
Towards Dependable Real-time and Embedded CORBA Systems

Balachandran Natarajan, Aniruddha S. Gokhale Douglas C. Schmidt
Chris D. Gill

fbala, cdgillg@cs.wustl.edu a.gokhale@vanderbilt.edu schmidt@uci.edu
Dept. of Computer Science ISIS Dept. of Electrical and

Computer Engineering
Washington University Vanderbilt University University of California
One Brookings Drive P O Box 36, Peabody 616E Engineering Tower
St. Louis, MO 63130 Nashville, TN 37203 Irvine, CA 92697

And
Joseph K. Cross, Christopher Andrews, Sylvester J. Fernandez

fjoseph.k.cross, christopher.andrews, sylvester.j.fernandezg@lmco.com
Lockheed Martin Tactical Systems

PO Box 64525, M S U2X26
St. Paul, MN 55164-0525

Abstract

Commercial off-the-shelf components (COTS) based on
distributed object computing (DOC) middleware, such
as CORBA, are increasingly being used to develop and
deploy distributed applications rapidly and cost effec-
tively. Conventional COTS middleware has been con-
sidered less suitable for mission-critical distributed real-
time and embedded (DRE) applications that require sup-
port for multiple quality of service (QoS) properties,
such as dependability, efficiency, and predictability. The
CORBA Real-time and Fault-tolerance specifications in-
dividually address the issues of predictability and de-
pendability, respectively. However, implementations of
these specifications do not yet support DRE applica-
tions with stringent simultaneous dependability and pre-
dictability requirements.

This paper provides three contributions to the devel-
opment of middleware services that simultaneously ad-
dress dependability and predictability requirements of
key classes of DRE applications, such as commercial
or military avionics systems, that require a high degree
of reliability and bounded latency even in the case of
faults. First, we outline the QoS requirements of an
important class of DRE applications that possess both
stringent time/space constraints and high dependability
needs. Second, we show that meeting DRE application

dependability and timing requirements by naively apply-
ing the strategies in the existing CORBA specification
is replete with contradictions and pitfalls. Finally, we
propose and empirically evaluate a new strategy that en-
ables the composition of semantically compatible strate-
gies from the Real-time and Fault-tolerant CORBA spec-
ifications to support DRE applications more effectively.
Keywords: Fault-tolerant CORBA, Real-time CORBA,
DRE systems, Dependability, Middleware protocols.

1 Introduction

The vast majority of computational cycles today are ex-
pended to control distributed real-time and embedded
(DRE) systems, including commercial and military air-
craft and satellites, automobile engines, chemical and
manufacturing plants, and hospital patient monitoring
equipment. Mechanical and human controls in these
systems are being replaced by software controllers at a
growing rate, which means that essential features of our
lives and economy depend upon the quality and cost of
DRE software. We therefore need technologies that can
ensure DRE systems will work predictably, and will be
diagnosable and repairable when they fail.

Due to constraints on weight, power consumption,
memory footprint, and performance, DRE systems are

harder to develop, maintain, and evolve than mainstream
desktop and enterprise software. Moreover, the tools and
techniques traditionally used to develop DRE software
are often highly specialized. For example, DRE sys-
tems are commonly designed around fixed task sched-
ules, where time is divided into a sequence of fixed-
length frames at each processor, and the processor ex-
ecutes each of its tasks for a fixed interval within each
frame. Such systems often use frame-based interconnect
among the processors, so that the traffic on the inter-
connect is also entirely scheduled at system design time.
Highly specialized software design tools have been built
to support the development of such systems [1]. Such
specializations make it hard to adapt traditional DRE
software to meet new functional or QoS requirements,
hardware/software technology innovations, or emerging
market opportunities.

During the past decade, a substantial amount of R&D
effort has focused on developing distributed object com-
puting (DOC)middlewareas a means to simplify the de-
velopment and reuse of successful DRE systems. DOC
middleware is systems software that resides between the
applications and the underlying operating systems, net-
work protocol stacks, and hardware [2]. It offers clients
portable language-independent and location-transparent
invocation of methods on target object implementa-
tions [3]. DOC middleware simplifies DRE system de-
velopment by off-loading the tedious and error-prone as-
pects of distributed computing from application develop-
ers to middleware developers.

During the past several years, DRE systems with hard
real-time requirements [4, 5] have increasingly been de-
veloped with the OMG Common Object Request Broker
Architecture (CORBA) [6]. CORBA is DOC middle-
ware that provides run-time support to automate many
distributed computing tasks, such as connection man-
agement, object (de)marshaling, object demultiplexing,
language and OS independence, load balancing, fault-
tolerance, and security. Certain QoS requirements of
DRE systems, particularly dependability and predictabil-
ity, are addressed individually by the OMG’s Fault-
tolerant [7] and Real-time CORBA [8] specifications, re-
spectively.

Unfortunately, implementations of these specifications
do not yet support mission-critical DRE systems, such as

shipboard combat control systems and avionics mission
computing systems, that require support for these QoS
properties simultaneously. These types of DRE systems
are typified by the following characteristics:

� Stable applications – Most DRE systems have
a longer life than their commercial counterparts,
which requires that the infrastructure for DRE sys-
tems provide stable interfaces [9]. This in turn pro-
vides DRE systems the flexibility to modify the un-
derlying infrastructure as long as the interfaces re-
main compatible.

� End-to-end timeliness and dependability re-
quirements – DRE systems have stringent la-
tency and dependability requirements. The latency
bounds are commonly expressed in response to ex-
ternal events, whereas dependability requirements
are often expressed as a probabilistic guarantee that
the requirements will be met.

� Heterogeneity– DRE systems often run on a wide
variety of computing platforms that are intercon-
nected by different types of networking technolo-
gies. The efficiency of execution of the different in-
frastructure components on which the DRE systems
operate varies as the type of computing platform and
interconnection technology.

