
The ADAPTIVE Communication Environment
An Object-Oriented Network Programming Toolkit

for Developing Communication Software

Douglas C. Schmidt
schmidt@cs.wustl.edu

http://www.cs.wustl.edu/�schmidt/
Department of Computer Science

Washington University
St. Louis, MO 63130, (314) 935-7538

Earlier versions of this paper appeared in the11
th and

12
th Sun User Group conferences in San Jose, California,

Dec. 7–9, 1993 and San Francisco, California, June 14–17,
1993.

Abstract

The ADAPTIVE Communication Environment (ACE) is an
object-oriented (OO) toolkit that implements fundamental
design patterns for communication software. ACE is tar-
geted for developers of high-performance communication
services and applications on UNIX and Win32 platforms.
ACE simplifies the development of OO network applications
and services that utilize interprocess communication, event
demultiplexing, explicit dynamic linking, and concurrency.
ACE automates system configuration and reconfiguration by
dynamically linking services into applications at run-time
and executing these services in one or more processes or
threads.

This paper describes the structure and functionality of
ACE and illustrates core ACE features using examples from
domains like telecommunications, enterprise medical imag-
ing, and WWW services. ACE is freely available and is being
used for many commercial projects (such as Ericsson, Bell-
core, Siemens, Motorola, Kodak, and McDonnell Douglas),
as well as many academic and industrial research projects.
ACE has been ported to a variety of OS platforms including
Win32 and most UNIX/POSIX implementations. In addition,
both C++ and Java versions of ACE are available.

1 Introduction

1.1 Problem: the Distributed Software Crisis

The demand for robust and high-performance distributed
computing systems is steadily increasing. Examples of these
types of systems include global personal communication
systems, network management platforms, enterprise medical
imaging systems, online financial analysis systems, and real-
time avionics systems. Distributed computing is a promising
technology for improving collaboration through connectiv-
ity and interworking; performance through parallel process-
ing; reliability and availability through replication; scalabil-

ity and portability through modularity; extensibility through
dynamic configuration and reconfiguration; and cost effec-
tiveness through resource sharing and open systems.

Although distributed computing offers many potentially
benefits, developing communication software is expensive
and error-prone. Object-oriented (OO) programming lan-
guages, components, and frameworks are widely touted tech-
nologies for reducing software cost and improving software
quality. When stripped of the hype, the primary benefits of
OO stem from the emphasis on modularity and extensibil-
ity, which encapsulate volatile implementation details behind
stable interfaces and enhance software reuse.

Developers in certain well-traveled domains have success-
fully applied OO techniques and tools for years. For in-
stance, the Microsoft MFC GUI framework and OCX com-
ponents arede factoindustry standards for creating graphical
business applications on PC platforms. Although these tools
have their limitations, they demonstrate the productivity ben-
efits of reusing common frameworks and components.

Software developers in more complex domains like
telecommunications, medical imaging, avionics, and online
transaction processing have traditionally lacked standard off-
the-shelf middleware components. As a result, developers
largely build, validate, and maintain software systems from
scratch. In an era of deregulation and stiff global compe-
tition, this in-house development process is becoming pro-
hibitively costly and time consuming. Across the industry,
this situation has produced a “distributed software crisis,”
where computing hardware and networks get smaller, faster,
and cheaper; yet distributed software gets larger, slower, and
more expensive to develop and maintain.

The challenges of building distributed software stem from
inherentandaccidentalcomplexities [1] associated with dis-
tributed systems. Inherent complexities stem from funda-
mental challenges of developing distributed software. Chief
among these is detecting and recovering from network
and host failures, minimizing the impact of communica-
tion latency, and determining an optimal partitioning of ser-
vice components and workload onto processing elements
throughout a network.

