limited radio data
link, images compressed at the highest ratio (lowest
image quality) of 100:1 took roughly 40 seconds to
download (a lower bound on timeliness), and each fac-
tor of 25 reduction in the compression ratio (corre-
sponding to improved image quality) cost another 6 to
7 seconds to download the image, thus establishing a
baseline for the trade-off between timeliness and com-
pression. We also note latency variations between the
images themselves, which appeared in all the trials.

Image Latency with Adaptation to End-to-end
Deadlines. We next compare end-to-end image
download times to respective deadlines. From Trials 2
and 3 respectively, we measured end-to-end image
download latencies for deadlines of 38, 42, 46, 50, 54,
and 58 seconds. In Trial 2, adaptation of operation
invocation rates was also performed, while in Trial 3 it
was not. We note that from Trial 1 the 38 second dead-
line is infeasible even at the highest compression ratio
of 100:1, and the 58 second deadline can be bet at the
lowest compression ratio of 50:1, and thus does not
require any adaptation. For the rest of this paper we
therefore confine our attention to the 42, 46, 50, 54
second deadlines.

Figure 8: Adaptation of both Compression and

Scheduling

Figure 9: Compression Adaptation Only

The observed results, seen in Figures 8 and 9,
showed that compression adaptation alone is insuffi-
cient to ensure key deadlines are met, with images 2, 3,
and 4 missing both the 42 second and 54 second dead-
lines in Trial 3, but only image 4 missing the 42 second
deadline in Trial 2. Even with adaptation of both image
tile compression and operation invocation rates, how-
ever, the additional overhead of adaptation can make
tight deadlines (e.g., 42 seconds) infeasible even
though without adaptation they are (barely) achievable.
Interestingly, the benefit of adaptation of operation
invocation rates outweighs its cost even with tight
deadlines, e.g., more images made the 42 second dead-
line with adaptation of operation invocation rates than
without rate adaptation.

Image Compression Adaptation Response. We
now consider the recorded image tile compression lev-
els in each trial. In the cases where the sequence of
compression ratios was the same for more than one
deadline in a given tile, we consider only the latest
deadline of each such equivalent set. In Trial 3, we
confined our attention to image tile compression only.

It is therefore most appropriate to compare the ex-
periments with compression control in Trial 4 to those
in Trial 3. Since the RT-ARM scheduling adaptation
mechanisms were deactivated in both experiments, the
effects of scheduling adaptation are suppressed, letting
us focus on compression in isolation.

Figure 10: Reactive Compression Adaptation

Figure 11: Compression with Simple Control

From Trials 3 and 4, the observed results seen in
Figures 10 and 11, show that although it is possible to
adapt image download times effectively at coarse-
granularity in the compression ratios (100:1, 75:1, and
50:1), the OEP is amenable to much finer-grained
compression adaptation management. This is a par-
ticularly important result in light of excess laxity ob-
served at the 46 and 50 second deadlines in Trial 2.
I.e., some of the time by which each image arrived
early might be traded for image quality in practice.

Client-side Image Tile Queueing Latency. Upon
receipt from the network, each tile sent by the server is
stored in a queue on the client until it is retrieved from
the queue by the tile decompression operation. The rate
at which the decompression operation is invoked, and
thus at which tiles are retrieved from the queue was
fixed at 1 Hz in Trials 1, 3, and 4, and managed adap-
tively in Trial 2.

Figure 12: Tile Queuing Latency without Adap-

tation
The observed results, seen in Figures 12 and 13,
showed much lower latencies in Trial 2, and thus iden-
tify the client-side tile receive queue as a crucial stage
of the end-to-end QoS performance model for the
WSOA OEP, and highlight the importance of adap-
tively managing tile processing operations. Adjusting
the rates at which those operations are run significantly
decreases the time image tiles spend idly in the queue.

Figure 13: Tile Queuing Latency with

Adaptation

Scheduler Re-computation Latency under RT-
ARM Management. Our next area of study was the
measurement of schedule re-computation overhead
resulting from the narrowing of rate ranges by the RT-
ARM, and the priority and rate re-assignment by the
TAO Reconfigurable Scheduler, described in Section
4. From the results of Trial 2, the key insight is that the
number and duration of re-scheduling computations is
both (1) reduced overall compared to our earlier results
in the ASTD program [17] and (2) proportional to the
degree of rate adaptation that is useful and necessary
for each deadline. All trials showed an initial schedule
computation time identical to the initial schedule com-
putation times without rate adaptation.

