
Target Manager – A Resource Provisioning Service for
Enterprise Distributed Real-time and Embedded Systems

Nilabja Roy, Nishanth Shankaran, and Douglas C. Schmidt

Vanderbilt University, Nashville TN, USA 615-343-8197

{nilabjar, nshankar, schmidt}@dre.vanderbilt.edu

Abstract. Middleware is increasingly used to develop and deploy components
in enterprise distributed real-time and embedded (DRE) systems. A key chal-
lenge in these systems is devising resource management algorithms that deploy
application components properly onto target nodes. To provide an accurate
view of system resource utilization, these algorithms need runtime monitoring
of resources. Runtime monitoring and allocation of resources is also needed to
make redeployment or reconfiguration decisions triggered by various factors,
such as failures, attacks, overloads, or changes in quality of service (QoS) re-
quirements. DRE systems with a diverse range of applications can therefore
benefit from a common resource provisioning service capable of monitoring re-
source data and enabling proper resource allocation in a timely manner.

This paper provides two contributions to the study of runtime resource provi-
sioning for enterprise DRE systems. First, it describes the challenges in devel-
oping Bulls-Eye, which is an open implementation of the OMG standard Target
Manager specification that provides a reusable service for provisioning distrib-
uted resources in enterprise DRE systems. Second, it presents the results of ex-
periments that applied Bulls-Eye to the multi-layer resource management sub-
system of a shipboard computing environment. Our results show that provi-
sioning resources at runtime in a DRE system via Bulls-Eye simplifies resource
management and helps automate adaptations in the face of dynamic changes in
operating conditions.

Keywords: Resource Provisioning, Component Technology, Dynamic Re-
source Management, CORBA Component Model.

1 Introduction

Resource Provisioning challenges of component-based enterprise DRE systems.
Applications in the domain of enterprise distributed and real-time embedded (DRE)
systems, such as shipboard computing environments, satellite constellations, and
surveillance and reconnaissance systems, are characterized by stringent quality of
service (QoS) requirements and operate in dynamic and resource-constrained envi-
ronments. The operating modes of these systems may dynamically vary in response to
changes in policies or input loads, and they often execute across heterogeneous plat-
forms. Certain enterprise DRE system characteristics, such as their longevity and
complexity, motivate the use of component-based development. In this context, com-
ponents are units of implementation and composition that have well-defined QoS
requirements and resource consumption profiles. In enterprise DRE systems, applica-
tions consist of groups of domain-related tasks that can be implemented by param-
eterized and executable software components using QoS-enabled component middle-

ware platforms, such as OMG Lightweight CORBA Component Model (CCM) [3]
and PRiSM [14].

Although component technologies can help enhance software reuse, maintenance, and
extensibility [19], they also introduce new deployment and configuration challenges
[15] stemming from the need to shield applications and users from the complexities of
heterogeneous and dynamically changing hardware/software environments. The proc-
ess of deploying enterprise DRE systems involves creating a deployment plan that
allocates available computing and communication resources (e.g., memory, CPU, and
network bandwidth) to the components and establishes connections between them. To
prepare an effective deployment plan, the DRE system needs to know the resources
available in the target domain so that resource consumption profiles of the compo-
nents can be mapped properly to the available computing nodes and communication
links. It is also important to track resource usage at runtime so that components can be
redeployed and/or reconfigured to adapt to changes in application operating condi-
tions caused by policy changes or failures, which must be detected quickly so the
system can adapt with minimum disruption.

One way to address these challenges is to create a resource provisioning service that
(1) monitors the resources available in the target domain, (2) supplies this information
to human and/or automated planners who prepare a deployment plan using the current
resource profile, (3) dynamically allocates resources to deployed components and
releases resources when the components are terminated, and (4) facilitates component
redeployment and reconfiguration based on resource availability and constraints.
Developing such a resource provisioning service for enterprise DRE systems is hard
due to the need to handle platform heterogeneity, ensure responsiveness and scalabil-
ity, and enable dynamic updates within time constraints.

This paper describes the design and application of Bulls-Eye, which is an implemen-
tation of the Lightweight CCM Target Manager specification [6] that is tailored to the
needs of enterprise DRE systems. In particular, we designed Bulls-Eye to optimize its
CPU and I/O usage to provide fast/predictable access to resource information and en-
able its use to provision enterprise DRE systems with a range of QoS requirements.
The resulting object-oriented framework has been integrated with the Component-
Integrated ACE ORB (CIAO) (www.dre.vanderbilt.edu/CIAO), which is an open-
source implementation of Lightweight CCM that has been applied to several enter-
prise DRE systems, including a shipboard computing system and a prototype of a
NASA science mission.

The remainder of this paper is organized as follows: Section 2 describes a case study
that motivates the need for a resource provisioning framework in shipboard comput-
ing systems; Section 3 discusses the structure and functionality of the Bulls-Eye Tar-
get Manager; Section 4 explains the design challenges that we overcame while de-
veloping Bulls-Eye and applying it to the shipboard computing domain; Section 5
summarizes the results of experiments that measures the overhead of Bulls-Eye and
demonstrates its utility in the context of a prototype shipboard computing system;
Section 6 compares our work on Bulls-Eye with related research; and Section 7 pre-
sents concluding remarks and outlines our lessons learned during this project.

