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Abstract. Middleware is increasingly used to develop and deploy components 
in enterprise distributed real-time and embedded (DRE) systems. A key chal-
lenge in these systems is devising resource management algorithms that deploy 
application components properly onto target nodes. To provide an accurate 
view of system resource utilization, these algorithms need runtime monitoring 
of resources. Runtime monitoring and allocation of resources is also needed to 
make redeployment or reconfiguration decisions triggered by various factors, 
such as failures, attacks, overloads, or changes in quality of service (QoS) re-
quirements. DRE systems with a diverse range of applications can therefore 
benefit from a common resource provisioning service capable of monitoring re-
source data and enabling proper resource allocation in a timely manner.  

This paper provides two contributions to the study of runtime resource provi-
sioning for enterprise DRE systems. First, it describes the challenges in devel-
oping Bulls-Eye, which is an open implementation of the OMG standard Target 
Manager specification that provides a reusable service for provisioning distrib-
uted resources in enterprise DRE systems. Second, it presents the results of ex-
periments that applied Bulls-Eye to the multi-layer resource management sub-
system of a shipboard computing environment. Our results show that provi-
sioning resources at runtime in a DRE system via Bulls-Eye simplifies resource 
management and helps automate adaptations in the face of dynamic changes in 
operating conditions. 

Keywords: Resource Provisioning, Component Technology, Dynamic Re-
source Management, CORBA Component Model.  

1 Introduction 

Resource Provisioning challenges of component-based enterprise DRE systems. 
Applications in the domain of enterprise distributed and real-time embedded (DRE) 
systems, such as shipboard computing environments, satellite constellations, and 
surveillance and reconnaissance systems, are characterized by stringent quality of 
service (QoS) requirements and operate in dynamic and resource-constrained envi-
ronments. The operating modes of these systems may dynamically vary in response to 
changes in policies or input loads, and they often execute across heterogeneous plat-
forms. Certain enterprise DRE system characteristics, such as their longevity and 
complexity, motivate the use of component-based development. In this context, com-
ponents are units of implementation and composition that have well-defined QoS 
requirements and resource consumption profiles. In enterprise DRE systems, applica-
tions consist of groups of domain-related tasks that can be implemented by param-
eterized and executable software components using QoS-enabled component middle-



     

ware platforms, such as OMG Lightweight CORBA Component Model (CCM) [3] 
and PRiSM [14].  

Although component technologies can help enhance software reuse, maintenance, and 
extensibility [19], they also introduce new deployment and configuration challenges 
[15] stemming from the need to shield applications and users from the complexities of 
heterogeneous and dynamically changing hardware/software environments. The proc-
ess of deploying enterprise DRE systems involves creating a deployment plan that 
allocates available computing and communication resources (e.g., memory, CPU, and 
network bandwidth) to the components and establishes connections between them. To 
prepare an effective deployment plan, the DRE system needs to know the resources 
available in the target domain so that resource consumption profiles of the compo-
nents can be mapped properly to the available computing nodes and communication 
links. It is also important to track resource usage at runtime so that components can be 
redeployed and/or reconfigured to adapt to changes in application operating condi-
tions caused by policy changes or failures, which must be detected quickly so the 
system can adapt with minimum disruption. 

One way to address these challenges is to create a resource provisioning service that 
(1) monitors the resources available in the target domain, (2) supplies this information 
to human and/or automated planners who prepare a deployment plan using the current 
resource profile, (3) dynamically allocates resources to deployed components and 
releases resources when the components are terminated, and (4) facilitates component 
redeployment and reconfiguration based on resource availability and constraints. 
Developing such a resource provisioning service for enterprise DRE systems is hard 
due to the need to handle platform heterogeneity, ensure responsiveness and scalabil-
ity, and enable dynamic updates within time constraints.  

This paper describes the design and application of Bulls-Eye, which is an implemen-
tation of the Lightweight CCM Target Manager specification [6] that is tailored to the 
needs of enterprise DRE systems. In particular, we designed Bulls-Eye to optimize its 
CPU and I/O usage to provide fast/predictable access to resource information and en-
able its use to provision enterprise DRE systems with a range of QoS requirements. 
The resulting object-oriented framework has been integrated with the Component-
Integrated ACE ORB (CIAO) (www.dre.vanderbilt.edu/CIAO), which is an open-
source implementation of Lightweight CCM that has been applied to several enter-
prise DRE systems, including a shipboard computing system and a prototype of a 
NASA science mission. 