Overhead of QoS Management Mechanisms. In
addition to examining the performance of the applica-
tion as a whole, we quantify overhead of the individual
adaptation services, for preliminary evaluation of scal-

ability and possible optimization, and to guide further
expansion of our resource management approach to
both systems with constraints at smaller time scales and
larger-scale systems of systems. Table 1 summarizes
these results.

Mechanism Trial 2 Trials 1, 3, 4

QuO Contract 0 – 30 msec 0 – 10 msec
Region Transition 0 – 10 msec < 5 msec
QuO Delegate 0 –20 msec 0 – 5 msec
RT-ARM 0 – 10 msec N/A
Initial Schedule 185 msec N/A

Table 1. QoS Management Latency

These results suggest scalability of our approach will
be reasonably good overall. It is important to note that
the timing capabilities of the VxWorks OS where these
experiments ran was only accurate to within 5 ms,
which is relevant to the overhead measurements in Ta-
ble 1, many of which are in the range of 10’s of ms.

7. Lessons Learned from Empir ical Studies

This section summarizes the implications of the em-
pirical results presented in Section 5 and describes the
key lessons learned from our experiments with the
multi-layered adaptive middleware techniques pre-
sented in Section 3.

Adaptation of both tile compression and opera-
tion rates improves timeliness, but at some overhead
cost. As shown in Figure 8, image 4 missed the 42 sec-
ond deadline by a small margin with adaptation of both
compression ratios and operation scheduling. The same
image missed that deadline with all of the adaptive
strategies, however, even though this deadline is
achievable with a fixed compression ratio of 100:1 as
shown in Figure 7. Imprecision of the adaptation
strategies contributed to missing the deadline, i.e., reac-
tive adaptation always started with the first two tile
requests being at the lowest compression ratio of 50:1
and control adaptation started at a lower compression
ratio (and finished at a lower compression ratio after
the deadline was missed).

We surmise that the overhead of adaptation – though
small – contributed to the difficulty in attaining this
deadline. It is possible that a variation on the adapta-
tion strategy would exhibit better results in similar
situations. For example, while our adaptation policy
could degrade all but the initial tiles containing the area
of interest, it did not consider dropping any of the later
tiles. The tightest feasible deadlines, i.e., 42 seconds,
could only be met by compressing the whole image at

100:1 as Figure 7 shows. With looser deadlines, how-
ever, it might be preferable to get the first tiles at high
quality and drop the last few tiles rather than degrade
the whole image.

Choice of adaptation strategy is impor tant. Over-
all, the strategy without scheduling adaptation sent
fewer tiles at the lowest compression ratio of 50:1 be-
fore changing to the highest compression ratio of
100:1. This effect reflects an attempt by the strategy to
compensate for fixed rates of tile processing opera-
tions. This strategy was somewhat (but not entirely)
successful per the latency-to-deadline comparison in
Figure 9.

The principal feature of interest with the simple con-
trol strategy is the more continuous arc of the compres-
sion levels shown in Figure 11, in contrast to the
coarser-grained transitions shown in Figure 10. The
experimental application and supporting middleware
infrastructure appear to be amenable to fine-grained
(e.g., control-based) adaptation, as shown by the fairly
continuous response of the image tile management in-
frastructure.

Operation rate adaptation reduces image tile
queuing latencies. The main feature of interest in the
image tile queuing measurements on the client is the
much larger magnitude and jitter of queuing latencies
without adaptation seen in Figure 12, compared to Fig-
ure 13, which shows tile queuing measurements for the
strategy with adaptation of both compression ratios and
tile processing operation scheduling parameters.

The other two strategies without scheduling adapta-
tion (i.e., with reactive adaptation or simple control of
image tile compression only) showed similar results to
those without any adaptation at all, which singles out
operation scheduling adaptation as a key contributor to
end-to-end QoS. It is especially interesting that im-
provements were seen in both the precision and tight-
ness of the latency bound – operation rate adaptation
can therefore give increased confidence in how close to
that bound we can come in improving image quality
without risking missed deadlines.

