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Abstract

The ADAPTIVE Service eXecutive (ASX) is an object-
oriented framework that enhance the development of dis-
tributed applications across a range of operating system
platforms. The components in ASX were developed using
object-oriented design techniques and C++ language fea-
tures in order to simplify the use of OS mechanisms that pro-
vide interprocess communication, communication port de-
multiplexing, explicit dynamic linking, and concurrency. In
addition, the ASX components automate many system con-
figuration and reconfiguration steps by dynamically linking
network services into applicationsat run-time and arranging
to execute these services on one or more processes or threads.
This paper describes the structure and functionality of ASX
and presents several examples illustrating key ASX features.

1 Introduction

Developing communication systems that effectively utilize
multi-processing and network services is a promising tech-
nique for increasing system performance, scalability, and
cost effectiveness. However, complex distributed communi-
cation systems (such as on-line transaction processing sys-
tems, manufacturing process controllers, distributed object
managers, and global mobile communication systems) typ-
ically exhibit reliability, functionality, efficiency, and porta-
bility requirements that are challenging to satisfy simultane-
ously. To meet these challenges, developers must address
many topics that are not relevant or are less problematic
for stand-alone applications, including (1) local and remote
interprocess communication (IPC) facilities, (2) system con-
figuration management techniques that permit the flexible

1This material is based upon work supported by the National Science
Foundation under Grant No. NCR-8907909. This research is also supported
in part by grants from the University of California MICRO program, Nippon
Steel Information and Communication Systems Inc. (ENICOM), Hitachi
Ltd., Hitachi America, and Tokyo Electric Power Company.

insertion, modification, and removal of services from appli-
cations at installation-time and during run-time, (3) process
and thread creation, synchronization, communication, and
termination mechanisms, and (4) debugging and monitoring
support for tracking application behavior.

Object-oriented design and implementation techniques of-
fer a variety of principles, methods, and tools that help to
alleviate complexity related to developing distributed com-
munication systems. This complexity emanates from factors
such as non-type-secure, non-portable, and non-extensible li-
brary and system call interfaces, as well as a lack of efficient
higher-level network programming abstractions that leverage
off the increasing availability of advanced OS mechanisms
such as explicit dynamic linking and multi-threading. To
illustrate how object-oriented techniques are being success-
fully applied in several commercial and research projects, this
paper examines the structure and functionality of the ADAP-
TIVE Service eXecutive (ASX) framework. This framework
facilitates the development, configuration, and experimenta-
tion with concurrent, multi-service distributed communica-
tion systems composed of singleton and/or hierarchically-
related services [1]. The ASX framework leverages off
a collection of C++ components that (1) support dynamic
configuration of application services, (2) consolidate com-
mon distributed application activities (such as connection
management, external data conversion, reliable data trans-
fer, I/O-based and timer-based event demultiplexing, service
dispatching, content-based message routing, status logging,
and inter-connection of hierarchically-related communica-
tion services) within reusable C++ classes and frameworks,
and (3) take advantage of available OS multi-threading and
multi-processing mechanisms in a flexible manner.

This paper is organized as follows: Section 2 reviews
relevant background material; Section 3 describes the pri-
mary features and object-oriented architecture of the ASX
framework; Section 4 outlines several research projects and
commercial communication systems that utilize components
in the ASX framework; and Section 5 presents concluding
remarks.
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2 Research Background

Various strategies and tactics for developing highly config-
urable communication systems and distributed application
frameworks have emerged in several research domains. The
ASX framework incorporates concepts from several modular
communication frameworks including System V STREAMS
[2], the x-kernel [3], and the Conduit framework [4] from the
Choices object-oriented OS (a survey of these and other com-
munication frameworks appears in [5]). These frameworks
all contain features that support the flexible configuration
of communication systems (such as those based upon the
Internet or ISO OSI reference models) by inter-connecting
“building-block” protocol and service components. In gen-
eral, these frameworks encourage the development of stan-
dard communication-related components (such as message
managers, timer-based event dispatchers, demultiplexors [3],
and assorted protocol functions [6]) by decoupling processing
functionality from the surrounding framework infrastructure.
As described below, the ASX framework contains additional
features that further decouple system functionality from the
concurrency mechanisms used to provide parallelism.

Another influential branch of research addresses broader
policies for (1) reliably guiding the reconfiguration of execut-
ing communication systems and (2) representing application
state attributes as abstract data types to facilitate flexible ser-
vice configuration [7], communication [8], and migration in
heterogeneous and homogeneous [9] environments.

Another influential branch of research involves daemon
control frameworks..2 Daemon control frameworks provide
mechanisms that automate many tedious and error-prone ac-
tivities associated with configuring and reconfiguring net-
work daemons. These activities include (1) performing dae-
monization operations; (2) binding transport endpoints to
communication ports; (3) demultiplexing events received on
these ports; and (4) dispatching the appropriate handlers to
process the events.