2 Case Study: An Enterprise DRE System for Shipboard
Computing

This section describes the structure and functionality of the Multi-Layer Resource
Management (MLRM) subsystem for shipboard computing that we use as our running
case study in the paper to motivate our work on Bulls-Eye. A shipboard computing
environment is a metropolitan area network of computational resources and sensors
that provides on-demand situational awareness and actuation capabilities for human
operators, and responds flexibly to unanticipated runtime conditions. To meet such
demands in a robust and timely manner, the shipboard computing environment uses
services in the MLRM subsystem to (1) bridge the gap between shipboard applica-
tions and the underlying operating systems and middleware infrastructure and (2)
support multiple QoS requirements, such as survivability, predictability, security, and
efficient resource utilization. To support the accelerated operational tempo in modern
shipboard computing systems, the MLRM software must adapt in response to dy-
namic conditions for the purpose of utilizing the available computer and communica-
tion resources to the highest degree possible to meet changing mission needs.

Figure 1. Layered Architecture of the MLRM Subsystem

The MLRM subsystem described in this paper consists of the three layers shown in
Figure 1. The command and policy inputs flow in a top-down manner and corre-
spondingly the resource status information moves in a bottom-up fashion. At the top
is the Domain Layer, which consists of the Mission Allocator. This allocator collects
command and policy inputs and passes them onto the Resource Pool Layer, which
represents a set of computing resources managed by a Pool Manager. The Pool Man-
ager in turn interacts with the Resource Allocation and Control Engine (RACE) [13],
which a reusable framework that separates resource allocation and control algorithms
from the underlying middleware deployment, configuration, and control mechanisms

so that different algorithms can reuse common middleware mechanisms to (re)deploy
components onto nodes and manage the node’s resources among competing applica-
tions. The bottom layer is the Resource Layer, which contains the entire set of hard-
ware elements in the shipboard computing environment, known as the Target Do-
main. Each node in turn contains a Node Provisioner that receives commands from
RACE to create and destroy applications on the node.

The MLRM subsystem is built using the Component-Integrated ACE ORB (CIAO).
CIAO combines Lightweight CCM [5] mechanisms (such as standards for specifying,
implementing, packaging, assembling, and deploying components) and Real-time
CORBA [7] mechanisms (such as thread pools and priority preservation policies). The
MLRM subsystem has scores of different types and instances of CCM components
written in ~500,000 lines of C++ code and residing in ~1,000 files developed by five
teams at different locations (dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6).

The scale, complexity, longevity and multiple QoS requirements of a shipboard com-
puting environment necessitates that its components be deployed and allocated using
effective resource management techniques [5]. This requirement, in turn, motivates
the need for accurate information on resource availability in the domain. The Bulls-
Eye Target Manager shown in Figure 1 serves this functionality for the MLRM sub-
system by providing runtime information on resource usage that helps RACE opti-
mize component allocation and meet end-to-end QoS requirements.

Bulls-Eye is used during initial system deployment when RACE runs algorithms to
allocate components to the appropriate nodes in a resource pool. These algorithms
interact with Bulls-Eye to obtain information regarding resource utilization in the
target domain. This data is used to produce a deployment plan needed to deploy the
system via DAnCE, which is CIAO’s implementation of the OMG Deployment and
Configuration (D&C) specification [1]. The D&C specification standardizes many as-
pects of deployment and configuration for component-based distributed systems, in-
cluding component configuration, component assembly, component packaging, pack-
age configuration/deployment and repository management of component implementa-
tions. Bulls-Eye is also used at runtime to extract dynamic resource availability data
and update component implementations dynamically, e.g., in response to damage or
to handle changing workload levels.

A particularly important function of the resource allocation and control algorithms in
the MLRM subsystem is the (re)deployment and (re)configuration of components
based on their operational context. For example, a shipboard computing environment
may need to switch rapidly from crew entertainment mode to ship defense mode,
which necessitates updating and/or migrating many computing services. Bulls-Eye
therefore provides mechanisms to retrieve the resource availability data across the
entire target domain by monitoring and dynamically updating component resource
usage. RACE uses data provided by Bulls-Eye and the requirements of each compo-
nent to generate an optimized deployment plan and to ensure that the components
allocated conform to the characteristics of each node’s hardware, OS, middleware,
and programming language(s), which can be highly diverse.

3 The Design of the Bulls-Eye Target Manager

Bulls-Eye is a resource provisioning service designed to enable software developers
and applications in enterprise DRE systems to (1) retrieve a list of the initial available
resources in a target domain, thereby enabling the preparation of a deployment plan
fulfilling the allocation and connection requirements of each component, (2) allocate
resources for a particular deployment plan and release resources when the compo-
nents or the entire deployment is removed, (3) obtain runtime resource available in
the system, and (4) dynamically update the resource consumption data. This section
describes how the structure and functionality of Bulls-Eye supports these capabilities
in the context of the Lightweight CCM Target Manager specification.