Simultaneously providing dependability and pre-
dictability properties for the class of DRE systems out-
lined above is hard since the combination of these prop-
erties is often in conflict. For example, any CORBA
middleware infrastructure that offers dependability could
spend a non-deterministic amount of time detecting and
recovering from faults. This in turn conflicts with the
bounds on latency for message invocation since the
CORBA infrastructure must account for the time spent
on fault detection and recovery. Consequently, provid-
ing both these QoS requirements simultaneously requires
a careful blend of protocols, patterns, and design con-
straints and tradeoffs, which transcends the present capa-
bilities of commercial off-the-shelf (COTS) middleware.

Our prior research on CORBA middleware has ex-
plored the efficiency, predictability, scalability and de-
pendability aspects of ORB endsystem design, including
static [10] and dynamic [11] scheduling, event process-
ing [12], I/O subsystem [13] and pluggable protocol [14]

2

integration, synchronous [15] and asynchronous [16]
ORB Core architectures, systematic benchmarking of
multiple ORBs [17], optimization principle patterns for
ORB performance [18] and high-performance architec-
tures for Fault-tolerant CORBA [19, 20]. This pa-
per focuses on another dimension in the ORB endsys-
tem design space:providing dependability using Fault-
tolerant CORBA (FT-CORBA) to Real-time CORBA (RT-
CORBA)-based DRE systems.

This paper is organized as follows: Section 2 provides
a brief overview of the RT-CORBA and FT-CORBA
specifications; Section 3 describes key challenges that
must be resolved when designing dependable DRE sys-
tems using CORBA; Section 4 proposes and empirically
evaluates a new technique that addresses the key chal-
lenges outlined in Section 3 when designing dependable
DRE systems; Section 5 discusses open issues and fu-
ture search directions; and Section 6 presents concluding
remarks.

2 Overview of Real-time and Fault-
tolerant CORBA specifications

This section provides a brief overview of the RT-CORBA
and FT-CORBA specifications – detailed descriptions of
these standards appear in [21] and [19], respectively.

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

STANDARD

SYNCHRONIZERS

END-TO-END PRIORITY

PROPAGATION

ORB CORE

OBJECT ADAPTER

CLIENT

GIOP

PROTOCOL

PROPERTIES

THREAD

POOLS
EXPLICIT

BINDING

NETWORK

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

operation()

out args + return value

in args

OBJECT

REF

OBJECT

(SERVANT)

STUBS
SKELETON

Figure 1: ORB Endsystem Features for Real-Time
CORBA

Overview of Real-time CORBA: Figure 1 depicts an
ORB endsystem [10] comprising network interfaces, op-
erating system I/O subsystems, and communication pro-
tocols, and CORBA-compliant middleware components
and services. The RT-CORBA specifications identify
capabilities that must bevertically (i.e., network inter-
face$ application layer) andhorizontally (i.e., peer-
to-peer) integrated and managed by ORB endsystems to
ensure end-to-end predictable behavior fordistributable
threads1 that traverse from one object to another to com-
plete operations.

To manage these capabilities, vertically and horizon-
tally, RT-CORBA defines standard interfaces and QoS
policies that allow applications to configure and control
the following resources:

� Processor resourcesvia thread pools, priority
mechanisms, intra-process mutexes, and a global
scheduling service

� Communication resourcesvia protocol properties
and explicit bindings and

� Memory resourcesvia buffering requests in queues
and bounding the size of thread pools.

Applications typically specify these real-time QoS
policies along with other policies when they call
standard ORB operations, such ascreate_POA or
_validate_connection . For instance, when an
object reference is created using a QoS-enabled POA,
the POA ensures that any server-side policies that affect
client-side requests are embedded within atagged com-
ponent2 in the object reference. This enables clients that
invoke operations on such object references to honor the
policies required by the target object.

Overview of the Fault-Tolerant CORBA Specifica-
tion: The FT-CORBA [6] defines a standard set of in-
terfaces, policies, and services that provide robust sup-
port for applications requiring high reliability. The

1A distributable thread is a programming model abstraction, that
can execute operations on objects without any regard for any physical
node boundaries. It is a schedulable entity having its own scheduling
parameters such as priorities and deadlines, which specify an accept-
able end-to-end timeliness guarantees for completing the sequential
execution of operations in multiple object instances residing on mul-
tiple physical nodes.

2Tagged components are name/value pairs that can be used to ex-
port attributes, such as security or QoS values, from a server to its
clients within object references [22].

3

fault tolerance mechanism used to detect and recover
from failures is based onentity redundancy. Conse-
quently, in FT-CORBA the redundant entities are repli-
cated CORBA objects.

Replicas of a CORBA object are created and managed
as a “logical singleton” [23] composite object. Figure 2
illustrates the key components in the FT-CORBA archi-

CORBA ORB

SERVER
 OBJECT 1

SERVER
OBJECT 2

FAULT
DETECTOR

FAULT
DETECTOR

CORBA ORB

FAULT
DETECTOR

FAULT
NOTIFIER

CORBA ORB

is_alive ()is_alive ()

is_alive ()

fault
reports

fault notifications

create_object ()

PROPERTY
MANAGER

GROUP
 MANAGER

GENERIC FACTORY

APP.
OBJECTset

properties
CORBAORB

CORBA ORB CORBA ORB CORBA ORB

FACTORY

CORBA ORB

FACTORY

CORBA ORB

create_object () create_object ()

send IOR

PUBLISH
IOGR

IOP
PROFILE 1

IOP
PROFILE 2

MULTIPLE
COMPONENTS PROFILE

REPLICATION MANAGER

CORBA ORB

Figure 2: The Architecture of Fault Tolerant CORBA

tecture. All components shown in the figure are imple-
mented as standard CORBA objects,i.e., they are de-
fined using CORBA IDL interfaces and implemented us-
ing servants that can be written in standard programming
languages, such as Java, C++, C, or Ada.