The remainder of this paper is organized as follows: Section 2 describes a case study 
that motivates the need for a resource provisioning framework in shipboard comput-
ing systems; Section 3 discusses the structure and functionality of the Bulls-Eye Tar-
get Manager; Section 4 explains the design challenges that we overcame while de-
veloping Bulls-Eye and applying it to the shipboard computing domain; Section 5 
summarizes the results of experiments that measures the overhead of Bulls-Eye and 
demonstrates its utility in the context of a prototype shipboard computing system; 
Section 6 compares our work on Bulls-Eye with related research; and Section 7 pre-
sents concluding remarks and outlines our lessons learned during this project. 



 

2 Case Study: An Enterprise DRE System for Shipboard     
Computing  

This section describes the structure and functionality of the Multi-Layer Resource 
Management (MLRM) subsystem for shipboard computing that we use as our running 
case study in the paper to motivate our work on Bulls-Eye. A shipboard computing 
environment is a metropolitan area network of computational resources and sensors 
that provides on-demand situational awareness and actuation capabilities for human 
operators, and responds flexibly to unanticipated runtime conditions. To meet such 
demands in a robust and timely manner, the shipboard computing environment uses 
services in the MLRM subsystem to (1) bridge the gap between shipboard applica-
tions and the underlying operating systems and middleware infrastructure and (2) 
support multiple QoS requirements, such as survivability, predictability, security, and 
efficient resource utilization. To support the accelerated operational tempo in modern 
shipboard computing systems, the MLRM software must adapt in response to dy-
namic conditions for the purpose of utilizing the available computer and communica-
tion resources to the highest degree possible to meet changing mission needs. 

 

Figure 1. Layered Architecture of the MLRM Subsystem 

The MLRM subsystem described in this paper consists of the three layers shown in 
Figure 1. The command and policy inputs flow in a top-down manner and corre-
spondingly the resource status information moves in a bottom-up fashion. At the top 
is  the Domain Layer, which consists of the Mission Allocator. This allocator collects 
command and policy inputs and passes them onto the  Resource Pool Layer, which 
represents a set of computing resources managed by a Pool Manager. The Pool Man-
ager in turn interacts with the Resource Allocation and Control Engine (RACE) [13], 
which a reusable framework that separates resource allocation and control algorithms 
from the underlying middleware deployment, configuration, and control mechanisms 



     

so that different algorithms can reuse common middleware mechanisms to (re)deploy 
components onto nodes and manage the node’s resources among competing applica-
tions. The bottom layer is the Resource Layer, which contains the entire set of hard-
ware elements in the shipboard computing environment, known as the Target Do-
main. Each node in turn contains a Node Provisioner that receives commands from 
RACE to create and destroy applications on the node. 

The MLRM subsystem is built using the Component-Integrated ACE ORB (CIAO). 
CIAO combines Lightweight CCM [5] mechanisms (such as standards for specifying, 
implementing, packaging, assembling, and deploying components) and Real-time 
CORBA [7] mechanisms (such as thread pools and priority preservation policies). The 
MLRM subsystem has scores of different types and instances of CCM components 
written in ~500,000 lines of C++ code and residing in ~1,000 files developed by five 
teams at different locations (dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6). 

The scale, complexity, longevity and multiple QoS requirements of a shipboard com-
puting environment necessitates that its components be deployed and allocated using 
effective resource management techniques [5]. This requirement, in turn, motivates 
the need for accurate information on resource availability in the domain. The Bulls-
Eye Target Manager shown in Figure 1 serves this functionality for the MLRM sub-
system by providing runtime information on resource usage that helps RACE opti-
mize component allocation and meet end-to-end QoS requirements.  

Bulls-Eye is used during initial system deployment when RACE runs algorithms to 
allocate components to the appropriate nodes in a resource pool. These algorithms 
interact with Bulls-Eye to obtain information regarding resource utilization in the 
target domain. This data is used to produce a deployment plan needed to deploy the 
system via DAnCE, which is CIAO’s implementation of the OMG Deployment and 
Configuration (D&C) specification [1]. The D&C specification standardizes many as-
pects of deployment and configuration for component-based distributed systems, in-
cluding component configuration, component assembly, component packaging, pack-
age configuration/deployment and repository management of component implementa-
tions. Bulls-Eye is also used at runtime to extract dynamic resource availability data 
and update component implementations dynamically, e.g., in response to damage or 
to handle changing workload levels.  

A particularly important function of the resource allocation and control algorithms in 
the MLRM subsystem is the (re)deployment and (re)configuration of components 
based on their operational context. For example, a shipboard computing environment 
may need to switch rapidly from crew entertainment mode to ship defense mode, 
which necessitates updating and/or migrating many computing services. Bulls-Eye 
therefore provides mechanisms to retrieve the resource availability data across the 
entire target domain by monitoring and dynamically updating component resource 
usage. RACE uses data provided by Bulls-Eye and the requirements of each compo-
nent to generate an optimized deployment plan and to ensure that the components 
allocated conform to the characteristics of each node’s hardware, OS, middleware, 
and programming language(s), which can be highly diverse.  