Two widely available daemon control frameworks are
inetd [10] and listen [11], which are both distributed
with System V Release 4 UNIX. Inetd and listen are
multi-service daemon control frameworks that utilize a mas-
ter dispatcher process to monitor a set of communication
ports. Each port is associated with a communication-related
service (such as the standard Internet services ftp, telnet,
daytime, and echo). When a service request arrives on a
monitored port, the dispatcher process demultiplexes the re-
quest to the appropriate pre-registered service handler. This
handler performs the service and returns any results to the
client requestor. Long-duration external services3 (such as

2A daemon is a single operating system (OS) process that executes on a
host machine in the “background” (i.e., disassociated from any controlling
terminal) [10].

3An external service is executed in a different process address space
than the master dispatcher process that received the request. An internal
service, on the other hand, is executed within the same address space as the
dispatcher process.

ftp and telnet) are executed concurrently in separate
slave processes. In addition, inetd may be configured to
execute short-duration internal services (such as daytime
and echo) iteratively within its master dispatcher process
address space (note that listen does not provide this type
of functionality).

Both inetd and listen have proven to be quite use-
ful in practice. However, these daemon control frameworks
were developed without adequate consideration of object-
oriented techniques (such as class-based encapsulation, in-
heritance, dynamic binding, and parameterized types) and
advanced OS mechanisms (such as explicit dynamic linking
and multi-threading). This fact complicates component reuse
and limits functionality. For example, the standard version
of inetd is written in C and its implementation is charac-
terized by a proliferation of global variables, a lack of infor-
mation hiding, and an algorithmic decomposition that deters
fine-grained reuse of its internal components. Furthermore,
neither inetd nor listen provide automated support for
(1) dynamically linking services into the address space of
their master dispatcher processes at run-time or (2) executing
these services concurrently via one or more threads. There-
fore, developers who want their services to benefit from these
advanced OS mechanisms must manually program them into
their network daemons.

3 The ADAPTIVE Service eXecutive
(ASX) Framework

Object-oriented application frameworks are becoming in-
creasingly popular as a means to simplify and automate the
development and configuration process associated with com-
plex domains such as graphical user interfaces, databases, and
distributed communication systems. An application frame-
work is characterized by an integrated collection of compo-
nents that cooperate to define a reusable architecture for a
family of related applications [12]. Frameworks are distin-
guished from conventional class libraries in several ways:

� The components constituting a framework are integrated
together to address a particular problem domain. In
contrast, class library components (such as classes for
Strings, complex numbers, arrays, bitsets, etc.) are often
developed to be domain independent

� Complete communication systems may be formed by
inheriting from and/or customizing existing framework
components, rather than simply invoking methods pro-
vided in a class library. Inheritance enables the features
of a framework class to be shared automatically by its
descendant classes. It also allows the framework to
be extended transparently without affecting the origi-
nal code. Developers often interact with an application
framework by inheriting basic functionality from its ex-
istingscaffolding and overridingcertain virtual methods
to perform application-specific processing.
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� At run-time, the framework is usually responsible for
managing the event-loop(s) that provide the default flow
of control within an application. The framework deter-
mines which set of framework-specific and application-
specific methods to invoke in response to external events
(such as messages arriving on communication ports).

The ADAPTIVE Server eXecutive (ASX) is an object-
oriented framework that is specifically targeted for the dis-
tributed application domain. In particular, this framework
simplifies the construction of distributedcommunication sys-
tems by improving the modularity, extensibility, reusabil-
ity, and portability of both the application-specific services
and the underlying OS concurrency, IPC, and demultiplex-
ing mechanisms that these services rely upon. The primary
components in the ASX framework consist of C++ classes
and other class categories that may be combined flexibly via
inheritance, template instantiation, and object composition.
The following section describes the key features of the ASX
framework and outlines its primary architectural components.

3.1 The ASX Framework Features

The ASX framework provides the features described below.

3.1.1 Reusable, Application-Independent Components

The ASX framework integrates a collection of reusable
communication-related components [13] that handle com-
mon distributed application activities such as port monitor-
ing; message buffering, queueing, and demultiplexing; ser-
vice dispatching; local/remote interprocess communication;
concurrency control; and application configuration, installa-
tion, and run-time service management. The use of object-
oriented techniques and C++ features enhance the reusability
and extensibility of these ASX components.