3 Challenges Designing Fault-Tolerant
and Real-time CORBA-based DRE
Systems

The DRE system characteristics described in Section 1
motivate the integration of implementations of RT-
CORBA and FT-CORBA as the infrastructure for DRE
systems. This middleware provides open standard inter-
faces that simplify the development of DRE systems re-
quiring dependability and predictability. As we discuss

below, however, their combined use in today’s ORBs
lacks certain features and have semantically incompat-
ible strategies that make them unsuitable for important
classes of DRE systems. The remainder of this sec-
tion describes the challenges associated with integrating
the RT-CORBA and FT-CORBA specifications to deliver
QoS requirements to DRE systems.

3.1 Challenge 1: Non-determinism and Expen-
sive Replication Strategies

Context: Application objects use replication
to achieve transparent fault tolerance. The FT-
CORBA specification specifies theCOLD PASSIVE,
WARM PASSIVE, ACTIVE, and ACTIVE WITH VOTING

replication styles to tolerate faults transparently. With
the exception ofCOLD PASSIVE, these replication styles
require that replicas maintain consistent state.

Problem: In COLD and WARM PASSIVE systems, the
recovery time needed to switch to a backup replica can be
unacceptably high for DRE systems with stringent tim-
ing constraints. Likewise, in anACTIVE system the cost
associated with providing totally ordered reliable multi-
cast and the time needed to synchronize via proprietary
or group communication mechanisms can be unaccept-
able.

Using anACTIVE replication for applications based
on “push-pull” architectures, such as the CORBA Event
Service [12], can introduce non-determinism when try-
ing to handle multiple events that must be managed.
Moreover, the replicas in anACTIVE system must be-
have identically and deterministically if they are used
in DRE systems. Special negotiations (which impose
high overheads) are needed to enforce the order of ex-
ecution of messages among all the replicas. Preemption
of requests, such as responding to an alarm condition,
in an ACTIVE configuration can make the system non-
deterministic, which can be avoided only via complex
protocols that consume significant system resources.

The FT-CORBA specification also requires strong
replica consistency, which forACTIVE replication ob-
jects means that all members of the group must have the
same state at the end of each method invocation. It is
conceivable, however, that application objects required
to be fault tolerant will also make outcalls, such as read-

4

ing the real-time clock or responding to arbitrary exter-
nal events. Under these circumstances, it is unlikely that
consistent state can be maintained across the replicated
objects, which suggests that a conforming implementa-
tion must severely constrain the ways in which objects
can interact with their environment.

In Section 4 we propose a new replication strategy that
provides the following benefits

� Fast and deterministic failure detection times

� Deterministic state synchronization strategy that
eliminates the need for protocols with high over-
head and

� No restriction placed on the application on ways
that it can interact with the environment.

3.2 Challenge 2: Dealing with Semantic Incom-
patibilities Between RT-CORBA and FT-
CORBA Features

Context: Requirements on DRE systems are com-
monly expressed in terms of external stimuli and re-
sponses. For example, consider a tactical display system
that uses radars as sensors and that presents an operator
with a graphical representation of the geographical area,
including the present locations of moving objects such
as missiles. In such systems, a common requirement is
radar to glass in one second. This requirement means
that at most one second may elapse between a radar pulse
bouncing off the surface of a missile and the correspond-
ing observation being displayed to the operator.3

Similarly, dependability requirements are often ex-
pressed in terms of the probability that one or few of the
many requirements will fail to hold over a specific period
of operation. DRE systems like the one outlined above
require simultaneous stringent QoS properties, including
predictability and dependability, for their correct opera-
tion.

Problem: Although combining the power of RT- and
FT-CORBA seems a promising approach, the require-
ments on DRE systems illustrate a significant semantic
gap between end-to-end predictability and dependability

3The above requirement is still a real-time requirement, even
though the timeliness requirements are expressed in seconds.

requirements and capabilities, such as propagating prior-
ities and replicating server objects. The ability to engi-
neer a good fault tolerant solution requires tradeoffs that
may compromise a DRE system’s ability to support real-
time behavior, and vice versa. For example, a non-trivial
amount of communication and processing costs are in-
curred to accomplish failover from one replica to another,
and this presents a hard choice between accounting for
failover in every message transmission versus preparing
for time budgets to be violated during failover.

Fundamentally, the variation in performance and la-
tency inherent in an elaborate FT solution is antithetical
to the predictable behavior required in a DRE system.
The effect of choices made to support a requirement in
one area can have complex and unforeseen consequences
in the other. For DRE systems to leverage the advantages
of open, standard interfaces, therefore, a solution that can
mask the semantic incompatibility between FT-CORBA
and RT-CORBA solutions is needed.

Schemes like [24, 25, 26] have been developed
and deployed that resolve the conflict between real-
time and fault-tolerance capabilities of the system. We
propose and evaluate a strategy in Section 4 that pro-
vides bounded fault-tolerance capabilities while trying
to maintain the real-time properties, which is an essen-
tial condition for the development for dependable DRE
systems.

3.3 Challenge 3: Lack of Standards to Handle
Byzantine and Partial Failures

Context: A system is considered reliable if it does not
fail to perform its designated function. However, fail-
ure is often measured in ways that generally allow for
a non-zero probability that the system will in fact fail
over some long enough period of time. Moreover, par-
tial failures are also a common occurrence in distributed
systems. For example, a component interacting with an-
other component cannot distinguish whether a delay in
response is due to failure of the remote component or
due to a slow or partitioned network.

Problem: The FT-CORBA model for failure detection
and recovery emphasizes a certain type of failure, namely
component failure, which is also called a “crash failure.”
In this type of failure the individual component ceases

5

all interactions with its environment. The policies and
detection mechanisms in FT-CORBA, such as the use
of heartbeats and timeouts, implicitly acknowledge only
this limited view.

A more subtle form of failure is one where interactions
among components cause the system to fail. A case in
point is where a corrupted component requests services
more frequently than allowed for in the design, denying
other components access to critical resources. Heartbeats
and time-outs cannot protect against this type of failure.
Given the inability to detect this difference, the require-
ment that objects usingACTIVE replication maintain con-
sistent state in a bounded time between method invoca-
tions may, in the general case, be infeasible to achieve.