Overhead for adaptive QoS management is ac-
ceptable. The first feature of interest for the overhead
results reported in Table 1 is the relatively low latency
of QuO contract evaluation, region transitions, and
delegate processing. With scheduling adaptation, con-
tract evaluations had the highest latencies but were
bounded by 30 msec, and most of these evaluations
took much less time than that. Without scheduling ad-
aptation, the latencies are bounded by 10 msec and the
common case is that the latencies are negligible. The
version of QuO used for these experiments was de-
signed for predictable low latency response in DRE

systems [9], and our results confirm the efficacy of that
design. The second feature of interest in these results is
the difference in contract evaluation latency between
these two strategies. Due to the low latencies seen with
adaptation of compression only, we suspect that much
of the increased latency seen when scheduling adapta-
tion is added arises from preemption by OFP opera-
tions. We also observed an increased number of con-
tract evaluations with rate adaptation enabled, however,
so further studies are motivated to assess relative scal-
ability in terms of both load and responsiveness.

We also note the relatively low latency of RT-ARM
triggering operations, bounded by 10 msec, so that in
concert the QuO and RT-ARM adaptation mechanisms
imposed suitably low overheads. When computing the
initial assignment of priorities and rates to operations,
the TAO Reconfigurable Scheduler showed highly pre-
dictable timing of 185 msec. With the same initial set
of scheduling parameters when no scheduling adapta-
tion was involved, there was one invocation of the
scheduler at system initialization. We note that in com-
parison to the latency of other adaptation mechanisms,
initial schedule computation latency is an order of
magnitude greater. However, the optimizations de-
scribed in Section 4 significantly reduced the post-
initialization cost of rescheduling.

8. Related Work

This section describes related work on QoS manage-
ment middleware technologies. We first summarize two
projects that are representative of earlier foundational
research on QoS management frameworks. We then
describe several other projects related to our work, in
which results of earlier work on QoS management have
been abstracted into modeling tools, made configurable
in QoS-aware component technologies, and woven at
finer granularity and across a variety of levels through-
out complex DRE systems.

8.1. QoS Management Middleware Frame-
works

A number of earlier projects developed self contained
QoS frameworks to manage end-to-end QoS in distrib-
uted systems. These efforts set the stage for subsequent
work on finer-grained integration of QoS management
mechanisms and policies. Two major examples of
those foundational research efforts are the Realize and
ARMADA projects.

UCSB Realize. The Realize project at UCSB [18]
supports soft real-time resource management of
CORBA distributed systems. Realize integrates dis-
tributed real-time scheduling with fault-tolerance, fault-

tolerance with totally ordered multicasting, and totally-
ordered multicasting with distributed real-time schedul-
ing, within the context of OO programming and exist-
ing standard operating systems. The Realize resource
management model can be hosted on top of TAO [18].

ARMADA. The ARMADA project [19][20] defines
a set of communication and middleware services that
support fault tolerant and end-to-end guarantees for
real-time distributed applications. ARMADA provides
real-time communication services based on the X-ker-
nel and the Open Group’s MK microkernel. This in-
frastructure provides a foundation for constructing
higher-level real-time middleware services.

8.2. QoS Aspect Integration

Recent work on end-to-end QoS management has fo-
cused on integrating multiple QoS aspects end-to-end
throughout complex DRE systems. Research is being
conducted on several related fronts, including integra-
tion of systemic QoS aspects and QoS-aware compo-
nent models. The following projects are representative
examples of a larger and rapidly growing field of re-
search.

dynamicTAO. In their dynamicTAO project, Kon
and Campbell [21] apply reflective middleware tech-
niques to extend TAO to reconfigure the ORB at run-
time by dynamically linking selected modules, accord-
ing to the features required by the applications. Their
work is similar to QuO in that both provide the mecha-
nisms for realizing dynamic QoS provisioning at the
middleware level. QuO offers a more comprehensive
QoS provisioning abstraction, however, whereas Kon
and Campbell’s work concentrates on configuring mid-
dleware capabilities.