To implement these features, the ASX framework lever-
ages off the multi-threading and explicit dynamic linking
facilities available in operating systems such as UNIX and
Windows NT [14]. When combined with the use of C++
language features such as templates, inheritance, and dy-
namic binding, the reusable ASX components facilitate the
development of clients and servers that often may be updated
and extended without modifying, recompiling, relinking, or
even restarting existing applications. For example, as illus-
trated in Section 4, distributed communication systems may
be developed incrementally by inheriting, composing, and
customizing the existing suite of ASX components that sup-
port the dynamic configuration and concurrent execution of
application services [1].

3.1.2 Support for Highly-Decoupled System Architec-
tures

The ASX framework enhances the flexibility and extensi-
bility of distributed communication systems by decoupling

application service functionality from the following system
characteristics:

� System Structure:

� The type and number of services associated with each
process. In particular, theASX framework supports both
single-service and multi-service applications.

� The point of time at which the service(s) are configured
into an application. A class category within ASX called
the Service Configurator [1] is used to encap-
sulate OS explicit dynamic linking mechanisms. This
enables services to be configured into ASX-based ap-
plications either (1) statically (at compile-time or link-
time) or (2) dynamically (when an application first be-
gins executing or even while it is running). Moreover,
the choice between static and dynamic configuration
may be deferred until installation-time.

� The order in which hierarchically-related services are
combined into an application. Each service is repre-
sented as a distinct set of independent objects that com-
municate by passing messages. These objects may be
joined together in essentially arbitrary configurations to
satisfy applications requirements and enhance compo-
nent reuse.

� Communication Mechanisms:

� The underlying IPC mechanisms used to commu-
nicate with participating clients and servers. The
IPC SAP [15] class library encapsulates the socket,
TLI, STREAM pipe, and named pipe mechanisms via
an object-oriented interface.

� The I/O-based and timer-based event demultiplexing
mechanisms used to dispatch incoming connection
requests and data onto the appropriate application-
specified service. A sub-framework within ASX called
the Reactor [16] portably encapsulates both the
select and poll I/O demultiplexing system calls
via an object-oriented interface.

� Execution Agents:

� The type and number of execution agents and process
architectures used to perform services at run-time. De-
velopers may select between user-level and kernel-level
process and thread execution agents.

� The ASX framework provides a set of classes and
tools that enable flexible selection from among several
message-based and task-based process architectures [5].
A process architecture binds units of application service
processing (such as layers, functions, connections, mes-
sages, etc.) with one or more CPUs [17]. The choice
of process architecture significantly affects key sources
of distributed application performance overhead (such
as memory-to-memory copying and data manipulation,
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Figure 1: C++ Components in the ASX Framework

context switching, scheduling, and synchronization),
and also influences demultiplexing strategies and proto-
col programming techniques [3]. The process architec-
ture components in ASX also support multiple service
invocation semantics, where application service pro-
cessing may be performed concurrently via either syn-
chronous and/or asynchronous techniques. Section 3.3
describes the process architecture support in the ASX
framework in greater detail.

The ASX framework enables applications to avoid prema-
turely committing to the structural, communication mech-
anism, and execution agent system charactistic described
above until late in the development cycle (i.e., during
installation-time or run-time). By deferring these decisions,
application portability, reusability, and extensibility is en-
hanced. For example, decouplingdesign and implementation
choices until sufficient information is available helps tailor
distributed communication system service configurations to
specific application requirements, OS platform characteris-
tics, and network conditions.

3.2 The Architecture of the ASX Framework

This section briefly describes the primary C++ compo-
nents in the ASX framework (illustrated in Figure 1). To
avoid gratuitouslyrenaming familiar terminology, many C++
class names in the ASX framework correspond closely with
functionally equivalent components available in System V
STREAMS. In addition, most ASX class interfaces are also
relatively similar to their STREAMS counterparts, though

C++ inline accessor/mutator functions are generally used in
lieu of accessing class data fields directly. However, the
implementation techniques used in ASX are significantly dif-
ferent, with an emphasis on supporting flexible service con-
figuration and concurrency control for distributed commu-
nication systems running on multi-processor platforms. For
instance, to reduce the likelyhood of deadlock and to sim-
plify intra-Stream flow control, the ASX framework’s pro-
cess architecture components completely re-engineer the co-
routine-based, “weightless” service processing mechanisms
used in STREAMS [18]. A weightless process does not exe-
cute on its own separate run-time stack. Therefore, it may not
suspend execution to wait for resources to become available
or events to occur, which greatly complicates programming
and increases the potential for deadlock.

The remainder of this section discusses the primary com-
ponents of the ASX framework in detail.

� The STREAM Class: In ASX, the STREAM class pro-
vides applications with aget/put-style interface for sending
and receiving data and control messages on a Stream. The
STREAM class is also the primary unit of application service
configuration for a particular instance of a Stream. This class
implements the interconnection logic required to insert and
remove service processing Modules into and from a Stream
concurrently and correctly at run-time.