We discuss the future work that is needed to resolve
this challenge in Section 5.

3.4 Challenge 4: Lack of QoS Semantics

Context: For designers of DRE systems, the primary
benefit of an open standard is the promise of a stable in-
terface between the application and the services provided
by the middleware since this simplifies porting to a dif-
ferent service implementation. In particular, when the
service being provided is part of the infrastructure—and
the infrastructure is built with COTS products—system
designers are highly motivated to consider both the cost
of upgrades and penalties associated with COTS obso-
lescence [9]. It is therefore important that DRE systems
interact with the infrastructure through syntactically and
semantically stable interfaces, such as those defined in
the RT-CORBA and FT-CORBA specifications. CORBA
also helps improve the portability and interoperability of
applications built using such interfaces.

Problem: The RT-CORBA and the FT-CORBA spec-
ifications provide the mechanisms by which real-time
and fault-tolerant behavior can be achieved for DRE sys-
tems. CORBA does not, however, guarantee that two im-
plementations that conform to the RT-CORBA and FT-
CORBA specification will provide equivalent semantic
behavior.

For example, assume that a system implemented on
ORBA compliant with the RT-CORBA and FT-CORBA
specifications successfully meets the requirement that
sensor data from the navigation subsystem be propa-

gated to all interested recipients at 35ms intervals, even
when certain faults occur in the system. It is highly un-
likely, however, that if ORBA were replaced by ORBB,
the 35 ms propagation interval will be maintained, even
if ORBB implements the RT-CORBA and FT-CORBA
specifications. To establish that the modified system
continues to meet its requirement would require thor-
ough testing, possible reengineering, and expensive re-
certification. It is this absence of a QoS standard that
makes the existing RT-CORBA and FT-CORBA specifi-
cations inadequate for certain types of DRE systems.

Moreover, the implementation freedom that arises
from an interface specification means that performance
characteristics of various compliant products may vary
greatly. Such performance variations can spell disaster
when ORBA is replaced by a different, yet compliant,
ORBB. For instance, one product may choose to use an
IPC mechanism, such as shared memory, to communi-
cate between objects collocated on the same computer,
whereas another may pass the message through a TCP
loopback pipe. These two mechanisms can produce radi-
cally different levels of performance. Replacing or up-
dating an ORB may therefore require costly redesign,
reimplementation, and revalidation of DRE systems.

We discuss the future work that is needed to resolve
this challenge in Section 5.

3.5 Challenge 5: Lack of Standard End-to-end
QoS Configurability

Context: DRE Systems are frequently distributed and
heterogeneous. The heterogeneity spans different types
of computers used in the system and different intercon-
nection technologies used to connect these computers.
Some computers may be fast and/or provide good QoS
guarantees, whereas others may be slow and/or provide
poor QoS guarantees. The difficulties associated with lo-
cation transparency, distribution, providing backups to
tolerate faults and controlling QoS calls for a standard
infrastructure, such as CORBA, that can hide many of
the heterogeneity from the DRE systems developer.

Problem: Though the RT-CORBA and the FT-
CORBA specifications define some standard QoS spec-
ification mechanisms, they do not allow application de-
velopers to express certain requirements, such as the one

6

outlined in Section 3.2, directly. The RT-CORBA 1.0
specification, for example, provides no standard control
over end-to-end latency, focusing primarily on process-
ing priorities. Priorities are useful for DRE systems since
they provide the proper processing order of method calls
within the distributed application. Priorities alone, how-
ever, do not address en-route message passing latency is-
sues. To affect network latencies, more control is needed
at the transport and lower layers. The RT-CORBA spec-
ification, in keeping with the OMG’s implementation-
independent philosophy, leaves the lower level control
issues to ORB providers.

For a variety of reasons, an RT-CORBA provider
might choose a transport mechanism (e.g., UDP, TCP, or
multicast), with a “best effort” level of message transport
priority for all messages, despite their processing prior-
ities. This is an area for which the DRE system archi-
tects need precise control. Unfortunately, mechanisms
for exercising such options are proprietary today due
to lack of specificity in the CORBA specification. For
instance, setting DiffServ Differentiated Services Code
Point (DSCP) bits on an IP packet via software may not
be possible in a portable manner across CORBA imple-
mentations, but may be quite important to the correct
functioning of a DRE system.

We discuss the future work that is needed to resolve
this challenge in Section 5.

4 Empirical Evaluation of New Tech-
niques

Section 3 outlined the challenges of using FT-CORBA
and RT-CORBA together to build DRE systems. Though
the challenges outlined in Sections 3.3, 3.4 and 3.5 must
be addressed to built robust, reliable and long-running
DRE systems, the challenges outlined in Sections 3.1
and 3.2 must be addressed first, since they are more fun-
damental and form the basis by which the others can be
addressed. This section presents a strategy that can po-
tentially address the issues raised in Sections 3.1 and 3.2.
This strategy can guarantee real-time and dependabil-
ity characteristics without having the overhead and non-
determinism associated with the fault tolerance strategies
outlined in the FT-CORBA specification.

4.1 The Semi-Active Replication Style

The SEMI-ACTIVE replication style is based on the Eu-
ropean Delta-4 (XPA) architecture [24] (where this term
was coined), which we have adapted and applied to
CORBA-based DRE systems. This replication style is
designed to have some of the benefits of both the active
replication and passive replication styles, including pre-
dictable fail over times and deterministic behavior during
program execution. Figure 3 illustrates how the replicas
are arranged to tolerate faults in the systems. The key

S1 S2 S3 S4

SERVER
REFERENCES

SERVER 3

Workstation

Workstation

SERVER 1 SERVER 4

SERVER 2

Workstation
Workstation

CLIENT
OBJECT

O
P

E
N

C
O

N
N

E
C

T
IO

N O
P

E
N

C
O

N
N

E
C

T
IO

N

OPEN CONNECTION

INVOCATION

RELIABLE
MULTICAST
MANAGER

CORBA INVOCATION
and/or

STATE INFORMATION

MULTICAST
MULTICAST

MULTICAST

Figure 3: The Architecture of theSEMI-ACTIVE Repli-
cation Style

features of this architecture are outlined below:

� The replicas are arranged as a linked list of nodes
with each replica connected through a transport-
level connection to the one ahead in the queue.