QoS-enabled component middleware. Middleware
can apply the Quality Connector pattern [22] to meta-
programming techniques for specifying the QoS be-
haviors and configuring the supporting mechanisms for
these QoS behaviors. The container architecture in
component-based middleware frameworks provides the
vehicle for applying meta-programming techniques for
QoS assurance control in component middleware, as
previously identified in [23]. Containers can also help
apply aspect-oriented software development [24] tech-
niques to plug in different systemic behaviors [25].
Miguel de Miguel further develops the work on QoS-
enabled containers by extending a QoS EJB container
interface to support a QoSContext interface that
allows the exchange of QoS-related information among
component instances [26].

9. Concluding Remarks

This paper has described and quantified the integration
of several adaptive middleware technologies, including
QuO, RT-ARM, and several layers of The ACE ORB
(TAO) (e.g., its Scheduling and Event Services). The
paper’s contributions involved (1) presenting an archi-
tecture for multi-layer adaptive middleware that is ap-
plicable to QoS-managed DRE systems and (2) con-
ducting and analyzing empirical results showing the
benefits and costs of this architecture for a representa-
tive DRE application, i.e., the WSOA OEP mission re-
planning and real-time avionics mission computing
environment.

The main conclusion we draw from the results in this
paper is that our integrated QoS-management middle-
ware infrastructure showed successful adaptation of
multiple QoS parameters, with a quantitative improve-
ment in management of the trade-off between image
quality and download times in comparison to the same
approach without adaptation. Factors in the actual DRE
system environment are important, and can have a sig-
nificant impact on the behavior of the system. It is
therefore an important achievement to have flown and
measured the WSOA OEP evaluation system in a rep-
resentative avionics mission-computing context.

Our future work will expand upon the studies re-
ported in this paper to examine the effects of influences
such as image contrast and size, network latency, and
traffic loads on WSOA OEP performance. For exam-
ple, we are conducting addition tests to determine why
image 3 took longer to download at a compression ratio
of 50:1 than any of the other images, and yet took less
time to download at a compression ratio of 100:1 than
either image 2 or 4.

We are also implementing control-theoretic adapta-
tion strategies within the QuO adaptive framework [27]
and the ORB itself [28][29] to gain further insights into
strategies and tactics for effective adaptive manage-
ment of QoS properties. The goal of our ongoing work
on control-theoretic QoS management in middleware is
to apply the rigorous modeling and analysis capabilities
offered by control theory, to maintain QoS assurances
where possible even in the face of dynamically chang-
ing resource availability or demand, due to variations
in application modes or environmental conditions.

Acknowledgements

We are grateful to all the program managers involved
with the WSOA project, especially K. Littlejohn, G.
Koob, Lt. Col. G. Logan, and Lt. Col. G. Palmer.

References

[1] Object Mgmt. Group. “Minimum CORBA -
Joint Revised Submission,” OMG Document or-
bos/98-08-04.

[2] Object Mgmt. Group. “Real-time CORBA Joint
Revised Submission,” OMG Document orbos/99-
02-12.

[3] Bollella, et al., The Real-Time Specification for
Java, Addison Wesley Longman, 2000.

[4] DARPA, "The Quorum Program”, 1999.
[5] Gill, Schmidt, and Cytron, “Multi-Paradigm

Scheduling for Distributed Real-Time Embedded
Computing” , IEEE Proceedings 91(1), Jan 2003.

[6] D. Corman, J. Gossett, D. Noll, “Experiences in
a Distributed, Real-Time Avionics Domain -
Weapons System Open Architecture, ISORC,
Washington DC, USA, April 2002.

[7] Karr, Rodrigues, Krishnamurthy, Pyarali, and
Schmidt, “Application of the QuO Quality-of-
Service Framework to a Distributed Video Appli-
cation,” 3rd International Symposium on Distrib-
uted Objects and Applications, Rome, Italy, Sep-
tember 2001.

[8] D.B. Stewart and P.K. Khosla, “Real-Time
Scheduling of Sensor-Based Control Systems,” in
Real-Time Programming (W. Halang and K.
Ramamritham, eds.), Tarrytown, NY: Pergamon
Press, 1992.

[9] Loyall, Gossett, Gill, Schantz, Zinky, Pal,
Shapiro, Rodrigues, Atighetchi and Karr, "Com-
paring and Contrasting Adaptive Middleware Sup-
port in Wide-Area and Embedded Distributed Ob-
ject Applications", 21st ICDCS, April, 2001.