� The Module Class: The Module class is the primary
unit of interconnection for clustering one or more applica-
tion services together in a Stream. By default, two standard
Modules (the Stream Head and the Stream Tail) are
installed automatically when a Stream is opened. These
Modules interpret standard control messages that circulate
through a Stream at run-time. For incoming messages, the
Stream Tail class typically transforms packets from net-
work devices or pseudo-devices into a canonical message
format recognized by other components in a Stream (it per-
forms the opposite transformation for outgoing messages).
Likewise, the Stream Head class provides message cre-
ation and buffering capabilities between an application and
a Stream. I/O between an application and a Stream is syn-
chronous when the Stream Head Module appears at the
top of a Stream. However, if the Stream Head is omit-
ted, messages percolating up a Stream are delivered into
the address space of an application asynchronously. Each
instance of a Module contains two Tasks: one handles
“read-side” processing for incoming messages and the other
handles “write-side” processing for outgoing messages.

� The Task Class: Each Task contains (1) a
Message List that enables queueing of messages, (2) a
pointer to its adjacent Task on a Stream, (3) a back-pointer
to its enclosing parent Module (which enables it to locate
its sibling), and (4) a number of standard utility methods that
maintain and mediate access to the internal state of a Task.
Several methods in the Task class are defined as pure vir-
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tual functions 4, which ensures that derived subclasses will
provide the requisite data structures and application service
functionality. For example, derived subclasses must supply
open and closemethods that perform application-specific
Task initialization and termination activities (such as allo-
cating and releasing per-session control blocks and private
synchronization objects). Likewise, subclasses must also de-
fine a put method, which performs service processing syn-
chronously when a message arrives from an adjacent Task.
In addition, a subclass may optionally provide a svcmethod
to handle service processing asynchronously. Selecting be-
tween these alternatives depends on certain installation-time
and run-time factors such as the choice of process architec-
ture and the current availability of chronically scarce shared
resources like Message Blocks.

� The Message List Class: The Message List class
provides a thread-safe message buffering facility built upon
the underlying Message Block class (which itself is a
linked list of one or moreMessage Blockobjects that form
a complete message). A “simple” message contains a sin-
gle Message Block and a “composite” message contains
multiple Message Blocks linked together. The overhead
resulting from passing Message Blocks between Tasks
is minimized by passing pointers to messages rather than
copying data. Each Message List contains a spin lock
that prevents race conditions when Message Blocks are
enqueued and dequeued concurrently by multiple threads.
In addition, each Message List contains a pair of condi-
tion variables (named notfull and notempty) that im-
plement flow control between adjacent Tasks. When one
Task attempts to insert a Message Block into a neigh-
boring Task that has reached its high watermark, the wait
operation it performs on the notfull condition variable
atomically relinquishes the CPU and sleeps awaiting flow
control conditions to abate. When the number of bytes in the
flow controlled Message List falls below its low water-
mark, the blocked Task is automatically signaled to resume
its execution.

� The Multiplexor Class: The Multiplexor class pro-
vides mechanisms that enable layered application services to
demultiplex messages between one or more Modules in a
Stream. Multiplexors are implemented as a C++ tem-
plate class parameterized by an external identifier. This exter-
nal identifier is used to instantiate a Map Manager template
that performs efficient intra-Stream message routing. Each
Map Manager object contains a set of Modules that may
be linked above and below a Multiplexor in essentially
arbitrary configurations. Although layered multiplexing and
demultiplexing is generally disparaged for high-performance
communication systems, most conventional communication
models involve some form of multiplexing,so theASX frame-
work provides mechanisms that support it.

4Pure virtual functions are a C++ feature that provide only abstract
interfaces, without any accompanying definitions [19]. Subclasses must
subsequently provide these definitions before objects may be instantiated.

� The Service Configurator Class Category: The ASX
framework uses the Service Configurator described
in [1]. The Service Configurator is centered
around the Service Config class illustrated in Fig-
ure 2 (3)5, which integrates the Service Object,
Service Repository, and Reactor components as
described below:

� The Service Object Abstract Base Class – The Task
class is derived from the Service Object class,
which provides interfaces that allow developers to spec-
ify the information necessary to support automatic dy-
namic linking and service initialization at run-time [1].
As shown in Figure 2 (1), the Service Object class
itself inherits from the Event Handler base class.
When used in conjunction with theReactor described
below, the Event Handler base class provides auto-
matic I/O port demultiplexing and service dispatching
for application-specific Tasks that communicate with
external processes and/or devices.