� The linked list of replicas is created at startup time.
� The replica at the head of the list is designated the

primary.
� When the primary fails, the next secondary replica

in the list is promoted to become the primary.
� Failures are detected by the next replica in the list

when transport-level connections close.
� The promotion of the secondary to the primary is

done by the secondary when it detects a failure.

7

� All invocations to the primary are reliably multicast
by the primary to the secondaries, such that secon-
daries consume messages in the same order the pri-
mary consumes, maintaining replica consistency.

� Replica consistency can also be maintained by reli-
ably multicasting state synchronization messages to
all replicas.

� The multicast protocol that is used for request in-
vocation or state transfer needs to enforce message
ordering. A simple reliable model that ensures data
delivery alone is not sufficient.

� Applications can choose to use either one or both
the synchronization strategies outlined above to
maintain replica consistency.

� An ordered list of references is passed to the client,
which must honor the order of the list.

The SEMI-ACTIVE replication style resolves the fol-
lowing challenges with the existing mechanisms de-
scribed in Section 3.1 and 3.2:

� Faster and predictable failure detections ensures
deterministic recovery times when compared to
COLD PASSIVE andWARM PASSIVE replication.

� No need for a totally ordered reliable multicast-
ing for ACTIVE replication style and other protocols
having heavy overhead to enforce identical behavior
or message processing order across replicas.

� Reduced heartbeat and poll messages on the net-
work since they are not used for detecting failures.

� No restrictions imposed on the applications for us-
ing the underlying middleware infrastructure.

Despite the advantages mentioned above that make the
SEMI-ACTIVE replication style a potential candidate for
use in DRE systems, it does have the following disadvan-
tages:

� If a non-primary replica in the list fails, the replica
just following the failed replica could declare itself
as a primary and wait for messages to be processed,
which can potentially partition the list. To prevent
partitioning requires a remote token manager to dis-
seminate tokens to replicas and promote them as
primaries in a deterministic manner.

� When a primary fails, the FT-CORBA model does
not place any restriction on the client’s choice of a

backup from the list of replica references to make
the invocation. TheSEMI-ACTIVE replication style
could restrict the client to use the list of references
as an ordered list, which is not compliant with the
FT-CORBA spec.

� Applications choosing to multicast state informa-
tion instead of multicasting the requests must use
interceptor mechanisms to handover the state infor-
mation to the subsystem doing the multicasts. In-
stalling the interceptor is an additional responsibil-
ity for developers.4

Fortunately, the disadvantages outlined above do not af-
fect the SEMI-ACTIVE replication style’s determinism,
which makes it a good candidate for use in DRE sys-
tems. The remainder of this section empirically evaluates
some of the properties of this replication style in the con-
text of a client making continuous invocations to a server.
Our experiments assumed a single-failure model with no
nested failures. The faults occuring in our experiments
are assumed to be fail-silent,i.e, after failure they have
no interaction with the environment.

4.2 Empirical Evaluation of the Semi-Active
Replication Style

This section describes the results of empirical bench-
marking studies we conducted to measure how well the
SEMI-ACTIVE replication style can provide real-time and
fault-tolerance support to DRE systems. A key goal in
conducting these benchmarks is to show the determinism
in

1. Thedetection timeto detect failures
2. Theresponse timerequired for clients to connect to

a new primary if an existing primary fails and
3. The synchronization timerequired to synchronize

the state during every invocation.

To evaluate, we built several tests that demonstrate spe-
cific use cases for these benchmarks. The tests were
based on ACE [27] and TAO [10], versions 5.2.2 and
1.2.2, respectively. The tests were run on a single endsys-
tem – a 930 MHz Pentium III processor with 512 MB

4There is a class of DRE applications whose object state changes
are triggered by occurrence of events, such as time triggers or alarm
conditions, rather than from CORBA requests.

8

RAM running 2.4.9 of the Linux kernel in the FIFO real-
time scheduling class.

4.2.1 Measuring Failure Detection Time on the
Server-side

Rationale. We define thefailure detection timeon the
server as the time taken to detect a failure. For theSEMI-
ACTIVE replication style, this includes the time taken by
the secondary to detect its connection to the primary is
closed after the failure of the primary. This value is im-
portant since it represents the time taken by the middle-
ware infrastructure to detect and react to faults.

Methodology. A server that uses Acceptor and Con-
nector [28] framework components in ACE was used to
model the replicas. The primary waits for input requests
from the client on a specified port and sends a response
to the client to mark the end of an invocation. In addition
to waiting for connections from the client, the secondary
also connects to the primary, as shown in Figure 3. The
client establishes connections to all the replicas since this
reduces the jitter due to connection establishment during
failover.

A script invokes the primary and all the replicas. We
then allow a client to connect to the primary replica
and invoke remote operations. At this point, we invoke
the server object’sshutdown operation, which crashes
the primary. This crash initiates a detection process in
the secondary, which promotes itself to the primary and
waits to receive invocations.

We measure the failure detection time as the time be-
tween the failure of the primary replica and the time
when the secondary actually detects a failure. To mea-
sure the failure detection time, we recorded two time
stamps:

� The first time stamp was recorded when the primary
was killed.

� The second timestamp was recorded when the sec-
ondary detected its connection to the primary was
closed.

We conducted several iterations of this experiment by
killing the primary replica at randomly selected times.