 

3  The Design of the Bulls-Eye Target Manager 

Bulls-Eye is a resource provisioning service designed to enable software developers 
and applications in enterprise DRE systems to (1) retrieve a list of the initial available 
resources in a target domain, thereby enabling the preparation of a deployment plan 
fulfilling the allocation and connection requirements of each component, (2) allocate 
resources for a particular deployment plan and release resources when the compo-
nents or the entire deployment is removed, (3) obtain runtime resource available in 
the system, and (4) dynamically update the resource consumption data. This section 
describes how the structure and functionality of Bulls-Eye supports these capabilities 
in the context of the Lightweight CCM Target Manager specification. 

3.1  Structure of Bulls-Eye 

Figure 2 shows the architecture of Bulls-Eye, which consists of a CORBA interface 
specified in the Target Manager specification. Bulls-Eye is comprised of two parts: 
(1) a centralized1 service, known as the Target Manager core (TM-core) used by ap-
plications and system services allocate and release resources as needed and (2) multi-
ple monitors (TM-Monitor) distributed across the domain that perform resource moni-
toring and update the TM-core’s model of the amount of resources available at any 
point in time.  

 

Figure 2. The Bulls-Eye Target Manager Architecture 

The Domain comprises of all the elements of a target environment comprising of 
nodes, interconnects between them, bridges connecting between interconnects and the 
set of resources belonging to them. A Domain is a logical concept wherein a single 
resource or node element can be part of more than one target domain. Domains are 
therefore structured hierarchically, and a top-level domain may contain other do-

                                                           
1 There is only one logical instance of the TM-core in the domain, though it can be replicated to 

enhance availability and prevent a single point of failure. 



     

mains. Each Domain will have a TM-Core accumulating the resource information for 
the associated target domain. 

The TM-core provides a standard set of operations that applications and system ser-
vices can use to provision available resources statically (i.e., prior to system launch) 
as well as dynamically (i.e., during system runtime) in the form of a generic structure 
known as the DomainStruct [4]. This structure describes the contents of the entire 
target environment by composing data related to available nodes in the network, the 
connections between nodes, connection between networks, the shared resources 
among them, and the resources for each element.  

A TM-Monitor is placed on each logical node in the target domain and monitors the 
resource usage in that node. The TM-Monitor periodically update to the TM-core, 
with the current resource utilization/availability on that node. Upon receiving th up-
dated, the TM-Core aggregates the data received with previous data and updates its 
content.  

Bulls-Eye maintains a top-level Domain element that contains all the elements of a 
target domain and is uniquely identified by a universally unique identifier (UUID). 
This Domain element is designed so that all possible domain elements can be incorpo-
rated, which alleviates the need to create separate structures for different types of 
resource, such as processor, memory, storage, and/or network bandwidth. This design 
also makes client code flexible by alleviating the need for any specific type of re-
source in the domain since it can handle all the varieties of resource elements present 
in the domain.  

The TM-Monitors collect data pertaining to their sub-domain and updates the TM-
Cores with fresh data. Clients are interested in data across different sub-domains, so 
the data from different TM-Monitors need to be aggregated and presented uniformly. 
In order to avoid latency issues, the distributed monitors push in only the data that 
changed from the previous update. This data is aggregated with the remaining domain 
data which is already present. 

3.2  Functionality of Bulls-Eye 

Bulls-Eye provides the following standard Target Manager operations that can be 
invoked by clients to provision system resources: 

• Querying static resources. Developers or planner applications can use ge-
tAllResources() to obtain the initial static resources in the target domain. 
This operation returns the Domain structure that contains the entire domain re-
source in a hierarchical fashion. 

• Querying dynamic resources. Dynamic time resource availability can be returned 
by getAvailableResource (). This operation returns the same Domain 
structure as above, except thta the resources reflect their remaining capacity. 

• Committing resources. A planning application can call to createResource-
Commitment() to commit (i.e., allocate) resources for a particular deployment 
plan. This operation creates a ResourceCommitmentManager that can be 
used to commit and release resources for a specific plan. A pool of resources can 



 

be specified when a call to createResourceCommitment() is made or can 
be allocated after it is created. An exception is raised if a requested resource cannot 
be committed. 

• Releasing resources. When an application or a component in an application is 
deleted all the resources allocated to it must be released so they can be reallocated 
when new applications are deployed. Resources can be released by an application 
by calling releaseResources() on the associated ResourceCommit-
mentManager. When a ResourceCommitmentManager is itself deleted via 
destroyResourceCommitment(), all remaining committed resources are re-
leased automatically. 