Accidental complexities stem from limitations with tools
and techniques used to develop telecom software. For in-
stance, many standard networking mechanisms (such as

1

THREADTHREAD

LIBRARYLIBRARY

DYNAMICDYNAMIC

LINKINGLINKING

MEMORYMEMORY

MAPPINGMAPPING

SELECTSELECT//
POLLPOLL

SYSTEMSYSTEM

VV IPCIPC
STREAMSTREAM

PIPESPIPES

NAMEDNAMED

PIPESPIPES

C
APIS

SOCKETSSOCKETS//
TLITLI

COMMUNICATIONCOMMUNICATION

SUBSYSTEMSUBSYSTEM

VIRTUAL MEMORYVIRTUAL MEMORY

SUBSYSTEMSUBSYSTEM

GENERAL POSIX AND WIN32 SERVICES

PROCESSPROCESS//THREADTHREAD

SUBSYSTEMSUBSYSTEM

SYNCHSYNCH

WRAPPERSWRAPPERS

FRAMEWORKS

AND CLASS

CATEGORIES

ACCEPTORACCEPTOR CONNECTORCONNECTOR

DISTRIBUTED

SERVICES AND

COMPONENTS

NAMENAME

SERVERSERVER

TOKENTOKEN

SERVERSERVER

LOGGINGLOGGING

SERVERSERVER

GATEWAYGATEWAY

SERVERSERVER

SOCKSOCK__SAPSAP//
TLITLI__SAPSAP

FIFOFIFO

SAPSAP

LOGLOG

MSGMSG

SERVICESERVICE

HANDLERHANDLER

TIMETIME

SERVERSERVER

OS ADAPTATION LAYER

C++
WRAPPERS

THREADTHREAD

MANAGERMANAGER

SPIPESPIPE

SAPSAP

CORBACORBA

HANDLERHANDLER

SYSVSYSV
WRAPPERSWRAPPERS

REACTORREACTOR

SHAREDSHARED

MALLOCMALLOC

ADAPTIVE SERVICE EXECUTIVE ADAPTIVE SERVICE EXECUTIVE (ASX)(ASX)

SERVICESERVICE

CONFIGCONFIG--
URATORURATOR

MEMMEM

MAPMAP

Figure 1: Components in the ADAPTIVE Communication Environment

sockets [2] and TLI [3]) and reusable component libraries
(such as X windows and Sun RPC) lack type-safe, portable,
re-entrant, and extensibleapplication programming inter-
faces(APIs). Likewise, common network programming in-
terfaces like sockets and TLI use weakly-typed integer han-
dles that can lead to subtle run-time errors [4].

Another source of complexity arises from the widespread
use of algorithmic decomposition [5], which results in non-
extensible and non-reusable software systems [6]. Although
graphical user-interfaces (GUIs) are commonly built using
object-oriented (OO) techniques, distributed software is typ-
ically developed using algorithmic decomposition. This
problem is exacerbated by the fact that examples in pop-
ular network programming textbooks [7, 8, 3] are based
on algorithmically-oriented design and implementation tech-
niques.

The lack of extensibility and reuse in-the-large is particu-
larly problematic for complex distributed software. Extensi-
bility is essential to ensure timely modification and enhance-
ment of services and features. Reuse is essential to lever-
age the domain knowledge of expert developers to avoid re-
developing and re-validating common solutions to recurring
requirements and software challenges.

1.2 Solution: Object-oriented Design Patterns
and Frameworks

Object-oriented design patterns and frameworks are well-
regarded for their ability to help alleviate costly rediscov-
ery and reinvention of core distributed software concepts and
abstractions. Patterns provide a way to encapsulate design
knowledge that offers solutions to standard distributed soft-
ware development problems [9]. For instance, patterns are
useful for describing recurringmicro-architectures(such as
Reactor [10] and Active Object [11]), which are abstractions
of common object-structures that have proven useful to build
distributed communication software. However, abstractions
documented as patterns do not directly yield reusable code.
Therefore, it is essential to augment the study of patterns
with the creation and use offrameworks.

Frameworks provide reusable software components for
applications by integrating sets of abstract classes and defin-
ing standard ways that instances of these classes collabo-
rate [12]. Frameworks instantiate families of design pat-
terns to help developers avoid costly reinvention of com-
mon distributed software components. The results are “semi-
complete” application skeletons that can be customized by
inheriting and instantiating from reuseable building blocks
components in the frameworks. Since frameworks are tightly
integrated with key distributed programming tasks (such as
service initialization, error handling, flow control, event de-
multiplexing, concurrency control), the scope of reuse can

2

be significantly larger than by using traditional function li-
braries, or even conventional OO class libraries.