� Standard Subclasses of Service Object – The
Service Configurator contains a library of stan-
dard components that inherit fromService Object.
These standard components perform the service in-
vocation and service directory mechanisms described
below. Services that want to use these mechanisms
may inherit from the Eager Spawn, Lazy Spawn,
Process Spawn, Thread Spawn, Link Spawn,
or Service Manager subclasses illustrated in Fig-
ure 2 (2).

The Eager Spawn subclass pre-spawns one or more
processes or threads at application creation time. These
“warm-started” execution agents form a pool that helps
improve response time by reducing service startup over-
head when requests arrive from clients. Depending on
factors such as number of available CPUs, current ma-
chine load, or the length of a client request queue, this
pool may be expanded or contracted dynamically.

The Lazy Spawn subclass does not immediately
spawn a process when a client request is received. In-
stead, a timer is set and the request is handled iteratively
by the application. However, if the timer expires a
new slave process is automatically spawned to continue
processing the service independently from the master
dispatcher process [21].

The Process Spawn subclass implements the exter-
nal service process invocation functionalityprovided by
inetd and listen. It operates by spawning a new
slave process “on-demand” in response to the arrival
of client requests. The slave process then performs the

5These components and their relationships are illustrated via Booch no-
tation [20]. Dashed clouds indicate classes and directed edges indicate
inheritance relationships between these classes. Solid clouds indicate one or
more class objects and nesting indicate composition relationships between
these objects (cf. Figure 1).
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service request in its own separate address space – ter-
minating when the request is complete. Spawning a
process on-demand helps to reduce the consumption of
OS resources, at the expense of higher costs for initially
starting a service.

The Thread Spawn subclass implements service
spawning techniques that are often more efficient than
the process invocation method used by inetd and
listen. Rather than using fork and exec to
create a separate process on a per-request basis, the
Thread Spawn class creates a separate thread. This
thread executes its associated service to completion and
then exits.

The Link Spawn subclass dynamically links and ex-
ecutes a new service without spawning a new process
or thread. This allows services to be loaded and un-
loaded on demand, rather than being pre-loaded dur-
ing daemon initialization. The Link Spawn subclass
is implemented by (1) dynamically linking an object
file, (2) obtaining the entry-point of the appropriate
Service Object in this file, and (3) invoking the
service to perform the client request. Upon comple-
tion, the service installed by Link Spawn may be au-
tomatically removed by closing theService Object
and unlinking the object file from the daemon’s address
space.

The Service Manager subclass enables local and
remote clients to determine which services are cur-
rently offered by a network application. During ap-
plication configuration, a Service Manager object

may be registered at a well-known communication port
accessible by clients. When a client requests a list
of enabled application services, the handle input
method in the Service Manager invokes the itera-
tor for the Service Repository class (described
below). This iterator is used to generate a complete
listing of developer-supplied information that describes
each enabled service. This listing is transferred back
to the client to indicate both the address format and the
transport protocol required to contact application ser-
vices.

� The Service Repository Class – To simplify adminis-
tration of single-service and multi-service applications,
it is necessary to individually and/or collectively con-
trol and coordinate the Service Objects that com-
prise an application’s current suite of active services.
The Service Repository is an object manager
that coordinates local and remote queries and updates
involving the services offered by an ASX-based ap-
plication. A search structure within the object man-
ager binds service names (represented as ASCII strings)
with instances of composite Service Objects (rep-
resented as C++ object code). A service name uniquely
identifies an instance of a Service Object stored
in the repository. As illustrated in Figure 2 (3), the
Service Repository also contains methods that
load, (re)enable, disable, or remove Modules and
Multiplexors from an application statically and/or
dynamically, based upon notification from external
events (such as signals or control messages).
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� The Reactor Class Category – The Reactor is an
extensible event demultiplexing and service dispatch-
ing framework that portably encapsulates and enhances
the functionality of the UNIX select and poll
I/O demultiplexing mechanisms. An instance of the
Reactor is provided within the ASX framework to
automate the registration and dispatching of services
within one or more Streams. Typically, these ser-
vices interact with external I/O devices (such as net-
work controllersand serial-line drivers). TheReactor
integrates the demultiplexing of I/O descriptor-based
events together with timer-based events via the uni-
form service dispatching interface provided by the
Event Handler base class. Application-specific
subclasses define composite objects by inheriting and
refining this interface. As shown in Figure 2 (4), the
Reactor also contains a set of methods that register,
remove, schedule, and expire I/O-based and timer-based
objects. When an object is registered by an applica-
tion, the Reactor extracts the underlying I/O descrip-
tor from the object and stores it (along with descrip-
tors from other registered objects) into a data structure
passed to select or poll. When events associated
with registered objects occur at run-time, theReactor
automatically dispatches the appropriate method(s) of
the activated objects, which then perform application-
specific services.