• Updating dynamic resource data. The domain data in the TM-core can be up-
dated via updateDomain(). The updated information is passed in the form of 
Domain structure, which is a subset of the higher level domain structure. An enu-
meration called DomainUpdateKind can be passed to tell Bulls-Eye whether the 
subset should be added, deleted, or updated.  

The Bulls-Eye Target Manager functionality plays a key role in the deployment and 
configuration of enterprise DRE systems. On startup, it reads a configuration script 
containing the resources present in the domain. The script is prepared by a human or 
automated domain administrator who understands the initial domain contents, such as 
nodes, the interconnects linking them, and the resources contained in them and avail-
able for application usage, such as processor capacity, memory capacity, and disk 
capacity. The TM-Monitor is used to monitor components on a host is collocated and 
started together with its associated NodeManager, which is an entity defined by the 
OMG D&C specification and implemented by CIAO as a daemon process running on 
each host.  

At startup, the TM-core is passed the subset of the Domain tells the TM-Monitor 
which resources to monitor on the host. The TM-Monitor then checks the Domain 
information and reports any discrepancies (such as the hard disk capacity being 
smaller than the initial domain description or the node is single processor node instead 
of a dual processor) to the TM-Core. Once Bulls-Eye is up and running, it can be used 
by the clients to make the above queries about the domain, e.g., RACE components 
can extract domain related information for preparing a deployment plan. Any entity 
willing to deploy plans in the domain will need to commit resources through Bull-s 
Eye to successfully deploy and ultimately run applications. 

4  Resolving Bulls-Eye Design Challenges 

Although the CCM specification defines the interface and the functionality of the 
Target Manager service it does not prescribe any design details. We were therefore 
faced with a number of design challenges when implementing Bulls-Eye. This section 
describes the key design challenges we encountered, presents our implementation 
solutions, and outlines how we applied these solutions to the shipboard computing 
applications supported by the MLRM subsystem described in Section 2. 



     

Challenge 1: Integrating the Heterogeneous API of Multiple Platforms 

Context. The domain of DRE systems typically consists of multiple platforms across 
the target environment. Each platform has it’s own platform-specific application pro-
gramming interfaces (APIs) that provide current resource data. For example, in 
Unix/Linux we can get the resources used up by each process such as processor, 
memory, byes sent/received information from the /proc system file-structure, but for 
Windows a DLL needs to be loaded that provides an API for querying resource con-
sumption data. 

Problem ���� Integrating the heterogeneous API of multiple platforms. The data 
returned by the platform-specific API have their own structures, units and, semantics. 
There must be some type of conversion algorithm that interpret this data in a common 
way so that the proper resource management decisions can be made. Moreover, the 
resource utilization information provided to clients of Bulls-Eye should be consistent, 
i.e., use similar units/structures. Otherwise, the users of the data will need to convert 
them manually, which is tedious, error-prone, and can yield redundancy in conversion 
logic. Ideally, it should be the responsibility of the middleware to convert disparate 
data into a uniform consistent form that can be readily used by clients. 

 

Fig. 3. Using the Adapter Pattern in Bulls-Eye 

Solution ���� Use the Adapter pattern to adapt diverse API. To mitigate the problem 
of diverse resource management APIs in Bulls-Eye, we used the Adapter pattern [2], 
which converts non-standard APIs that extract resource data into the standard inter-
face defined by the Target Manager specification. The implementation of this inter-
face converts the platform-specific data into a uniform type for storage and distribu-
tion to clients of Bulls-Eye.  

The extraction of resource consumption data is tricky and the accurate value depends 
upon the usage of a number of optimizations. We used some of the points mentioned 
in [20] appropriate to our solution such as “keeping /proc open between reads” and 
“reading data in a block rather than individual characters.” The data also depends 
upon the processor architecture as also hardware configuration, for example in a sin-
gle processor Linux machine it is easy to collect the CPU consumption data from 
/proc file system, but if there are multiple processors or new technology (such as 
hyper-threading) used the extraction of the same data becomes complex. 

Applying the solution to the MLRM case study. The MLRM Node Provisioner 
spawns applications on each host. It uses CIAO’s Node Manager to start up the com-
ponents that make up a particular application. These Node Managers contain the in-
stances of TM-Monitor for the designated host. During system startup, the TM-Moni-
tor loads the component suitable for the corresponding platform using CIAO’s Repo-



 

Man [16] implementation of the Lightweight CCM Repository Manager specification. 
These components collect low-level data, convert it to the standard structure Bulls-
Eye expects, and the TM-Monitor then corresponds with the component using the 
standard interface and collects the required data. 