This paper is organized as follows: Section 2 presents
an overview of the structure and functionality of the ACE
toolkit; Section 3 describes the ACE C++ wrapper compo-
nents and higher-level ACE framework components and pat-
terns in detail; Section 4 examines the implementation of
several networking applications built using ACE; and Sec-
tion 5 presents concluding remarks.

2 Overview of the ADAPTIVE Com-
munication Environment (ACE)

To illustrate how OO patterns and frameworks are being suc-
cessfully applied to distributed software, this paper exam-
ines the ADAPTIVE Communication Environment (ACE)
[6]. ACE is a freely available OO toolkit containing a rich set
of reusable wrappers, class categories, and frameworks that
perform common network programming tasks across a wide
range of OS platforms. The tasks provided by ACE include:

� Event demultiplexing and event handler dispatching
[13, 14, 10, 15];

� Connection establishment and service initialization[16,
17, 18];

� Interprocess communication[19, 4] andshared memory
management;

� Dynamic configuration of distributed communication
services[20, 21];

� Concurrency/parallelism and synchronization[22, 23,
11, 24];

� Components for higher-level distributed services(such
as a Name service, Event service, Logging service,
Time service, and Token service).

The ACE toolkit is designed using a layered architecture.
Figure 1 illustrates the vertical and horizonal relationship be-
tween ACE components. The lower layers of ACE areOO
wrappers that encapsulate existing OS network program-
ming mechanisms. The higher layers of ACE extend the
wrappers to provideOO frameworks and componentsthat
cover a broader range of application-oriented networking
tasks and services. The remainder of this section presents an
overview of the structure and functionality of the class cat-
egories in ACE (shown in Figure 2). Section 3 provides in-
depth coverage of the ACE network programming features
and components.

Throughout the paper, the ACE components are illustrated
via Booch notation [5]. Solid rectangles indicate class cat-
egories, which combine a number of related classes into a
common name space. Solid clouds indicate objects; nest-
ing indicates composition relationships between objects; and
undirected edges indicate some type of link exists between
two objects. Dashed clouds indicate classes; directed edges

Stream
Framework

ServiceService
ConfiguratorConfigurator

APPLICATIONSAPPLICATIONSAPPLICATIONAPPLICATION--
SPECIFICSPECIFIC

ConcurrencyConcurrency
globalglobal

InterprocessInterprocess
CommunicationCommunication

APPLICATION-
INDEPENDENT

ServiceService
InitializationInitialization

ReactorReactor

NetworkNetwork
ServicesServices

APPLICATIONSAPPLICATIONS
APPLICATIONSAPPLICATIONS

Figure 2: The Class Categories in ACE

indicate inheritance relationships between classes; and an
undirected edge with a small circle at one end indicates either
a composition or uses relation between two classes. The “A”
inscribed within a triangle identifies a class as anabstract
class[25]. An abstract class cannot be instantiated directly,
but must be subclassed. Subclasses of an abstract class must
provide definitions for all its abstract methods before any ob-
jects of the class may be instantiated.1

2.1 The ACE OS Adaptation Layer

The ACE source tree contains over 85,000 lines of C++. Ap-
proximately 9,000 lines of code (i.e.,about 10% of the total
toolkit) are devoted to theOS Adaptation Layer. This layer
shields the higher layers of ACE from platform-specific de-
pendencies associated with the following OS mechanisms:

� Multi-threading and synchronization

� Interprocess communication

� Event demultiplexing

� Explicit dynamic linking

� Memory-mapped files and shared memory

2.2 The ACE OO Wrappers

Above the OS Adaptation Layer are OO wrappers that en-
capsulate and enhance the concurrency, interprocess commu-
nication (IPC), and virtual memory mechanisms (illustrated
at the bottom of Figure 1) available on modern operating sys-
tems like Win32 and UNIX. Applications can combine and

1Abstract methods C++ are commonly calledpure virtual functions.