� The Service Config Class – The Service Config
class shown in Figure 2 (4) integrates the other compo-
nents in the Service Configurator to facilitate
the static and/or dynamic configuration of concurrent,
multi-service communication systems.

Figure 3 illustrates several representative architectural
configurations of ASX components within a distributed envi-
ronment. Figure 3 (1) depicts a client application that utilizes
ASX components to manipulate I/O messages sent and re-
ceived on one or more network devices. Figure 3 (2) portrays
a server application composed of several inter-connected,
layered services. Figure 3 (3) illustrates an rwho daemon
configuration involving singleton services that are not related
hierarchically nor inter-connected.

3.3 Flexible Process Architecture Support

The ASX framework is designed to decouple operations
that implement service functionality from the (1) execution
agents, (2) concurrency control mechanisms, and (3) service
invocation semantics used to implement particular process
architectures such as message-based parallelism and task-
based parallelism [22]. The following techniques are used
by the ASX framework to accomplish this decoupling:

� Multi-level Concurrency Model: The ASX framework
leverages off the multi-level concurrency model provided by
the underlying SunOS 5.3 process and thread management

facilities [14]. The semantics of the SunOS synchroniza-
tion objects (such as mutex and condition variables, counting
semaphores, and readers/writer locks) offer equivalent se-
mantics when used within threads spawned via one of the
following two modes:

1. Bound threads – which map 1-to-1 directly onto kernel
threads. Bound threads permit independent services
to execute in parallel on multiple CPUs. However, a
context switch is generally required to reschedule bound
threads and most synchronization operations require OS
kernel intervention.

2. Unbound threads – which are multiplexed in an n-to-m
manner atop one or more kernel threads by a hybrid
user/kernel-level thread run-time library. This library
schedules, dispatches, and suspends unbound threads,
while attempting to minimize kernel involvement. De-
pending upon the number of kernel threads that an ap-
plication and/or library associates with a process, one or
more unbound threads may execute on multiple CPUs
in parallel.

The ASX framework employs this multi-level concurrency
model to flexibly support several flavors of parallelism with
minimal impact on a process architecture’s overall structure.
For example, the parallelism obtained directly via bound
threads is useful for simultaneously performing presentation
layer conversions on multiple messages using multiple CPUs.
These operations benefit significantly from direct parallelism
since they involve almost no inter-thread communication or
synchronization [23]. Conversely, maintaining a pool of un-
bound threads that shepard messages throughout a stack of
services may benefit from the reduced kernel involvement as-
sociated with the multiplexed flavor of parallelism provided
by unbound threads.

� Configurable Concurrency Control Classes: By de-
fault, the core ASX C++ classes described in Section 3.2 are
implemented with minimal internal locking to avoid over-
constraining the granularity of a process architecture’s syn-
chronization strategies. In particular, only framework mech-
anisms that would not function correctly in a multi-threaded
environment (such as enqueueing Message Blocks onto
a Message List or resolving internal Module addresses
stored in a Multiplexor within a Stream) are protected
by synchronization objects. More sophisticated concurrency
control schemes may be created by selectively instrument-
ing services with ASX synchronization wrappers [13]. These
wrappers utilize several C++ features such as (1) inheritance,
(2) parameterized types, and (3) conditional compilation to
select from a pre-defined library of C++ synchronization
components. In general, this approach decouples the protocol
processing functionality from the mutual exclusion code that
synchronizes interactions between objects within a particular
process architecture.

� Alternative Service Invocation Semantics: Messages
that arrive at the head or the tail of a Stream are sheparded

7



KERNEL
SPACE

: Reactor

Module
A

USER
SPACE

: Service
Repository

(1)  CLIENT
CONFIGURATION

REMAINDER  OF
CLIENT  APPLICATION

(3)  SINGLETON  SERVICE
SERVER  CONFIGURATION

BROADCAST
SENDER

BROADCAST
RECEIVER

USER
SPACE

KERNEL
SPACE

RWHO
DAEMON

USER
SPACE

KERNEL
SPACE

Module
B

: Service
Repository

Message
List

(2)  LAYERED  SERVICE
SERVER  CONFIGURATION

: Reactor

: Service  Config
: Service
Config

: Reactor

Stream
Head

Module
C

Module
A

Figure 3: Alternative ASX Distributed Application Configurations

through a series of inter-connectedTasks by repeatedly call-
ing their put and/or svc methods via either synchronous
and/or asynchronous invocation mechanisms [24], as fol-
lows:

� Synchronous Invocation – This mechanism borrows the
thread of control from the entity that passed a message
via theTask::putmethod. A thread of control gener-
ally originates “upstream” from an application process,
“downstream” from an I/O device interrupt,or internally
from an event dispatching mechanism (such as a timer-
driven callout queue used to trigger retransmissions for
connection-oriented transport protocols).