Challenge 2: Providing a common access point to provision resources in a 
domain 

Context. Enterprise DRE systems are often distributed across dozens or hundreds of 
entities. The entire application environment is hierarchically arranged with a top level 
domain containing sub-domains in it which in turn contains computing nodes con-
nected via many routers and interconnects along with their resources. Any planner 
specific to a domain will require information of resources contained in the entire 
domain.  

Problem ���� Accessing data through a common access point. The resource utiliza-
tion/availability data of all such different entities need to be provided through a single 
point common location for the users to make use of the data. Otherwise, the client has 
to parse through hierarchically arranged domains and collect data, and merge it in the 
right way to make use of it. This is error-prone and is time-consuming, which also 
means that the client may be working with stale data while the resource condition 
may have changed.  

 

Figure 4. Providing a Common Access Point to Domain Resource Data 

Solution ���� Use distributed monitors to collect data across the domain. To solve the 
above problem of providing a common access point for data in the domain, we use 
TM-Monitors across the domain located in nodes in the target domain and a single 
instance of the server (TM-Core), which is a service in one node in the current do-
main. There can be multiple instances of this setup as replica to increase reliability. 
These monitors communicate with the central server and send data updates at a peri-
odic interval (configured externally). The monitors in turn make use of the platform-



     

independent adapters described above to extract the resource information. Thus the 
solution above ensures that the monitoring process is carried out in a scalable way in a 
hierarchical fashion while, at the same time providing a common access point for all 
resource data in the domain. 

Applying the solution to the MLRM case study. As mentioned before the Node Pro-
visioners take the help of Node Managers in order to start-up the applications in each 
host. The TM-Monitors also start up along with the Node Managers and receive a 
Domain structure specifying which resources it needs to monitor. Using this configu-
ration it starts monitoring the resources and sends back data to the centralized TM-
Core. 

Challenge 3: Presenting data to clients with fast response time in uniform 
structure 

Context. An enterprise DRE system can have many resources that are present in vari-
ous forms of composition. For example, a target domain may consist of X hosts, each 
host can consist of Y elements, e.g., one host can have a sound card connected to it 
while another may have a video card. The data from different sections of the domain 
need to be presented in a uniform and aggregated form for the clients to use the data 
for effective resource management. The data also needs to be relevant, the changes in 
the domain need to captured with very low response time so that it is useful for clients 
to make use of the data meaningfully. 

 Problem ���� Providing aggregated data of entire domain with fast response time. In 
a typical application scenario there can be numerous domain elements, data related to 
all these elements can be huge and there can be significant latency in transfer of such 
information. Data updates from distributed monitors will reach the central server 
separately and will pertain to only a specific section of the entire domain. These up-
dates need to be merged along with multiple such updates to the main data store, 
parsing and trying to find the corresponding data store for a particular resource can be 
costly and can significantly slow down the response time. Thus, there is a need for an 
efficient and scalable algorithm to handle the data merge. 

Solution ���� Combination of heap-sort and timer based aggregation algorithm. To 
solve the above problem, Bulls-Eye uses a combination of two approaches, I) it opti-
mizes the data uploaded to the TM-Core to minimize unnecessary CPU and network 
processing by maintaining a cache of the last update sent to the TM-Core. Whenever 
it gets fresh data from the underlying component it compares the data received with 
the cached data. It only sends a data update if there is any difference. For example, 
when memory resource is monitored, if a particular reading informs the TM-Monitor 
that the memory usage has not changed from the last update to the TM-Core then 
there is no update sent to the TM-Core.  

II) It uses a combination of a heap-sort algorithm and a timer based aggregation 
mechanism is employed. Heap sorting gives an O (log n) time complexity in the worst 
case. We label each resource entity with a unique identity and place the identity along 
with the pointers to the actual data structure in a heap. There is also a timer which 
fires at regular intervals (configured externally).Once updated data from the monitors 
is received, it is stored in a cache. On the firing of the timer, the cache is examined for 



 

any outstanding data update. The resource entity id of the update is searched in the 
heap and its corresponding data structure is updated in constant time. This gives us an 
O (log n) time complexity in the worst case. The TM-Monitor optimizes the data 
uploaded to the TM-Core to minimize unnecessary CPU and network processing by 
maintaining a cache of the last update sent to the TM-Core. Whenever it gets fresh 
data from the underlying component it compares the data received with the cached 
data. It only sends a data update if there is any difference. For example, when mem-
ory resource is monitored, if a particular reading informs the TM-Monitor that the 
memory usage has not changed from the last update to the TM-Core then there is no 
update sent to the TM-Core. 