3

compose these components by selectively inheriting, aggre-
gating, and/or instantiating the following ACE wrapper class
categories:

� IPC SAP – which encapsulates local and/or remote
IPC Service Access Point (IPC SAPmechanisms such
as sockets, TLI, UNIX FIFOs and STREAM pipes, and
Win32 Named Pipes, [19, 4];

� Service Initialization – ACE provides a set of Connec-
tor and Acceptor components [18] that decouple the ac-
tive and passive initialization roles, respectively, from
the tasks a communication service performs once ini-
tialization is complete;

� Concurrency mechanisms– ACE abstracts lower-
level OS multi-threading and multi-processing mecha-
nisms (such as mutexes and semaphores [22]) to create
higher-level OO concurrency abstractions (such as Ac-
tive Objects [11]);

� Memory management mechanisms– the ACE mem-
ory management components provide a flexible and ex-
tensible abstraction for managing dynamic allocation
and deallocation of shared memory and local memory;

� CORBA integration – ACE can be integrated with
CORBA implementations [26] (such as single-threaded
and multi-threaded Orbix).

The use of OO wrappers improves application robustness
by encapsulating OS communication, concurrency, and vir-
tual memory mechanisms with type-secure OO interfaces.
This alleviates the need for applications to directly access
the underlying OS libraries, which are written using weakly-
typed C interfaces. Therefore, compilers for OO languages
like C++ and Java can detect type system violations at
compile-time, rather than at run-time. The C++ version
of ACE uses inlining extensively to eliminate performance
penalties that would otherwise be incurred from the addi-
tional type-security and abstraction provided by the wrapper
layer.

2.3 The ACE Framework

ACE contains a higher layer network programming frame-
work that integrates and enhances the lower layer OS wrap-
pers. This framework supports the dynamic configuration of
concurrent network daemons composed of application ser-
vices. The framework portion of ACE contains the following
class categories:

� Reactor – The ACE Reactor [10] provides extensible,
object-oriented demultiplexer that dispatches handlers
in response to various types of events (e.g.,I/O-based,
timer-based, signal-based, and synchronization-based
events);

� Service Configurator – The ACE Service Configura-
tor [21] supports the construction of applications whose
services may be configured dynamically at installation-
time and/or run-time;

IPC_SAP

A

SOCK_SAP TLI_SAP FIFO_SAPSPIPE_SAP

SOCKET

API

TRANSPORT

LAYER

INTERFACE API

STREAM PIPE

API

NAMED PIPE

API

Figure 3:IPC SAP Class Category Relationships

� Streams– The ACE Streams components [6] simplify
the development of concurrent communication software
applications composed of one or more hierarchically-
related services (such as protocol stacks);

2.4 ACE Network Service Components

In addition to the wrappers and frameworks, ACE provides a
standard library of network service components. These com-
ponents play two roles in ACE:

1. They illustrate how to utilize the ACE IPC wrappers,
Reactor, Service Configurator, Service Initialization,
Concurrency, Memory Management, and Streams com-
ponents;

2. They provide reusable components for common dis-
tributed system tasks such as logging [13, 13], naming,
locking, and time synchronization [21];

When combined with OO language features (such as
clases, inheritance, dynamic binding, and parameterized
types) and design patterns (such as Abstract Factory, Builder,
and Service Configurator), the reusable ACE components fa-
cilitate the development of communication services and ap-
plications that may be updated and extended without modify-
ing, recompiling, relinking, or even restarting running soft-
ware [20].

3 Detailed Coverage of ACE Compo-
nents

3.1 IPC SAP: Local and Remote IPC Mecha-
nisms

ACE provides a forest of class categories rooted at theIPC
SAP(“InterProcess Communication Service Access Point”)
base class.IPC SAP encapsulates the standard I/O handle-
based OS local and remote IPC mechanisms that offer
connection-oriented and connectionless protocols. As shown
in Figure 3, this forest of class categories includesSOCK
SAP(which encapsulates the socket API),TLI SAP (which

4

encapsulates the TLI API),SPIPE SAP (which encapsu-
lates the UNIX SunOS 5.x STREAM pipe API), andFIFO
SAP(which encapsulates the UNIX named pipe API).