3.1 Structure of Bulls-Eye

Figure 2 shows the architecture of Bulls-Eye, which consists of a CORBA interface
specified in the Target Manager specification. Bulls-Eye is comprised of two parts:
(1) a centralized1 service, known as the Target Manager core (TM-core) used by ap-
plications and system services allocate and release resources as needed and (2) multi-
ple monitors (TM-Monitor) distributed across the domain that perform resource moni-
toring and update the TM-core’s model of the amount of resources available at any
point in time.

Figure 2. The Bulls-Eye Target Manager Architecture

The Domain comprises of all the elements of a target environment comprising of
nodes, interconnects between them, bridges connecting between interconnects and the
set of resources belonging to them. A Domain is a logical concept wherein a single
resource or node element can be part of more than one target domain. Domains are
therefore structured hierarchically, and a top-level domain may contain other do-

1 There is only one logical instance of the TM-core in the domain, though it can be replicated to

enhance availability and prevent a single point of failure.

mains. Each Domain will have a TM-Core accumulating the resource information for
the associated target domain.

The TM-core provides a standard set of operations that applications and system ser-
vices can use to provision available resources statically (i.e., prior to system launch)
as well as dynamically (i.e., during system runtime) in the form of a generic structure
known as the DomainStruct [4]. This structure describes the contents of the entire
target environment by composing data related to available nodes in the network, the
connections between nodes, connection between networks, the shared resources
among them, and the resources for each element.

A TM-Monitor is placed on each logical node in the target domain and monitors the
resource usage in that node. The TM-Monitor periodically update to the TM-core,
with the current resource utilization/availability on that node. Upon receiving th up-
dated, the TM-Core aggregates the data received with previous data and updates its
content.

Bulls-Eye maintains a top-level Domain element that contains all the elements of a
target domain and is uniquely identified by a universally unique identifier (UUID).
This Domain element is designed so that all possible domain elements can be incorpo-
rated, which alleviates the need to create separate structures for different types of
resource, such as processor, memory, storage, and/or network bandwidth. This design
also makes client code flexible by alleviating the need for any specific type of re-
source in the domain since it can handle all the varieties of resource elements present
in the domain.

The TM-Monitors collect data pertaining to their sub-domain and updates the TM-
Cores with fresh data. Clients are interested in data across different sub-domains, so
the data from different TM-Monitors need to be aggregated and presented uniformly.
In order to avoid latency issues, the distributed monitors push in only the data that
changed from the previous update. This data is aggregated with the remaining domain
data which is already present.

3.2 Functionality of Bulls-Eye

Bulls-Eye provides the following standard Target Manager operations that can be
invoked by clients to provision system resources:

• Querying static resources. Developers or planner applications can use ge-
tAllResources() to obtain the initial static resources in the target domain.
This operation returns the Domain structure that contains the entire domain re-
source in a hierarchical fashion.

• Querying dynamic resources. Dynamic time resource availability can be returned
by getAvailableResource (). This operation returns the same Domain
structure as above, except thta the resources reflect their remaining capacity.

• Committing resources. A planning application can call to createResource-
Commitment() to commit (i.e., allocate) resources for a particular deployment
plan. This operation creates a ResourceCommitmentManager that can be
used to commit and release resources for a specific plan. A pool of resources can

be specified when a call to createResourceCommitment() is made or can
be allocated after it is created. An exception is raised if a requested resource cannot
be committed.

• Releasing resources. When an application or a component in an application is
deleted all the resources allocated to it must be released so they can be reallocated
when new applications are deployed. Resources can be released by an application
by calling releaseResources() on the associated ResourceCommit-
mentManager. When a ResourceCommitmentManager is itself deleted via
destroyResourceCommitment(), all remaining committed resources are re-
leased automatically.

• Updating dynamic resource data. The domain data in the TM-core can be up-
dated via updateDomain(). The updated information is passed in the form of
Domain structure, which is a subset of the higher level domain structure. An enu-
meration called DomainUpdateKind can be passed to tell Bulls-Eye whether the
subset should be added, deleted, or updated.

The Bulls-Eye Target Manager functionality plays a key role in the deployment and
configuration of enterprise DRE systems. On startup, it reads a configuration script
containing the resources present in the domain. The script is prepared by a human or
automated domain administrator who understands the initial domain contents, such as
nodes, the interconnects linking them, and the resources contained in them and avail-
able for application usage, such as processor capacity, memory capacity, and disk
capacity. The TM-Monitor is used to monitor components on a host is collocated and
started together with its associated NodeManager, which is an entity defined by the
OMG D&C specification and implemented by CIAO as a daemon process running on
each host.

At startup, the TM-core is passed the subset of the Domain tells the TM-Monitor
which resources to monitor on the host. The TM-Monitor then checks the Domain
information and reports any discrepancies (such as the hard disk capacity being
smaller than the initial domain description or the node is single processor node instead
of a dual processor) to the TM-Core. Once Bulls-Eye is up and running, it can be used
by the clients to make the above queries about the domain, e.g., RACE components
can extract domain related information for preparing a deployment plan. Any entity
willing to deploy plans in the domain will need to commit resources through Bull-s
Eye to successfully deploy and ultimately run applications.