Applying the solution to the MLRM case study. The operational context of a ship-
board computing environment evolves continuously, e.g., it needs to satisfy changing 
mission requirements and adapt to transient overload and failure in the nodes. Such 
changes provoke a reaction in the control algorithms that drive the dynamic update or 
the partial or complete redeployment of the system. In order to achieve this, current 
domain resource data should be available. The specialized aggregation algorithm used 
by Target Manager (1) improves the responsiveness of the Target Manager and allows 
it to collaborate faster with clients (such as the MLRM subsystem and its applica-
tions) and (2) helps reduce the costs associated with redeploying and updating the 
system, thereby enabling more CPU and I/O processing to be spent performing mis-
sion tasks and meeting system deadlines.  

Challenge 4: Using Multiple Configurable Monitor Components to Extract 
Variety of Data 

Context. There are many types of elements in a typical target domain for enterprise 
DRE systems. Each element can have its own monitor component supplying its re-
source usage. These separate monitors could also be developed by multiple vendors, 
e.g., in some platforms there can be vendor supplied software component providing 
the processor consumption data (Windows) while in others a developer may need to 
write code to access the data (Linux/Unix), and yet other applications may want to use 
specialized third-party hardware monitoring utilities. 

Problem ���� Using multiple configurable monitor components to extract variety of 
data. Bulls-Eye’s TM-Monitor communicates with the underlying components to 
extract data. Since there can be different elements attached with a host, it must keep 
track of each element to be monitored along with its component. For example there 
can be a component monitoring CPU and memory usage, while another can monitor 
the usage of a I/O and disk space. There is also the need to swap displays for a par-
ticular type of resource, e.g., when there is an upgrade of a display with its latest ver-
sion. 

Solution ���� Initial Domain data configured with resource element and component 
name. The initial Domain data sent to TM-Monitor is configured with the name of the 
element to be monitored along with its’ component name, which is done by the Do-
main Administrator before the startup of Bulls-Eye. The resources that need to be 
tracked are initially configured. The Strategy pattern is used here to load and unload 
multiple components for the same resource elements. All the components confirm to a 



     

particular interface, containing life-cycle activities and data supplying operations. The 
component is loaded by the TM-Monitor and it maintains a map of resource element 
to component name. The TM-Monitor makes a call to each component to start and 
stop the component and also periodically and gets their current data. It also combines 
the data from each component into one single Domain structure before uploading it to 
the TM-Core, which makes it easy to extend Bull-Eye’s monitoring capabilities. 

Applying the solution to the MLRM case study. The Domain Administrator creates 
the configuration initially. The elements monitored in each host are included along 
with their components. During startup the Domain data reaches each TM-Monitor in 
each host. TM-Monitor then loads the component and starts monitoring. In case it 
fails to find the component, TM-Monitor throws an exception. 

5  Experimental Evaluation of Bulls-Eye 

This section outlines the testbed that provides the infrastructure for a representative 
enterprise DRE system from the domain of shipboard computing used to evaluate the 
performance of Bulls-Eye, describes our experiments, and analyzes the results ob-
tained to evaluate the performance of Bulls-Eye.  

5.1 Hardware/Software Testbed  

Our experiments were performed on the ISISLab testbed at Vanderbilt University 
(www.dre.vanderbilt.edu/ISISlab). The hardware configuration consists of three 
nodes acting as the system domain. The hardware configuration of all the nodes was a 
2.8 GHz Intel Xeon dual processor, 1 GB physical memory, 1Ghz Ethernet network 
interface, and 40 GB hard drive. Redhat Fedora Core release 4 operating system run-
ning in real-time scheduling mode was used for all the nodes.  

 

 
Figure 5. Operational Strings in the Testbed 

Figure 5 shows our representative enterprise DRE system test configuration, which 
was composed of three operational strings [13], each containing six application com-
ponents. The application components were implemented using work load generators 
[18]. Real-time QoS properties and requirements of these operational strings are 
specified by their relative priority and end-to-end deadline, respectively. The three 



 

operational strings were composed of one mission-critical, one mission-support, and 
one best-effort operational string. The mission-critical operational string was config-
ured with the highest priority, followed by the mission-support and best-effort opera-
tional strings. An end-to-end deadline of 500 ms was specified for the mission-critical 
operational string.  

To evaluate the utility of Bulls-Eye, we deployed the mission-critical operational 
string followed by the best-effort operational string, which was then followed by the 
mission-support operational string. At each node within the domain, Bulls-Eye moni-
tored the net processor utilization, as well as processor utilization per each compo-
nent. We also monitored the end-to-end execution time of the mission-critical opera-
tional string. Since Bulls-Eye is implemented as a component, we also monitored the 
resource utilization of Bulls-Eye to determine the overhead of Bulls-Eye itself.  