Each class category is organized as an inheritance hierar-
chy. Every subclass provides a well-defined interface to a
subset of local or remote communication mechanisms. To-
gether, the subclasses within a hierarchy comprise the over-
all functionality of a particular communication abstraction
(such as the Internet-domain or UNIX-domain protocol fam-
ilies). The use of classes (as opposed to stand-alone func-
tions) helps to simplify network programming as follows:

� Shield applications from error-prone details– For ex-
ample, theACEAddr class hierarchy shown in Fig-
ure 3 supports several diverse network addressing for-
mats via a type-secure OO interface, rather than us-
ing the awkward and error-prone C-basedstruct
sockaddr data structures directly.

� Combine several operations to form a single operation
– For example, theSOCK Acceptor constructor per-
forms the various socket system calls (such assocket ,
bind , andlisten) required to create a passive-mode
server endpoint.

� Parameterize IPC mechanisms into applications–
Classes form the basis for parameterizing an application
by the type of IPC mechanism it requires. This helps to
improve portability as discussed in Section 3.1.2.

� Enhance code sharing– Inheritance-based hierarchical
decomposition increases the amount of common code
that is shared amongst the various IPC mechanisms
(such as the OO interface to the lower-level OS device
control system calls likefcntl andioctl).

The following sections discuss each of the class categories
in IPC SAP.

3.1.1 SOCK SAP

The SOCK SAP[4] class category provides applications
with an object-oriented interface to the Internet-domain
and UNIX-domain protocol families [8]. Applications
may access the functionality of the underlying Internet-
domain or UNIX-domain socket types by inheriting or in-
stantiating the appropriateSOCK SAPsubclasses shown
in Figure 4. TheACESOCK* subclasses encapsulate
Internet-domain functionality and theACELSOCK* sub-
classes encapsulate UNIX-domain functionality. As shown
in Figure 4, the subclasses may be further decomposed
into (1) the *Dgram components (which provide unre-
liable, connectionless, message-oriented functionality) vs.
the *ACE Stream components (which provide reliable,
connection-oriented, bytestream functionality) and (2) the
ACE* Acceptor components (which provide connection
establishment functionality typically used by servers) vs.
the *Stream components (which provide bi-directional
bytestream data transfer functionality used by both clients
and servers).

Using OO wrappers to encapsulate the socket interface
helps to (1) detect many subtle application type system vio-
lations at compile-time, (2) facilitate a platform-independent
transport-level interface that improves application portabil-
ity, and (3) greatly reduce the amount of application code and
development effort expended upon lower-level network pro-
gramming details. To illustrate the latter point, the follow-
ing example program implements a simple client application
that uses theACESOCKDgram Bcast class to broadcast a
message to all servers listening on a designated port number
in a LAN subnet::

int
main (int argc, char *argv[])
{

ACE_SOCK_Dgram_Bcast b_sap (sap_any);
char *msg;
unsigned short b_port;

msg = argc > 1 ? argv[1] : "hello world\n";
b_port = argc > 2 ? atoi (argv[2]) : 12345;

if (b_sap.send (msg, strlen (msg),
b_port) == -1)

perror ("can’t send broadcast"), exit (1);
exit (0);

}

It is instructive to compare this concise example with the
dozens of lines of C source code required to implement
broadcasting using the socket interface directly.

3.1.2 TLI SAP

The TLI SAP class category provides an OO interface to
the System V Transport Layer Interface (TLI). TheTLI
SAP inheritance hierarchy for TLI is almost identical to the
SOCK SAPwrappers for sockets. The primary difference
is that TLI andTLI SAP do not define an interface to the
UNIX-domain protocol family. In addition, TLI is not cur-
rently ported to Win32 platforms.

By combining C++ features (such as default parame-
ter values and templates) together with thetirdwr (the
read/write compatibility STREAMS module), it be-
comes relatively straight-forward to develop applications
that may be parameterized at compile-time to operate cor-
rectly over either a socket-based or TLI-based transport in-
terface. For instance, the following code illustrates how
C++ templates may be applied to parameterize the IPC
mechanisms used by an application. This code was ex-
tracted from the distributed logging facility described in
Section 4.1. In the code below, a subclass derived from
ACEEvent Handler is parameterized by a particular
type of transport interface and its corresponding protocol ad-
dress class:

/* Logging_Handler header file */
template <class PEER_STREAM, class ADDR>
class Logging_Handler : public ACE_Event_Handler
{
public:

Logging_Handler (void);
virtual ˜Logging_Handler (void);

virtual int handle_input (ACE_HANDLE);
virtual ACE_HANDLE get_handle (void) const
{

5

AACCEE
LLSSOOCCKK

AACCEE
IIPPCC
SSAAPP

GGRROOUUPP

CCOOMMMM

DDAATTAAGGRRAAMM

CCOOMMMM

SSTTRREEAAMM

CCOOMMMM

CCOONNNNEECCTTIIOONN

EESSTTAABBLLIISSHHMMEENNTT

AACCEE
SSOOCCKK

AACCEE
SSOOCCKK

CCOODDggrraamm

 AACCEE
SSOOCCKK
DDggrraamm

ACE
SOCK
Dgram
Bcast

AACCEE
SSOOCCKK

AAcccceeppttoorr

AACCEE
SSOOCCKK

CCoonnnneeccttoorr

AACCEE
SSOOCCKK
SSttrreeaamm

AACCEE
LLSSOOCCKK
CCOODDggrraamm

AACCEE
LLSSOOCCKK
DDggrraamm

AACCEE
LLSSOOCCKK

CCoonnnneeccttoorr

AACCEE
LLSSOOCCKK

AAcccceeppttoorr

AACCEE
LLSSOOCCKK
SSttrreeaamm

ACE
SOCK
Dgram
Mcast

Figure 4: TheSOCK SAPClass Categories

return this->peer_stream_.get_handle ();
}

protected:
PEER_STREAM peer_stream_;

};

Depending on certain properties of the underlying OS plat-
form (such as whether it is BSD-based SunOS 4.x or System
V-based SunOS 5.x), the logging application may instantiate
the Client Handler class to use eitherSOCK SAPor
TLI SAP , as shown below:

/* Logging application */
class Logging_Handler
#if defined (MT_SAFE_SOCKETS)
: public Logging_Handler<ACE_SOCK_Stream, ACE_INET_Addr>
#else
: public Logging_Handler<ACE_TLI_Stream, ACE_INET_Addr>
#endif /* MT_SAFE_SOCKETS */
{

/* ... */
};

The increased flexibility offered by this template-based
approach is extremely useful when developing an application
that must run portability across multiple OS platforms. In
particular, the ability to parameterize applications according
to transport interface is necessary across variants of SunOS
platforms since the socket implementation in SunOS 5.2 is
not thread-safe and the TLI implementation in SunOS 4.x
contains a number of serious defects.

TLI SAP also shields applications from many peculiari-
ties of the TLI interface. For example, the subtle application-
level code required to properly handle the non-intuitive,
error-prone behavior oft listen andt accept in a con-
current server with aqlen > 1 [3] is encapsulated within
the accept method in theTLI Acceptor class. This
method accepts incoming connection requests from clients.
Through the use of C++ default parameter values, the stan-
dard method for calling theaccept method is syntactically
equivalent for bothTLI SAP -based andSOCK SAP-based
applications.

3.1.3 SPIPE SAP

The SPIPE SAP class category provides a OO wrapper
interface for high-performance local IPC. On Win32 plat-
forms, theSPIPE SAPclass category is implemented atop
Named Pipes. The Win32 Named Pipes mechanism is pri-
marily used to transfer data efficiently among processes on
the same machine. It is typically more efficient than sockets
for local IPC [27].

On UNIX platforms, theSPIPE SAP class category is
implemented with mounted STREAM pipes andconnld
[28]. SunOS 5.x provides thefattach system call that
mounts a pipe handle at a designated location in the UNIX
file system. A server application is created by pushing the
connld STREAM module onto the mounted end of the
pipe. When a client application running on the same host
machine as the server subsequently opens the filename asso-
ciated with the mounted pipe, the client and server each re-
ceive an I/O handle that identifies a unique, non-multiplexed,
bi-directional channel of communication.