4 Resolving Bulls-Eye Design Challenges

Although the CCM specification defines the interface and the functionality of the
Target Manager service it does not prescribe any design details. We were therefore
faced with a number of design challenges when implementing Bulls-Eye. This section
describes the key design challenges we encountered, presents our implementation
solutions, and outlines how we applied these solutions to the shipboard computing
applications supported by the MLRM subsystem described in Section 2.

Challenge 1: Integrating the Heterogeneous API of Multiple Platforms

Context. The domain of DRE systems typically consists of multiple platforms across
the target environment. Each platform has it’s own platform-specific application pro-
gramming interfaces (APIs) that provide current resource data. For example, in
Unix/Linux we can get the resources used up by each process such as processor,
memory, byes sent/received information from the /proc system file-structure, but for
Windows a DLL needs to be loaded that provides an API for querying resource con-
sumption data.

Problem ���� Integrating the heterogeneous API of multiple platforms. The data
returned by the platform-specific API have their own structures, units and, semantics.
There must be some type of conversion algorithm that interpret this data in a common
way so that the proper resource management decisions can be made. Moreover, the
resource utilization information provided to clients of Bulls-Eye should be consistent,
i.e., use similar units/structures. Otherwise, the users of the data will need to convert
them manually, which is tedious, error-prone, and can yield redundancy in conversion
logic. Ideally, it should be the responsibility of the middleware to convert disparate
data into a uniform consistent form that can be readily used by clients.

Fig. 3. Using the Adapter Pattern in Bulls-Eye

Solution ���� Use the Adapter pattern to adapt diverse API. To mitigate the problem
of diverse resource management APIs in Bulls-Eye, we used the Adapter pattern [2],
which converts non-standard APIs that extract resource data into the standard inter-
face defined by the Target Manager specification. The implementation of this inter-
face converts the platform-specific data into a uniform type for storage and distribu-
tion to clients of Bulls-Eye.

The extraction of resource consumption data is tricky and the accurate value depends
upon the usage of a number of optimizations. We used some of the points mentioned
in [20] appropriate to our solution such as “keeping /proc open between reads” and
“reading data in a block rather than individual characters.” The data also depends
upon the processor architecture as also hardware configuration, for example in a sin-
gle processor Linux machine it is easy to collect the CPU consumption data from
/proc file system, but if there are multiple processors or new technology (such as
hyper-threading) used the extraction of the same data becomes complex.

Applying the solution to the MLRM case study. The MLRM Node Provisioner
spawns applications on each host. It uses CIAO’s Node Manager to start up the com-
ponents that make up a particular application. These Node Managers contain the in-
stances of TM-Monitor for the designated host. During system startup, the TM-Moni-
tor loads the component suitable for the corresponding platform using CIAO’s Repo-

Man [16] implementation of the Lightweight CCM Repository Manager specification.
These components collect low-level data, convert it to the standard structure Bulls-
Eye expects, and the TM-Monitor then corresponds with the component using the
standard interface and collects the required data.

Challenge 2: Providing a common access point to provision resources in a
domain

Context. Enterprise DRE systems are often distributed across dozens or hundreds of
entities. The entire application environment is hierarchically arranged with a top level
domain containing sub-domains in it which in turn contains computing nodes con-
nected via many routers and interconnects along with their resources. Any planner
specific to a domain will require information of resources contained in the entire
domain.

Problem ���� Accessing data through a common access point. The resource utiliza-
tion/availability data of all such different entities need to be provided through a single
point common location for the users to make use of the data. Otherwise, the client has
to parse through hierarchically arranged domains and collect data, and merge it in the
right way to make use of it. This is error-prone and is time-consuming, which also
means that the client may be working with stale data while the resource condition
may have changed.

Figure 4. Providing a Common Access Point to Domain Resource Data

Solution ���� Use distributed monitors to collect data across the domain. To solve the
above problem of providing a common access point for data in the domain, we use
TM-Monitors across the domain located in nodes in the target domain and a single
instance of the server (TM-Core), which is a service in one node in the current do-
main. There can be multiple instances of this setup as replica to increase reliability.
These monitors communicate with the central server and send data updates at a peri-
odic interval (configured externally). The monitors in turn make use of the platform-

independent adapters described above to extract the resource information. Thus the
solution above ensures that the monitoring process is carried out in a scalable way in a
hierarchical fashion while, at the same time providing a common access point for all
resource data in the domain.

Applying the solution to the MLRM case study. As mentioned before the Node Pro-
visioners take the help of Node Managers in order to start-up the applications in each
host. The TM-Monitors also start up along with the Node Managers and receive a
Domain structure specifying which resources it needs to monitor. Using this configu-
ration it starts monitoring the resources and sends back data to the centralized TM-
Core.