Failure detection time. Figure 4 shows the variation
of detection times over several iterations, the overall av-

0

300

600

900

1200

1500

1800

2100

Iterations

D
et

ec
tio

n
Ti

m
es

in
us

ec

Detection Times Avg. Detection time (1754 usec)

Upper Bound (1896 usec) Lower Bound (1612 usec)

Figure 4: Average and Bounds on Failure Detection Time
within the Object Group

erage detection time, and the upper and lower bounds on
the detection time.

Analysis. Figure 4 indicates the following:

� Failure detection is in the millisecond range
� The bounds are approximately�4-5% of the aver-

age.

The smaller detection times and its boundedness within
a 5% range are properties needed for DRE systems, as
opposed to� 100% with the traditional heartbeat and
polling styles described in [20].

4.2.2 Measuring Fault Detection and Recovery
Times on the Client-side

Rationale. A client invoking a remote operation will
experience some delay if its server fails during the oper-
ation. This delay has three parts:

1. The time taken by the infrastructure to detect the
fault

2. The time taken by the infrastructure to promote a
backup to become the primary and

3. The time taken by the client to detect a failed pri-
mary and make invocations on the secondary.

Below, we describe the experiment conducted to measure
the combination of these times, which is the actual delay
experienced by a client. This time actually indicates the
bounds of the latency that the client will experience when
faults occur.

9

Methodology. The experimental setup is similar to the
one described in Section 4.2.1. To measure the effect
of failures—and to compute the total recovery time—we
allow the client to shutdown the primary by invoking the
server object’sshutdown operation.

We measure the failure detection time as the time in-
terval between when the client invoked theshutdown
operation to the time when the client can make the next
request to the secondary. The time interval includes the
error handling and the time needed for the client to re-
trieve an established connection and make the request to
the secondary.

Failure detection time. Figure 5 shows the variation
of detection times over several iterations, the overall av-

0

500

1000

1500

2000

2500

Iterations

D
et

ec
tio

n
Ti

m
e

in
us

ec

Detection Time Avg. Detection Time (2040 usec)

Upper Bound (2188 usec) Lower Bound (1892 usec)

Figure 5: Average and Bounds on Failure Detection Time
by the Client

erage detection time, and the upper and lower bounds on
the detection time.

Analysis. Figure 5 shows behavior similar to the one
described in section 4.2.1. The difference in the average
detection times of the server and client indicate the in-
frastructure costs associated in detecting and recovering
from the failure on the client.

A common feature observed between Figures 4 and
the 5 is the periodic nature of the detection times. This
periodicity stems from the fact that we repeated the same
experiment a number of times to collect the data. The
graphs are drawn from the ordered data.

4.2.3 Latencies from State Transfer

Rationale. A client invoking a remote operation will
experience some delay if the server multicasts the re-
quests or multicasts the state updates reliably to all the
replicas, in addition to executing the invocation on the
primary. Below, we describe the experiment conducted
to measure the combined time, which is the actual delay
experienced by a client for every invocation. This ex-
periment measures the latency experienced by the client
when making invocations on an object group possessing
state synchronization capabilities.

Methodology. Rather than modeling a communication
subsystem that makes invocations to all the secondaries,
we used TAO’s Real-time Event Channel [12] to propa-
gate state information to all the replicas with every invo-
cation. We chose TAO’s Real-time Event Channel for the
following reasons:

1. The Event Channel offers a “push-pull” communi-
cation model, where all the registered event suppli-
ers can publish events of interest to registered con-
sumers.

2. TAO’s Event Channel has been used in dozens of
production DRE systems.

The primary in theSEMI-ACTIVE replication style acts
as a supplier of events to the channel and all the repli-
cas subscribe to the channel as consumers to receive
events. To add reliability to the delivery of events to
the channel through thepush operation, we set there-
liable one-waypolicy SYNC WITH SERVERpolicy at the
ORB level. This policy ensures the thread invoking the
push operation only returns after it receives a confirma-
tion from the remote ORB as a reply.

We measured the time the client takes to make every
invocation on the remote object. We varied the number
of replicas receiving state information and captured the
minimum, maximum, and average times. We also calcu-
lated the upper and lower bounds associated with this.

Latencies from State Transfer. Figure 6 shows the
variation of minimum, average, and maximum latency
associated with communicating with primaries with
varying number of replicas in the configuration outlined
above. Figure 7 shows the average, upper, and lower
bounds on the latency in the same experiments.

10

0

500

1000

1500

2000

2500

1 2 3 4 5

Number of Replicas

La
te

nc
y

in
us

ec

Minimum Latency in usec Average Latency in usec

Maximum Latency in usec

Figure 6: Latency on the Client with Increase in Number
of Replicas

0

500

1000

1500

2000

2500

1 2 3 4 5

Number of Replicas

La
te

nc
y

in
us

ec

Average Latency Lower Bound on Latency

Upper Bound on Latency

Figure 7: Bounds on Latency with Increase in Number
of Replicas

Analysis. Figure 6 and 7 indicate the following:

1. The latencies increasing with the number of replicas
as observed by the client and

2. The bounds on latencies being maintained with an
increase in the number of replicas.

The increase in latency occurs since we use reliable
oneways as opposed to a regular CORBA oneway call.
Adding reliability to message transmission to every
replica incurs additional overhead, as indicated by the
results. A key engineering challenge is therefore strik-
ing the right balance between the degree of replication
and the affordable latency reduction that DRE applica-
tion developers can afford.

4.3 Summary of Results and Recommenda-
tions

Based on the results presented above, we now describe
some of the key challenges that theSEMI-ACTIVE repli-
cation strategy resolves when designing dependable DRE
systems. Though the empirical evaluation is made in the
context of dependable DRE systems, this strategy is ap-
plicable to a larger class of distributed applications re-
quiring dependability support from the middleware.

Challenge 1. A non-trivial amount of time is spent by
the FT middleware to detect and recover from faults,
which is antithetical to the latency and performance re-
quirements of DRE systems.