The SPIPE SAP inheritance hierarchy mirrors the one
used for SOCK SAPand TLI SAP . It offers function-
ality that is similar to theSOCK SAP ACELSOCK*
classes (which themselves encapsulate UNIX-domain sock-
ets). However, on SunOS 5.x platformsSPIPE SAP is
more flexible than theACELSOCK* interface since it en-
ables STREAM modules to be “pushed” and “popped” to
and from SPIPE SAP endpoints, respectively.SPIPE
SAPalso supports bi-directional delivery of byte-stream and
prioritized message-oriented data between processes and/or
threads executing within the same host machine [29].

3.1.4 FIFO SAP

The FIFO SAP class category encapsulates the UNIX
named pipe mechanism (also called FIFOs). Unlike
STREAM pipes, named pipes offer only a uni-directional
data channel from one or more senders to a single receiver.

6

Moreover, messages from different senders are all placed
into the same communication channel. Therefore, some
type of demultiplexing identifier must be included explicitly
in each message to enable the receiver to determine which
sender transmitted the message.

The STREAMS-based implementation of named pipes in
SunOS 5.x provides both message-oriented and bytestream-
oriented data delivery semantics. In contrast, some plat-
forms, (such as SunOS 4.x) only provides bytestream-
oriented named pipes. Therefore, unless fixed length mes-
sages are always used, each message sent via a named pipe in
SunOS 4.x must be distinguished by some form of byte count
or special termination symbol that allows a receiver to ex-
tract messages from the communication channel bytestream.
To alleviate this limitation, the ACEFIFO SAP implemen-
tation contains logic that emulates the message-oriented se-
mantics available in SunOS 5.x.

3.1.5 Other Communication Mechanisms

In addition to encapsulating handle-based I/O communica-
tion mechanisms such as sockets and TLI, ACE also provides
OO wrappers for memory-mapped files and System V UNIX
IPC mechanisms:

� Memory-Mapped Files: TheACEMemMap class pro-
vides an OO interface to other memory-mapped file mech-
anisms available on Win32 and UNIX (such as themmap
family of system calls). These calls utilize the underlying
OS virtual memory facilities [30] to map files into the ad-
dress space of a process. The contents of mapped files may
be accessed directly via pointers. A pointer interface is often
more convenient and efficient than accessing blocks of data
indirectly via the standardread /write I/O system calls.
In addition, contents of memory-mapped files may be shared
conveniently between two or more processes.

Existing Win32 and UNIX interfaces for memory-mapped
files are somewhat baroque. For instance, developers must
perform many bookkeeping details manually (such as ex-
plicitly opening a file, determining its length, performing
multiple mappings, etc.). In contrast, theACEMemMap
OO wrapper offers an interface that employs default values
and multiple constructors with several type signature vari-
ants (e.g., “map from an open file handle,” “map from a file-
name,” etc.) to simplify typical memory-mapped file usage
patterns.

For example, the
following program uses theACEMemMap OO wrapper to
map a file specified via the command-line and print its lines
in reverse:

static void
putline (const char *s)
{

while (putchar (*s++) != ’\n’)
continue;

}

int
main (int argc, char *argv[])
{

char *filename = argv[1];

char *file_p;
Mem_Map mmap (filename);

if (mmap (file_p) != -1)
{

size_t size = mmap.size () - 1;

if (file_p[size] == ’\0’)
file_p[size] = ’\n’;

while (--size >= 0)
if (file_p[size] == ’\n’)

putline (file_p + size + 1);

putline (file_p);
return 0;

}
else

return 1;
}

It is instructive to compare the use of this OO wrapper in-
terface with the much more verbose C interface necessary to
use I/O systems calls likeread directly.

� System V IPC Mechanisms: SunOS UNIX provides
a suite of shared memory, synchronization, and message
passing mechanisms known colloquially as “System V IPC”
[29]. Most of the functionality offered by these mechanisms
has been subsumed by more recent SunOS UNIX facilities
(such asmmap, thread synchronization [31], and STREAM
pipes primitives, respectively). However, certain types of
applications (such as database engines) may benefit from
characteristics of System V IPC mechanisms (such as the
peer-to-peer nature of Message Queues, the efficient multi-
operation atomicity semantics of Semaphores, and the wide-
spread availability of System V IPC across a range of UNIX
OS platforms). However, it is somewhat challenging to un-
derstand and use System V IPC mechanisms (particularly
semaphores) correctly since their interfaces are quite general
and their behavior has traditionally been documented rather
sparsely until recently [8, 29].