Challenge 3: Presenting data to clients with fast response time in uniform
structure

Context. An enterprise DRE system can have many resources that are present in vari-
ous forms of composition. For example, a target domain may consist of X hosts, each
host can consist of Y elements, e.g., one host can have a sound card connected to it
while another may have a video card. The data from different sections of the domain
need to be presented in a uniform and aggregated form for the clients to use the data
for effective resource management. The data also needs to be relevant, the changes in
the domain need to captured with very low response time so that it is useful for clients
to make use of the data meaningfully.

 Problem ���� Providing aggregated data of entire domain with fast response time. In
a typical application scenario there can be numerous domain elements, data related to
all these elements can be huge and there can be significant latency in transfer of such
information. Data updates from distributed monitors will reach the central server
separately and will pertain to only a specific section of the entire domain. These up-
dates need to be merged along with multiple such updates to the main data store,
parsing and trying to find the corresponding data store for a particular resource can be
costly and can significantly slow down the response time. Thus, there is a need for an
efficient and scalable algorithm to handle the data merge.

Solution ���� Combination of heap-sort and timer based aggregation algorithm. To
solve the above problem, Bulls-Eye uses a combination of two approaches, I) it opti-
mizes the data uploaded to the TM-Core to minimize unnecessary CPU and network
processing by maintaining a cache of the last update sent to the TM-Core. Whenever
it gets fresh data from the underlying component it compares the data received with
the cached data. It only sends a data update if there is any difference. For example,
when memory resource is monitored, if a particular reading informs the TM-Monitor
that the memory usage has not changed from the last update to the TM-Core then
there is no update sent to the TM-Core.

II) It uses a combination of a heap-sort algorithm and a timer based aggregation
mechanism is employed. Heap sorting gives an O (log n) time complexity in the worst
case. We label each resource entity with a unique identity and place the identity along
with the pointers to the actual data structure in a heap. There is also a timer which
fires at regular intervals (configured externally).Once updated data from the monitors
is received, it is stored in a cache. On the firing of the timer, the cache is examined for

any outstanding data update. The resource entity id of the update is searched in the
heap and its corresponding data structure is updated in constant time. This gives us an
O (log n) time complexity in the worst case. The TM-Monitor optimizes the data
uploaded to the TM-Core to minimize unnecessary CPU and network processing by
maintaining a cache of the last update sent to the TM-Core. Whenever it gets fresh
data from the underlying component it compares the data received with the cached
data. It only sends a data update if there is any difference. For example, when mem-
ory resource is monitored, if a particular reading informs the TM-Monitor that the
memory usage has not changed from the last update to the TM-Core then there is no
update sent to the TM-Core.

Applying the solution to the MLRM case study. The operational context of a ship-
board computing environment evolves continuously, e.g., it needs to satisfy changing
mission requirements and adapt to transient overload and failure in the nodes. Such
changes provoke a reaction in the control algorithms that drive the dynamic update or
the partial or complete redeployment of the system. In order to achieve this, current
domain resource data should be available. The specialized aggregation algorithm used
by Target Manager (1) improves the responsiveness of the Target Manager and allows
it to collaborate faster with clients (such as the MLRM subsystem and its applica-
tions) and (2) helps reduce the costs associated with redeploying and updating the
system, thereby enabling more CPU and I/O processing to be spent performing mis-
sion tasks and meeting system deadlines.

Challenge 4: Using Multiple Configurable Monitor Components to Extract
Variety of Data

Context. There are many types of elements in a typical target domain for enterprise
DRE systems. Each element can have its own monitor component supplying its re-
source usage. These separate monitors could also be developed by multiple vendors,
e.g., in some platforms there can be vendor supplied software component providing
the processor consumption data (Windows) while in others a developer may need to
write code to access the data (Linux/Unix), and yet other applications may want to use
specialized third-party hardware monitoring utilities.

Problem ���� Using multiple configurable monitor components to extract variety of
data. Bulls-Eye’s TM-Monitor communicates with the underlying components to
extract data. Since there can be different elements attached with a host, it must keep
track of each element to be monitored along with its component. For example there
can be a component monitoring CPU and memory usage, while another can monitor
the usage of a I/O and disk space. There is also the need to swap displays for a par-
ticular type of resource, e.g., when there is an upgrade of a display with its latest ver-
sion.

Solution ���� Initial Domain data configured with resource element and component
name. The initial Domain data sent to TM-Monitor is configured with the name of the
element to be monitored along with its’ component name, which is done by the Do-
main Administrator before the startup of Bulls-Eye. The resources that need to be
tracked are initially configured. The Strategy pattern is used here to load and unload
multiple components for the same resource elements. All the components confirm to a

particular interface, containing life-cycle activities and data supplying operations. The
component is loaded by the TM-Monitor and it maintains a map of resource element
to component name. The TM-Monitor makes a call to each component to start and
stop the component and also periodically and gets their current data. It also combines
the data from each component into one single Domain structure before uploading it to
the TM-Core, which makes it easy to extend Bull-Eye’s monitoring capabilities.

Applying the solution to the MLRM case study. The Domain Administrator creates
the configuration initially. The elements monitored in each host are included along
with their components. During startup the Domain data reaches each TM-Monitor in
each host. TM-Monitor then loads the component and starts monitoring. In case it
fails to find the component, TM-Monitor throws an exception.