Resolution. The SEMI-ACTIVE replication style that
we propose places less overhead on the infrastructure
to detect and recover from faults. Similar to the dis-
tributed computing paradigm which distributes compu-
tation between different nodes, theSEMI-ACTIVE repli-
cation style distributes the overhead of fault detection
and recovery between replicas. The detection and re-
covery times from theSEMI-ACTIVE replication style are
bounded allowing the possibility to accomplish critical
real-time tasks even in the presence of faults.

Challenge 2. Synchronizing message processing order
across all replicas deterministically using theACTIVE

replication style calls for the usage of protocols with high
overhead.

Resolution. TheSEMI-ACTIVE replication imposes the
primary’s order of message execution to all the replica
in the group. The primary decides on the message order
based on the local real-time QoS parameters and imposes
that on all the replicas. The primary could either choose
to multicast the request chosen for processing to all the
replicas or choose to multicast the state information at
the end of request processing. This flexibility is partic-
ularly useful for a class of DRE systems where the state
of the system changes with external events in addition to
CORBA requests.

Challenge 3. The ACTIVE replication style in order
to maintain replica consistency could constrain the way
in which application objects interacts with their envi-
ronment, like preventing execution threads from doing
tasks that could change object states not associated with
CORBA request.

11

Resolution. The SEMI-ACTIVE replication resolves
this challenge by allowing the primary to send state up-
dates to all its secondaries in addition to CORBA re-
quests from the clients. This gives applications the neces-
sary flexibility to schedule and dispatch tasks that could
affect the state of the object.

Finally, we present an observation and a recommen-
dation based on the empirical evaluation of theSEMI-
ACTIVE replication style.

Observation. Client latencies tend to increase as a
function of an increasing degree of replication.

Recommendation. Middleware researchers and im-
plementors should carefully study application use cases,
failure rates of DRE applications, and expected perfor-
mance from the system to determine the replication de-
gree automatically. Being able to configure the degree of
replication adaptively would help simplify the develop-
ment and deployment of DRE systems. Likewise, DRE
system developers should carefully evaluate the trade-
offs associated with increased replication degrees on the
performance of their systems.

5 Future Directions

While the work presented above shows significant
progress in solving the problems presented in Sec-
tions 3.1 and 3.2 above, the problems of Sections 3.3, 3.4
and 3.5 stand as open challenges to the middleware R&D
community.

Byzantine and partial failures. The detection, diag-
nosis, and response to failures other than crash fail-
ures is an exceedingly hard problem to address in an
application-independent manner. For example, consider
an object that is returning correct responses too slowly.
The fault may be in the component, in the connection
with the component, or in some otherwise unrelated
component that is sharing some resource with the slow
component. These issues have received intense and pro-
tracted study [29]. Perhaps the most promising direction
for the middleware fault-tolerant community would be
to provide interfaces through which application-specific
detection, diagnosis, and response mechanisms can act.

Comparable QoS benchmarks. The ability to com-
pare qualities of service across different infrastructure
implementations requires an agreement on the set of
qualities that apply to each service, and rigorous defi-
nitions of those qualities. For example, if “invocation
latency” is agreed to be a relevant quality of a client-
server service, then it must be determined exactly how
this value will be measured. Since any set of measure-
ments of such qualities will then present a distribution
of values, the useful statistics that it must be determined
exactly how this value will be measured. Since any set
of measurements of such qualities will present a distribu-
tion of values, the useful statistics that are to be derived
from such a distribution must be agreed on,e.g., worst-
case, or average and standard deviation. It would also be
helpful to have standard benchmarking suites for these
qualities.

Standard interfaces for QoS control. It is clearly
desirable that DRE applications be able to control the
end-to-end qualities of service that it receives by stan-
dard, implementation-independent, mechanisms. But
as the DSCP example given in Section 3.5 shows, im-
plementation dependence at least in the implementa-
tion of QoS control mechanisms is probably inescapable.
It may, however, be possible to specify a standard,
implementation-independent, interface to such QoS con-
trol mechanisms. Such an interface would probably
strongly resemble the QoS specifications discussed in the
preceding paragraph.

Although solving all the problems presented above is
clearly hard, the consequences of solving them would be
profound: it would be possible to construct DRE sys-
tems that reliably meet their functional and quality re-
quirements, and do so when operating on any sufficiently
powerful infrastructure.

6 Concluding Remarks

Distributed real-time and embedded (DRE) systems are
playing an increasingly important role in many appli-
cation domains, including telecommunication networks
(e.g., high-speed central office switching), telemedicine
(e.g., remote surgery), manufacturing process automa-
tion (e.g., hot rolling mills), and aerospace (e.g., avionics

12

mission computing). Although there are many types of
DRE systems, they have one thing in common:the right
answer delivered too late becomes the wrong answer.
Providing the right answer at the right time is therefore
imperative for mission-critical DRE systems.

Our effort for adding dependability to DRE systems
focuses on developing and deploying strategies, such as
the one explained in Section 4, that can provide timeli-
ness and performance guarantees to the application even
during occurence of crash faults or fail-silent faults. Our
goal in this effort is to providethe right answer at the
right timeby lowering the infrastructure overhead needed
to detect and recover from faults.

References

[1] Hermann Kopetz,Real-Time Systems: Design
Principles for Distributed Embedded Applications,
Kluwer Academic Publishers, Norwell, Massachusetts,
1997.

[2] Richard E. Schantz and Douglas C. Schmidt,
“Middleware for Distributed Systems: Evolving the
Common Structure for Network-centric Applications,”
in Encyclopedia of Software Engineering, John
Marciniak and George Telecki, Eds. Wiley & Sons,
New York, 2001.

[3] Michi Henning and Steve Vinoski,Advanced CORBA
Programming With C++, Addison-Wesley, Reading,
Massachusetts, 1999.

[4] Ralph Lachenmaier, “Open Systems Architecture Puts
Six Bombs on Target,”http://www.cs.wustl.
edu/˜schmidt/TAO-boeing.html , Dec. 1998.