[10] Sharp, “Reducing Avionics Software Cost
Through Component Based Product Line Devel-
opment” , Software Technology Conference, April
1998.

[11] Schmidt, Levine, and Mungee. “The Design
and Performance of the TAO Real-Time Object
Request Broker” , Computer Communications
21(4), April 1998.

[12] Objective Interface, “ORBExpress” ,
www.ois.com

[13] Harrison, Levine, and Schmidt, “The Design
and Performance of a Real-time CORBA Event
Service,” OOPSLA '97, October 1997.

[14] Huang, Jha, Heimerdinger, Muhammad,
Lauzac, Kannikeswaran, Schwan, Zhao, and Bet-
tati, “RT-ARM: A Real-Time Adaptive Resource
Management System for Distributed Mission-
Critical Applications", Workshop on Middleware
for Distributed Real-Time Systems, IEEE RTSS,
San Francisco, California, 1997.

[15] Gill, Levine, and Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling
Service,” The International Journal of Time-
Critical Computing Systems 20(2), Kluwer, March
2001.

[16] Cross and Lardieri, “Proactive and Reactive
Resource Allocation,” Pattern Lang. of Prog. Conf.
(PLoP ‘02), Allerton Park, IL, September 2002

[17] Doerr, Venturella, Jha, Gill, and Schmidt,
“Adaptive Scheduling for Real-time, Embedded
Information Systems,” 18th IEEE/AIAA DASC, St.
Louis, Oct. 1999.

[18] Kalogeraki, Melliar-Smith, Moser, “Soft Real-
Time Resource Management in CORBA Distrib-
uted Systems” , IEEE Workshop on Middleware
for Real-time Systems and Services, San Fran-
cisco, CA, December 1997.

[19] Mehra, Indiresan, and Shin, “Structuring
Communication Software for Quality-of-Service
Guarantees,” IEEE Transactions on Software En-
gineering, vol. 23, pp. 616–634, Oct. 1997.

[20] Abdelzaher, Dawson, Feng, Jahanian, John-
son, Mehra, Mitton, Shaikh, Shin, Wang, and Zou,
“ARMADA Middleware Suite,” IEEE Workshop
on Middleware for Real-Time Systems and Ser-
vices, San Francisco, CA, December 1997.

[21] Kon, Costa, Blair, and Campbell, “The Case
for Reflective Middleware,” Communications
ACM, vol. 45, pp. 33–38, June 2002.

[22] Cross and Schmidt, “Applying the Quality
Connector Pattern to Optimize Distributed Real-
time and Embedded Middleware,” Patterns and
Skeletons for Distributed and Parallel Computing
(Rabhi and Gorlatch, eds.), Springer Verlag, 2002.

[23] Wang, Schmidt, Kircher, and Parameswaran,
“Towards a Reflective Middleware Framework for
QoS-enabled CORBA Component Model Applica-
tions,” IEEE Distributed Systems Online, vol. 2,
July 2001.

[24] Kiczales, Lamping, Mendhekar, Maeda,
Lopes, Loingtier, and Irwin, “Aspect-Oriented
Programming,” Proceedings of the 11th European
Conference on Object-Oriented Programming,
June 1997.

[25] Conan, Putrycz, Farcet, and DeMiguel, “ Inte-
gration of Non-Functional Properties in Contain-
ers,” Sixth International Workshop on Component-
Oriented Programming (WCOP), 2001.

[26] de Miguel, “QoS-Aware Component Frame-
works,” International Workshop on Quality of
Service (IWQoS), (Miami Beach, Florida), May
2002.

[27] Abdelwahed, Neema, Loyall, and Shapiro.
“Multilevel Online Hybrid Control Design for QoS
Management,” Real-time Systems Symposium
(RTSS), Cancun, Mexico, December 2003.

[28] Wang, Lu, and Gill, “Feedback Control Real-
Time Scheduling in ORB Middleware” , 9th IEEE
RTAS, Washington, D.C., May 2003.

[29] Wang, Huang, Subramonian, Lu, Gill,
“CAMRIT: Control-based Adaptive Middleware
for Real-Time Image Transmission” , 10th IEEE
RTAS, Toronto, Canada, May 2004.