5 Experimental Evaluation of Bulls-Eye

This section outlines the testbed that provides the infrastructure for a representative
enterprise DRE system from the domain of shipboard computing used to evaluate the
performance of Bulls-Eye, describes our experiments, and analyzes the results ob-
tained to evaluate the performance of Bulls-Eye.

5.1 Hardware/Software Testbed

Our experiments were performed on the ISISLab testbed at Vanderbilt University
(www.dre.vanderbilt.edu/ISISlab). The hardware configuration consists of three
nodes acting as the system domain. The hardware configuration of all the nodes was a
2.8 GHz Intel Xeon dual processor, 1 GB physical memory, 1Ghz Ethernet network
interface, and 40 GB hard drive. Redhat Fedora Core release 4 operating system run-
ning in real-time scheduling mode was used for all the nodes.

Figure 5. Operational Strings in the Testbed

Figure 5 shows our representative enterprise DRE system test configuration, which
was composed of three operational strings [13], each containing six application com-
ponents. The application components were implemented using work load generators
[18]. Real-time QoS properties and requirements of these operational strings are
specified by their relative priority and end-to-end deadline, respectively. The three

operational strings were composed of one mission-critical, one mission-support, and
one best-effort operational string. The mission-critical operational string was config-
ured with the highest priority, followed by the mission-support and best-effort opera-
tional strings. An end-to-end deadline of 500 ms was specified for the mission-critical
operational string.

To evaluate the utility of Bulls-Eye, we deployed the mission-critical operational
string followed by the best-effort operational string, which was then followed by the
mission-support operational string. At each node within the domain, Bulls-Eye moni-
tored the net processor utilization, as well as processor utilization per each compo-
nent. We also monitored the end-to-end execution time of the mission-critical opera-
tional string. Since Bulls-Eye is implemented as a component, we also monitored the
resource utilization of Bulls-Eye to determine the overhead of Bulls-Eye itself.

In conjunction with Bulls-Eye, the Resource Allocation and Control Engine (RACE)
[13] was used in our experiments to ensure end-to-end execution time of the mission-
critical operational string was below its end-to-end deadline. RACE enables DRE
system developers to configure allocation and control algorithms depending on the
characteristics of applications being deployed and enables the use of multiple algo-
rithms without needing to handcraft the mechanisms used to configure the algorithms.
It also deploys the application components to various nodes within a resource pool
using specialized allocation algorithms. Inputs to RACE include (1) end-to-end dead-
line of mission-critical operational string and (2) runtime resource utilization infor-
mation, which was provided by Bulls-Eye.

5.2 Analysis of Results

This section presents results from running the experiment described above on our
ISISlab testbed. We used end-to-end execution time of the mission-critical operational
string as a metric to evaluate the utility of Bulls-Eye and the resource utilization by
Bulls-Eye as a measure of the infrastructure overhead. Resource utilization informa-
tion collected by Bulls-Eye for the six nodes in the domain is shown in Figures 6-A,
6-B, 6-C, 6-D, 6-E, and 6-F as a function of time. End-to-end execution time of the
mission-critical operational string is shown in Figure 7 as a function of time. Since
Bulls-Eye was deployed on node 6, Figure 6-F also captures the overhead of the
Bulls-Eye infrastructure.

 Figure 6-A. Node 1 Figure 6-B. Node 2

 Figure 6-C. Node 3 Figure 6-D. Node 4

As shown in Figure 6-A, 6-B, 6-C, 6-D, 6-E, and 6-F, when the mission-support op-
erational string is deployed at the 1,800th second, the net processor utilization of the
nodes increased above the RMS recommended utilization setpoint of 0.7 [17]. At the
same time, as shown in Figure 7, the end-to-end execution time of mission-critical
operational string increased above it deadline of 500 ms. This result indicates that the
increase in execution time of the mission-critical operational string results from over-
utilization of system resources (CPU).

 Figure 6-E. Node 5 Figure 6-F. Node 6

The resource utilization information collected by Bulls-Eye serves as the input to
RACE and triggers RACE to perform adaptive system control modifications, such as
modifying operating system priority, scheduler class, and/or tearing down lower pri-
ority operational strings.

In our experiment, RACE tears down the best-effort operational string to meet the
QoS requirements of higher priority mission-critical operational strings. As a result of
these adaptive control actions, the end-to-end execution time of the mission-critical
operational string is once again below its deadline, as shown in Figure 7. Figure 6-F
shows that the infrastructure overhead due to Bulls-Eye itself is insignificant compare
to the network resource utilization.

Figure 7. End-to-End Execution Time of the Mission-Critical Operational String

Without a resource provisioning service like Bulls-Eye, over-utilization of system
resources could go unnoticed. Resource utilization information is a key input to any
control framework. A control framework for enterprise DRE system, such as RACE,
requires resource utilization information regarding multiple types and instances of
resources from the domain. A resource provisioning framework such as Bulls-Eye is
therefore essential to effective adaptive resource management for enterprise DRE
systems.