� Asynchronous Invocation – This mechanism typically
emanates from one or more threads associated with
a Task or Module. A thread executes a service’s
Task::svc method, which runs an event loop that
continuouslywaits for messages to arrive on theTask’s
Message List. When messages arrive, thesvc rou-
tine performs the necessary service processing opera-
tions. Messages are forwarded to the next Task in
a Stream by invoking the Task::putnext method,
which subsequently calls the put method in the adja-
cent Task. This put routine will either borrow the
thread of control from the Task that invoked it or it
will enqueue the message for subsequent processing in
its corresponding svc routine.

The ASX framework provides the basic service invocation
mechanisms described above. However, an application is
responsible for selecting an appropriate set of process archi-
tecture policies that combine these synchronous and/or asyn-
chronous invocation mechanisms [1]. In general, selecting
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Figure 4: The Distributed Logging Facility

between these different mechanisms involves trade-offs be-
tween efficiency, ease of programming, and deadlock avoid-
ance. For example, depending on application characteristics,
available OS parallelism, and/or developer constraints (such
as cross-platform portability), a Task, Module, and/or en-
tire Stream may be bound to one or more threads of control in
a flexible manner determined during Stream configuration.

8



REGISTERED

OBJECTS

: Reactor

NETWORK

SERVER
HOST SERVER  LOGGING  DAEMON

CLIENT  LOGGING

DAEMON

CLIENT
HOST

APPLICATION

NAMED

PIPE

TCP

CONNECTION

TCP

CONNECTION

CLIENT
HOST

: Listener : Logging
IO

: Logging
IO

: Log_Msg

: SOCK
Stream

Figure 5: ASX Components in the Distributed Logging Fa-
cility

4 ASX Examples

The ASX framework components are currently being used
in several research projects [17] and commercial projects [1]
to enhance the configuration flexibility and software compo-
nent reuse of distributed communication systems that operate
efficiently and portably across multiple hardware and soft-
ware platforms. The remainder of this section examines the
architecture of two existing communication systems, a dis-
tributed logging facility and a device monitoring system for
telecommunications devices. Note that the logging facility is
an example of a monolithic service and the PBX monitoring
system is an example of layered services operating within the
ASX framework.

4.1 Distributed Logging Example

The ADAPTIVE Communication Environment (ACE) pro-
vides a distributed logging facility that simplifies distributed
application debugging and run-time tracing. Debugging dis-
tributed communication systems may be quite challenging
since diagnostic output appears in different windows and/or
on remote host systems. As shown in Figure 4, the ACE
distributed logging facility consists of several interoperating
components located on multiple machines throughout an in-
ternetwork (the complete design and implementation of the

distributed logging facility is described in detail in [25, 16]).
Application processes (e.g., P1, P2, P3) running on client

hosts use the Log Msg C++ class to generate various types
of logging records (such as LOG ERROR and LOG DEBUG).
The Log Msg::log method provides a printf-style in-
terface that timestamps logging records and sends them via
the FIFO SAP C++ wrapper for named pipes. The named
pipe communicates with a client logging daemon running on
the local host machine. This client logging daemon receives
the logging records in “priority order” and uses another C++
wrapper (the SOCK Stream class) to forward the records
via a TCP/IP connection to a remote server logging daemon
residing at a designated server host in a local and/or wide area
network. The server logging daemon displays these records
on one or more output devices (such as printers, persistent
storage devices, and/or monitoring consoles).

The server logging daemon is a single-threaded concurrent
server [26] that is built upon various ASX components such
as the Reactor, the Logging Listener class, and the
Logging IO class. The relationships between these com-
ponents are illustrated in Figure 5. Logging Listener is
a template subclass that inherits from theService Object
class (which enables it to be dynamically linked into the
server logging daemon and initialized) and is parameter-
ized by the SOCK Listener class and the Logging IO
class (which itself is another template class that inher-
its from Event Handler and is parameterized by the
SOCK Stream class). Logging Listener is respon-
sible for establishing connections with clients by dynam-
ically creating Logging IO objects and registering them
with the Reactor. The Logging IO class is responsi-
ble for displaying logging records sent from multiple client
logging daemons on multiple client hosts. Decoupling the
connection establishment and data transmission functional-
ity into these two parameterized classes helps to improve the
modularity, reusability, and configurability of the distributed
logging components.