In conjunction with Bulls-Eye, the Resource Allocation and Control Engine (RACE) 
[13] was used in our experiments to ensure end-to-end execution time of the mission-
critical operational string was below its end-to-end deadline. RACE enables DRE 
system developers to configure allocation and control algorithms depending on the 
characteristics of applications being deployed and enables the use of multiple algo-
rithms without needing to handcraft the mechanisms used to configure the algorithms. 
It also deploys the application components to various nodes within a resource pool 
using specialized allocation algorithms. Inputs to RACE include (1) end-to-end dead-
line of mission-critical operational string and (2) runtime resource utilization infor-
mation, which was provided by Bulls-Eye.  

5.2 Analysis of Results 

This section presents results from running the experiment described above on our 
ISISlab testbed. We used end-to-end execution time of the mission-critical operational 
string as a metric to evaluate the utility of Bulls-Eye and the resource utilization by 
Bulls-Eye as a measure of the infrastructure overhead. Resource utilization informa-
tion collected by Bulls-Eye for the six nodes in the domain is shown in Figures 6-A, 
6-B, 6-C, 6-D, 6-E, and 6-F as a function of time. End-to-end execution time of the 
mission-critical operational string is shown in Figure 7 as a function of time. Since 
Bulls-Eye was deployed on node 6, Figure 6-F also captures the overhead of the 
Bulls-Eye infrastructure.  

          

                         Figure 6-A. Node 1                                           Figure 6-B. Node 2 



     

      

                          Figure 6-C. Node 3                                         Figure 6-D. Node 4 

As shown in Figure 6-A, 6-B, 6-C, 6-D, 6-E, and 6-F, when the mission-support op-
erational string is deployed at the 1,800th second, the net processor utilization of the 
nodes increased above the RMS recommended utilization setpoint of 0.7 [17]. At the 
same time, as shown in Figure 7, the end-to-end execution time of mission-critical 
operational string increased above it deadline of 500 ms. This result indicates that the 
increase in execution time of the mission-critical operational string results from over-
utilization of system resources (CPU). 

  

      Figure 6-E. Node 5                                   Figure 6-F. Node 6 

The resource utilization information collected by Bulls-Eye serves as the input to 
RACE and triggers RACE to perform adaptive system control modifications, such as 
modifying operating system priority, scheduler class, and/or tearing down lower pri-
ority operational strings.  

In our experiment, RACE tears down the best-effort operational string to meet the 
QoS requirements of higher priority mission-critical operational strings. As a result of 
these adaptive control actions, the end-to-end execution time of the mission-critical 
operational string is once again below its deadline, as shown in Figure 7. Figure 6-F 
shows that the infrastructure overhead due to Bulls-Eye itself is insignificant compare 
to the network resource utilization. 



 

 

Figure 7. End-to-End Execution Time of the Mission-Critical Operational String 

Without a resource provisioning service like Bulls-Eye, over-utilization of system 
resources could go unnoticed. Resource utilization information is a key input to any 
control framework. A control framework for enterprise DRE system, such as RACE, 
requires resource utilization information regarding multiple types and instances of 
resources from the domain. A resource provisioning framework such as Bulls-Eye is 
therefore essential to effective adaptive resource management for enterprise DRE 
systems. 

6  Related Work 

This section compares our work on Bulls-Eye with related work in the domain of 
resource provisioning. 

The CMU Resource Monitoring System (ReMoS) [8] is service that allows network-
aware applications to obtain relevant information about the bandwidth and latency of 
a specific flow, where flow is an application level connection between a pair of com-
putation nodes. It also answers queries about the network topology. ReMoS uses two 
abstraction levels: explicit management of resource sharing and statistical measure-
ment. Its flows abstraction captures the communication between nodes and its topolo-
gies abstraction provides a logical view of network connectivity. ReMoS measure-
ments are made at the network level, so it provides information for use in sharing of 
resources. Bulls-Eye, in contrast, focuses on the resource availability for component 
assemblies, rather than the network level. This focus requires the aggregation of data 
into a single unit so that decisions regarding whole units/assemblies can be taken. 
Resource provisioning, synchronizing multiple planners, and matching of component 
requirements to target domain availability are other key concerns for Bulls-Eye, 
which acts as a common service for resource provisioning at multiple layers.  