6 Related Work

This section compares our work on Bulls-Eye with related work in the domain of
resource provisioning.

The CMU Resource Monitoring System (ReMoS) [8] is service that allows network-
aware applications to obtain relevant information about the bandwidth and latency of
a specific flow, where flow is an application level connection between a pair of com-
putation nodes. It also answers queries about the network topology. ReMoS uses two
abstraction levels: explicit management of resource sharing and statistical measure-
ment. Its flows abstraction captures the communication between nodes and its topolo-
gies abstraction provides a logical view of network connectivity. ReMoS measure-
ments are made at the network level, so it provides information for use in sharing of
resources. Bulls-Eye, in contrast, focuses on the resource availability for component
assemblies, rather than the network level. This focus requires the aggregation of data
into a single unit so that decisions regarding whole units/assemblies can be taken.
Resource provisioning, synchronizing multiple planners, and matching of component
requirements to target domain availability are other key concerns for Bulls-Eye,
which acts as a common service for resource provisioning at multiple layers.

The BBN Resource Status Service (RSS) [9] is another multi-layer resource monitor-
ing service. RSS consists of monitors (known as “condition objects”) that are distrib-
uted to hosts in a network and which communicate with each other to acquire the
required data. In addition, RSS aggregates data of various resources, such as proces-
sor load average and memory consumption. Whereas the RSS is based on a non-stan-
dard interface, Bulls-Eye supports the OMG Lightweight CCM Target Manager
specification, which defines standard interfaces that third-party providers can use to

integrate their monitoring mechanisms. The Lightweight CCM Target Manager speci-
fication (and thus Bulls-Eye) also supports resource provisioning by providing a
common point to commit and release resources for different plans deployed, which is
not supported by RSS.

The Globus Toolkit [10] provides a number of resource provisioning services that
focus on monitoring, management, scheduling, and coordination of different compu-
tations in a computing grid. It also has tools for transmitting and managing large
amounts of data useful to grid-based applications. Bulls-Eye does itself does not man-
age applications of a distributed environment (relying on other services in CIAO, such
as DAnCE and RACE for these capabilities), but instead focuses on the collection,
aggregation, and presentation of resource information in a timely manner. Bulls-Eye
focuses on deployment and configuration of component-based applications and has
features to support real-time QoS policies for mission-critical DRE systems.

[11] proposes an integrated architecture for managing dependencies uniformly in
distributed component-based systems. It allows developers to present dependencies
between components; instantiates component based applications and manages hard-
ware resources in the distributed system. For this purpose, it has a resource manage-
ment service which is similar to Bulls-Eye in that it uses distributed monitors to ac-
quire local status information and aggregates the information on a central server. [11]
focuses largely on the allocation and running of the applications, however, whereas
Bulls-Eye is built more generically and supports standard interfaces for plugging in
multiple types of resource monitors. [11] also does not deal with the resource provi-
sioning aspects supported by Bulls-Eye.

[12] implements a resource monitoring service similar to Bulls-Eye, but with a focus
on collecting resource data to create a forecasting model that provides process sched-
ulers with resource trends so that they can schedule more efficiently. Our Bulls-Eye
approach is different in that it collects resource information at runtime at a finer-
grained level i.e., it collects data for each participating process and thread and feeds it
to sophisticated framework such as RACE which uses multiple allocation and control
algorithms [13]. These algorithms can then (re)deploy and (re)configure the applica-
tions with the goal of maintaining stringent Qos requirements. Since Bulls-Eye is
targeted for enterprise DRE systems, it focuses on the latency of the data collection
and a standard interface to make it available to automated resource management
framework, such as RACE.

7 Concluding Remarks

This paper motivated and described Bulls-Eye, which is an implementation of the
Lightweight CCM Target Manager specification we developed to support resource
provisioning for enterprise DRE systems. We discussed the design challenges faced
when developing Bulls-Eye and applying it to a shipboard computing system and
showed how our solutions helped resolve these challenges. We also presented results
the results of experiments that show how Bulls-Eye simplifies resource management
and helps automate adaptations in the face of dynamic operating condition changes.

The following are lessons learned during our work on Bulls-Eye and its application to
the Multi-Layer Resource Manager (MLRM) subsystem case study:

• Building enterprise DRE systems whose operational semantics change frequently
necessitates the dynamic monitoring of domain resources and requires a framework
to provide resource availability information to enable the automated (re)deployment
and (re)configuration of heterogeneous components throughout the system.

• The CCM Target Manager specification strikes an effective balance between flexi-
bility and efficiency by keeping client code considerably simpler and supporting
dynamic updates and system (re)deployment and (re)configuration.

• Applying patterns to Bulls-Eye helped ensure that its design used best practices
associated with solving recurring problems and leveraging the experience of ex-
perienced developers. Patterns applied to Bulls-Eye included Adaptor and Strategy.

• Using efficient aggregation algorithms helped improve overall system performance
and also increased the responsive of Bulls-Eye, which in turn led to clients re-
sponding to changes in the application operating condition or policy in an effective
manner.