4.2 PBX Device Monitor

The ASX framework also facilitates the flexible configu-
ration of communication systems containing layered ser-
vices. Figure 6 illustrates the client/server architecture of
a PBX monitoring system. This system is implemented us-
ing ASX components. In this example, the server host acts
as an intermediate router, forwarding status information gen-
erated by one or more PBX devices to client monitoring
hosts attached to a network. PBX devices may be attached
to a server daemon through some form of communication
link (e.g., a serial-line or network connection) that interacts
with the Device Adapter class. Likewise, clients at-
tach to the server by (1) establishing a connection with the
Client Adaptermodule and (2) indicating which type(s)
of PBX signals they are interested in monitoring. The write-
side of the Client Adapter class accepts connection re-
quests from clients and also forwards client-based control
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messages through the inter-connected write-side Tasks of
the Stream to the appropriate PBX.

The read-side of the Device Adapter class is respon-
sible for parsing and transforming incoming device sig-
nals into a canonical event message format built atop the
Message Block class. These messages are then passed
along to the read-side of the Signal Router class, which
identifies the client(s) that should receive the message based
upon addressing tables maintained in the Task. Once
the proper destination(s) are known, the read-side of the
Client Adapter class uses separate connections to trans-
mit messages to all clients that have registered previously to
receive these particular types of event messages.

An instance ofService Config is used in this example
to control the initialization and termination of the Task and
Module components configured at installation-timeand dur-
ing run-time. Likewise, within the Service Config ob-
ject, an instance of the Reactor is used to dispatch incom-
ing client messages to the appropriate Client IO handler.
The Client Listener class handles connection requests
from clients and the Client IO class handles data transfer
between the server and its clients. Control messages arriv-
ing from clients are sent down the write-side of the Stream,
starting with theClient Adapter and continuing through
to the write-side of the Device Adapter. Likewise, in-
coming signals from devices are sent to the read-side of the
Stream, starting with the Device Adapter.

The following C++ code fragment illustrates how the PBX
monitoring application configures its hierarchically-related
services:

Module *da = new Module ("Device_Adapter",
new Device_Adapter, new Device_Adapter);

Module *ea = new Module ("Event_Analyzer",
new Event_Analyzer, new Event_Analyzer);

Module *mr = new Module ("Multicast_Router",
new Multicast_Router, new Multicast_Router);

STREAM PBX_mon;

/* Push the modules onto the application stream */

if (PBX_app.push (da) == -1)
Log_Msg::log (LOG_ERROR "%p\n", sa->get_name ());

else if (PBX_app.push (ea) == -1)
Log_Msg::log (LOG_ERROR "%p\n", ea->get_name ());

else if (PBX_app.push (mr) == -1)
Log_Msg::log (LOG_ERROR "%p\n", ca->get_name ());

Earlier non-object-oriented incarnations of the PBX mon-
itoring application used ad hoc techniques (such as linked
lists, parameter passing, and shared memory) to exchange
messages between the various related application services.
In contrast, the ASX framework provides standard queue-
ing mechanisms that compose and layer the hierarchically-
related services together to form a complete server appli-
cation. Using multiple inter-connected processing modules
greatly simplifies portability and configurability. For exam-
ple, it is relatively simple to migrate certain processing func-
tionality from the server to the clients. Moreover, the ASX
framework also shields the majority of the PBX application
code from knowledge of the client/server interactions and the
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particular choice of communication protocols. In addition, it
is also straight forward to reconfigure the binding of threads
onto Tasks and Modules in order to reduce programming
effort, ensure correct behavior, and improve performance.

5 Concluding Remarks

The ASX framework is an integral part of the ADAPTIVE
Communication Environment (ACE) [17]. The goal of the
ACE project is to produce an extensible framework that
simplifies the development of concurrent, multi-service dis-
tributed communication systems composed of services tai-
lored for particular application, OS platform, and network
characteristics. To help achieve this goal, the ASX frame-
work employs a variety of advanced operating system mech-
anisms, object-oriented design techniques, and C++ language
features. In general, object-oriented techniques and C++
features enhance software quality factors (such as robust-
ness, ease of use, portability, reusability, and extensibility),
whereas OS features improve functionality and performance.
In particular, the ASX framework automates many steps in-
volved with configuring and reconfiguring services into dis-
tributed communication systems [1]; encapsulates local and
remote IPC [15], distributed logging [25], I/O port demul-
tiplexing and service dispatching [16]; and enables flexible
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invocation methods for intra- and inter-service concurrency
[17].

The ASX components described in this paper are avail-
able via anonymous ftp from ics.uci.edu in the file
gnu/C++ wrappers.tar.Z. This distribution contains
complete source code, documentation, and example test
drivers for the C++ components developed as part of the ACE
project [17] at the University of California, Irvine. Compo-
nents in the ASX framework have been ported to both UNIX
and Windows NT and are currently being used in a number
of commercial products including the Bellcore Q.port ATM
signaling software product, the Ericsson EOS family of PBX
monitoring applications, and the network management por-
tion of the Motorola Iridium mobile communications system.
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