The BBN Resource Status Service (RSS) [9] is another multi-layer resource monitor-
ing service. RSS consists of monitors (known as “condition objects”) that are distrib-
uted to hosts in a network and which communicate with each other to acquire the 
required data. In addition, RSS aggregates data of various resources, such as proces-
sor load average and memory consumption. Whereas the RSS is based on a non-stan-
dard interface, Bulls-Eye supports the OMG Lightweight CCM Target Manager 
specification, which defines standard interfaces that third-party providers can use to 



     

integrate their monitoring mechanisms. The Lightweight CCM Target Manager speci-
fication (and thus Bulls-Eye) also supports resource provisioning by providing a 
common point to commit and release resources for different plans deployed, which is 
not supported by RSS. 

The Globus Toolkit [10] provides a number of resource provisioning services that 
focus on monitoring, management, scheduling, and coordination of different compu-
tations in a computing grid. It also has tools for transmitting and managing large 
amounts of data useful to grid-based applications. Bulls-Eye does itself does not man-
age applications of a distributed environment (relying on other services in CIAO, such 
as DAnCE and RACE for these capabilities), but instead focuses on the collection, 
aggregation, and presentation of resource information in a timely manner. Bulls-Eye 
focuses on deployment and configuration of component-based applications and has 
features to support real-time QoS policies for mission-critical DRE systems.  

[11] proposes an integrated architecture for managing dependencies uniformly in 
distributed component-based systems. It allows developers to present dependencies 
between components; instantiates component based applications and manages hard-
ware resources in the distributed system. For this purpose, it has a resource manage-
ment service which is similar to Bulls-Eye in that it uses distributed monitors to ac-
quire local status information and aggregates the information on a central server. [11] 
focuses largely on the allocation and running of the applications, however, whereas 
Bulls-Eye is built more generically and supports standard interfaces for plugging in 
multiple types of resource monitors. [11] also does not deal with the resource provi-
sioning aspects supported by Bulls-Eye. 

[12] implements a resource monitoring service similar to Bulls-Eye, but with a focus 
on collecting resource data to create a forecasting model that provides process sched-
ulers with resource trends so that they can schedule more efficiently. Our Bulls-Eye 
approach is different in that it collects resource information at runtime at a finer-
grained level i.e., it collects data for each participating process and thread and feeds it 
to sophisticated framework such as RACE which uses multiple allocation and control 
algorithms [13]. These algorithms can then (re)deploy and (re)configure the applica-
tions with the goal of maintaining stringent Qos requirements. Since Bulls-Eye is 
targeted for enterprise DRE systems, it focuses on the latency of the data collection 
and a standard interface to make it available to automated resource management 
framework, such as RACE.  

7  Concluding Remarks 

This paper motivated and described Bulls-Eye, which is an implementation of the 
Lightweight CCM Target Manager specification we developed to support resource 
provisioning for enterprise DRE systems. We discussed the design challenges faced 
when developing Bulls-Eye and applying it to a shipboard computing system and 
showed how our solutions helped resolve these challenges. We also presented results 
the results of experiments that show how Bulls-Eye simplifies resource management 
and helps automate adaptations in the face of dynamic operating condition changes. 

The following are lessons learned during our work on Bulls-Eye and its application to 
the Multi-Layer Resource Manager (MLRM) subsystem case study: 



 

• Building enterprise DRE systems whose operational semantics change frequently 
necessitates the dynamic monitoring of domain resources and requires a framework 
to provide resource availability information to enable the automated (re)deployment 
and (re)configuration of heterogeneous components throughout the system. 

• The CCM Target Manager specification strikes an effective balance between flexi-
bility and efficiency by keeping client code considerably simpler and supporting 
dynamic updates and system (re)deployment and (re)configuration. 

• Applying patterns to Bulls-Eye helped ensure that its design used best practices 
associated with solving recurring problems and leveraging the experience of ex-
perienced developers. Patterns applied to Bulls-Eye included Adaptor and Strategy. 

• Using efficient aggregation algorithms helped improve overall system performance 
and also increased the responsive of Bulls-Eye, which in turn led to clients re-
sponding to changes in the application operating condition or policy in an effective 
manner. 

• The judicious use of distributing computing of resource data across different stages, 
helped increase the performance of Bulls-Eye by fully exploiting the computing 
power of distributed hosts across the target domain and distribute complexity over 
multiple processors. 

• Bulls-Eye plays an important role in the allocation of components to different hosts 
across the domain. It helps allocation algorithms to come up with a deployment 
plan which optimizes resource usage. Control algorithms which need to re-allocate 
components due to changing operating environment also use Bulls-Eye to monitor 
the running of the application. 

The implementation of Bulls-Eye is freely available as open-source software and can 
be downloaded along with the CIAO, DAnCE, and RACE open-source middleware 
from www.dre.vanderbilt.edu/CIAO. 
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