• The judicious use of distributing computing of resource data across different stages,
helped increase the performance of Bulls-Eye by fully exploiting the computing
power of distributed hosts across the target domain and distribute complexity over
multiple processors.

• Bulls-Eye plays an important role in the allocation of components to different hosts
across the domain. It helps allocation algorithms to come up with a deployment
plan which optimizes resource usage. Control algorithms which need to re-allocate
components due to changing operating environment also use Bulls-Eye to monitor
the running of the application.

The implementation of Bulls-Eye is freely available as open-source software and can
be downloaded along with the CIAO, DAnCE, and RACE open-source middleware
from www.dre.vanderbilt.edu/CIAO.

8 REFERENCES
1. Deng, G., Balasubramanian, J., Otte, W., Schmidt, D. and Gokhale, A. (2005, Nov),

“DAnCE: A QoS-enabled Component Deployment and Configuration Engine,” Pro-
ceedings of the 3rd Working Conference on Component Deployment. Grenoble, France.

2. Gamma, E., Helm, R., Johnson, R., and Vlissides J., “Design Patterns Elements of Reus-
able Object-Oriented Software,” Addison-Wesley, 1994.

3. Object Group Management (2003, May), Light Weight CORBA Component Model Re-
vised Submission, Ed. OMG Document realtime/03-05-05.

4. Object Management Group: Deployment and Configuration Adopted Submission, OMG
Document ptc/03-07-08 edn. (2003).

5. Object Management Group (2002, Aug). Real-time CORBA Specification. Ed. OMG
Document formal/02-08-02.

6. D. Schmidt, M. Stal, H. Rohert, and F. Buschmann, Pattern-Oriented Software Architec-
ture: Patterns for Networked and Concurrent Objects, Wiley and Sons, 2000.

7. D. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp, and L. DiPalma, “Towards Adap-
tive and Reflective Middleware for Network-Centric Combat Systems,” CrossTalk, Nov,
2001.

8. DeWitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste, J. Subhlok, D. Sutherland, "Re-
MoS: A Resource Monitoring System for Network-Aware Applications" Carnegie Mellon
School of Computer Science, CMU-CS-97-194.

9. J. Zinky, J. Loyall, and R Shapiro “Runtime, Performance Modeling and Measurement of
Adaptive Distributed Object Applications,” Proceeding of International Symposium on
Distributed Object and Applications, DOA 2002, Oct 28-30 2002, University of Califor-
nia, Irvine CA USA.

10. I.Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Intl. Journal
of Supercomputer Applications and High Performance Computing, 11(2):115-128, 1997.

11. F. Kon, T. Yamane, C. Hess, R. Campbell, and M. Mickunas, “Dynamic Resource Man-
agement and Automatic Configuration of Distributed Component Systems,” Proceedings
of the 6th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS'2001), San Antonio, Texas, Jan, 2001.

12. R. Wolski, “Experiences with Predicting Resource Performance On-line in Computational
Grid Settings” ACM SIGMETRICS Performance Evaluation Review, Volume 30, Num-
ber 4, pp 41--49, Mar, 2003.

13. N. Shankaran, J. Balasubramanian, D. Schmidt, G. Biswas, P. Lardieri, E. Mulholland,
and T. Damiano, “A Framework for (Re)Deploying Components in Distributed Realtime
and Embedded Systems”, poster paper at the Dependable and Adaptive Distributed Sys-
tems Track of the 21st ACM Symposium on Applied Computing, Apr 23 -27, 2006, Dijon,
France.

14. W. Roll, “Towards Model-Based and CCMBased Applications for Real-Time Systems,”
in Proceedings of the International Symposium on Object-Oriented Real-time Distributed
Computing (ISORC), Hokkaido, Japan, IEEE/IFIP, May 2003.

15. S. Murat, Bicer, F. Pilhofer, G. Bardouleau, and J. Smith, "Next Generation Architecture
for Heterogeneous Embedded Systems", International Conference on Engineering of Re-
configurable Systems and Algorithms (ERSA). Jun 2003, Las Vegas, NV, USA.

16. S. Paunov and D. Schmidt, “RepoMan: A Component Repository Manager for Enterprise
Distributed Real-time and Embedded Systems,” Proceedings of the 44th ACM Southeast
Conference, Melbourne, FL, Mar 10-12, 2006.

17. J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior,” In Proceedings of the 10th IEEE Real-time
Systems Symposium (RTSS 1989), Santa Monica, Dec 1989.

18. J. Hill, J. Slaby, S. Baker, and D. Schmidt, “Evaluating Enterprise Distributed Real-time
and Embedded System Quality of Service with System Execution Modeling Tools,” Pro-
ceedings of the 12th IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications, Sydney, Australia, 16-18 Aug 2006.

19. G. Heineman and B. Councill, Component-Based Software Engineering: Putting the
Pieces Together, Addison-Wesley, Reading, Massachusetts, 2001.

20. C. Smith and D. Henry, “High-Performance Linux Cluster Monitoring Using Java,” Pro-
ceedings of the 3rd Linux Cluster International Conference, 2002.