[5] Douglas C. Schmidt, “R&D Advances in Middleware
for Distributed, Real-time, and Embedded Systems,”
Communications of the ACM special issue on
Middleware, vol. 45, no. 6, June 2002.

[6] Object Management Group,The Common Object
Request Broker: Architecture and Specification, 2.6
edition, Dec. 2001.

[7] Object Management Group,Fault Tolerant CORBA
Specification, OMG Document orbos/99-12-08 edition,
December 1999.

[8] Object Management Group,Real-time CORBA Joint
Revised Submission, OMG Document orbos/99-02-12
edition, March 1999.

[9] Joseph K. Cross and Douglas C. Schmidt, “Applying
the Quality Connector Pattern to Optimize Distributed
Real-time and Embedded Middleware,” inPatterns and
Skeletons for Distributed and Parallel Computing, Fethi
Rabhi and Sergei Gorlatch, Eds. Springer Verlag, 2002.

[10] Douglas C. Schmidt, David L. Levine, and Sumedh
Mungee, “The Design and Performance of Real-Time
Object Request Brokers,”Computer Communications,
vol. 21, no. 4, pp. 294–324, Apr. 1998.

[11] Christopher D. Gill, David L. Levine, and Douglas C.
Schmidt, “The Design and Performance of a Real-Time
CORBA Scheduling Service,”Real-Time Systems, The
International Journal of Time-Critical Computing
Systems, special issue on Real-Time Middleware, vol.
20, no. 2, March 2001.

[12] Timothy H. Harrison, David L. Levine, and Douglas C.
Schmidt, “The Design and Performance of a Real-time
CORBA Event Service,” inProceedings of OOPSLA
’97, Atlanta, GA, October 1997, ACM, pp. 184–199.

[13] Fred Kuhns, Douglas C. Schmidt, and David L. Levine,
“The Design and Performance of a Real-time I/O
Subsystem,” inProceedings of the5th IEEE Real-Time
Technology and Applications Symposium, Vancouver,
British Columbia, Canada, June 1999, IEEE, pp.
154–163.

[14] Carlos O’Ryan, Fred Kuhns, Douglas C. Schmidt,
Ossama Othman, and Jeff Parsons, “The Design and
Performance of a Pluggable Protocols Framework for
Real-time Distributed Object Computing Middleware,”
in Proceedings of the Middleware 2000 Conference.
ACM/IFIP, Apr. 2000.

[15] Douglas C. Schmidt, Sumedh Mungee, Sergio
Flores-Gaitan, and Aniruddha Gokhale, “Software
Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request
Brokers,” Journal of Real-time Systems, special issue
on Real-time Computing in the Age of the Web and the
Internet, vol. 21, no. 2, 2001.

[16] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C.
Schmidt, Michael Kircher, and Jeff Parsons, “The
Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging,” in
Proceedings of the Middleware 2000 Conference.
ACM/IFIP, Apr. 2000.

[17] Aniruddha Gokhale and Douglas C. Schmidt,
“Measuring the Performance of Communication
Middleware on High-Speed Networks,” inProceedings
of SIGCOMM ’96, Stanford, CA, August 1996, ACM,
pp. 306–317.

13

[18] Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt,
Nanbor Wang, Vishal Kachroo, and Aniruddha
Gokhale, “Applying Optimization Patterns to the
Design of Real-time ORBs,” inProceedings of the5th

Conference on Object-Oriented Technologies and
Systems, San Diego, CA, May 1999, USENIX.

[19] Balachandran Natarajan, Aniruddha Gokhale,
Douglas C. Schmidt, and Shalini Yajnik, “DOORS:
Towards High-performance Fault-Tolerant CORBA,” in
Proceedings of the2nd International Symposium on
Distributed Objects and Applications (DOA 2000),
Antwerp, Belgium, Sept. 2000, OMG.

[20] Balachandran Natarajan, Aniruddha Gokhale,
Douglas C. Schmidt, and Shalini Yajnik, “Applying
Patterns to Improve the Performance of Fault-Tolerant
CORBA,” in Proceedings of the7th International
Conference on High Performance Computing (HiPC
2000), Bangalore, India, Dec. 2000, ACM/IEEE.

[21] Douglas C. Schmidt and Fred Kuhns, “An Overview of
the Real-time CORBA Specification,”IEEE Computer
Magazine, Special Issue on Object-oriented Real-time
Computing, vol. 33, no. 6, June 2000.

[22] Object Management Group,The Common Object
Request Broker: Architecture and Specification, 2.4
edition, Oct. 2000.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides,Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading,
Massachusetts, 1995.

[24] P. Barrett, A. Hilborne, P. Bond, D. Seaton, P. Verssimo,
L. Rodrigues, and N. Speirs, “The Delta-4 Extra
Performance Architecture (XPA),” inProceedings of
the 20th Int. Symp. on Fault-Tolerant Computing
Systems (FTCS-20), 1990.

[25] Kane Kim and Subbaraman C, “PSRR: A Scheme for
Time-Bounded Fault Tolerance in Distributed
Object-Based Systems,” inProc. IEEE High-Assurance
Systems Engineering (HASE) Workshop, Ontario,
Canada, Oct. 1996, IEEE.

[26] Kane Kim and Subbaraman C, “Fault-Tolerant
Real-Time Objects,”Communications of the ACM, Jan.
1997.

[27] Douglas C. Schmidt and Stephen D. Huston,C++
Network Programming, Volume 1: Mastering
Complexity With ACE and Patterns, Addison-Wesley,
Boston, 2002.

[28] Douglas C. Schmidt and Stephen D. Huston,C++
Network Programming, Volume 2: Systematic Reuse
with ACE and Frameworks, Addison-Wesley, Reading,
Massachusetts, 2002.

[29] Miguel Castro and Barbara Liskov, “Practical
Byzantine Fault Tolerance,” inProceedings of the Third
Symposium on Operating Systems Design and
Implementation, Feb. 1999.

14