The ACE System V IPC wrapper interfaces shield devel-
opers from a myriad of unnecessary details. For example,
the ACE OO wrapper version of System V IPC semaphores
is more intuitive and simpler to use for applications that uti-
lize standardwait andsignal semaphore operations, as
shown in the following code fragment from a typical pro-
ducer/consumer example:

typedef ACE_SV_Semaphore_Simple SEMA;
SEMA prod (1, SEMA::CREATE, 1);
SEMA cons (2, SEMA::CREATE, 0);

void producer (void)
{

for (;;) {
prod.wait ();
// produce resource...
cons.signal ();

}
}

void consumer (void)
{

for (;;) {
cons.wait ();
// consume resource...
prod.signal ();

}
}

7

: Initiation Dispatcher: Initiation Dispatcher

REGISTEREDREGISTERED

OBJECTSOBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

: Event: Event
HandlerHandler

: Logging: Logging
HandlerHandler

: Event: Event
HandlerHandler

: Logging: Logging
HandlerHandler

1: handle_input()1: handle_input()

5: handle_input()5: handle_input()
6: recv(msg)6: recv(msg)
7:process(msg)7:process(msg)

: Event: Event
HandlerHandler

: Logging: Logging
AcceptorAcceptor

2: sh = new Logging_Handler2: sh = new Logging_Handler
3: accept (sh->peer())3: accept (sh->peer())
4: sh->open()4: sh->open()

OS EVENT DEMULTIPLEXING INTERFACE

:Timer:Timer
QueueQueue : Reactor: Reactor

: Handle: Handle
TableTable

Figure 5: Software Architecture of the WWW Server

It is instructive to compare this concise OO wrapper interface
with the much more verbose C interface necessary to use
System V semaphores directly.

3.2 Reactor: Event Demultiplexing and Event
Handler Dispatching

Communication software demultiplexes and processes many
different types of events (such as timer-based, I/O-based,
signal-based, and synchronization-based events). For exam-
ple, a WWW server is commonly structured internally using
an event loop that monitors a well-known Internet port (typ-
ically port 80). This port is associated with an application-
specific handler that listens for clients to connect on port 80.
When clients connect, the WWW server accepts the connec-
tion and creates an event handler to service the HTTP re-
quest. For instance, if a Netscape browser sends aGETre-
quest the WWW server will return the requested content to
the browser.

To consolidate and automate event-driven processing ac-
tivities, ACE provides an event demultiplexing and event
handler dispatching framework called theACEReactor
[10]. TheReactor encapsulates the functionality of UNIX
and Windows NT event demultiplexing mechanisms (such
asselect andpoll) within a portable and extensible OO
wrapper [10]. These OS event demultiplexing system calls
detect the occurrence of different types of input and output
events on one or more I/O handles simultaneously.

To facilitate application portability, theACEReactor
provides the same interface regardless of what event
demultiplexing mechanism is used.2 In addition, the

2An extended version of theACEReactor , calledACEReactorEx ,
is used on Win32 platforms to encapsulate
the WaitForMultipleObjects event demultiplexing call. Since this
functionality is not portable across OS platforms, it is not covered in this
document.

: Initiation Dispatcher: Initiation Dispatcher

REGISTEREDREGISTERED

OBJECTSOBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

: Event: Event
HandlerHandler

: Logging: Logging
HandlerHandler

: Event: Event
HandlerHandler

: Logging: Logging
HandlerHandler

1: handle_input()1: handle_input()

5: handle_input()5: handle_input()
6: recv(msg)6: recv(msg)
7:process(msg)7:process(msg)

: Event: Event
HandlerHandler

: Logging: Logging
AcceptorAcceptor

2: sh = new Logging_Handler2: sh = new Logging_Handler
3: accept (sh->peer())3: accept (sh->peer())
4: sh->open()4: sh->open()

OS EVENT DEMULTIPLEXING INTERFACE

:Timer:Timer
QueueQueue : Reactor: Reactor

: Handle: Handle
TableTable

Figure 6: TheACEReactor Class Category Components

ACEReactor encapsulates the mutual exclusion mecha-
nisms necessary to perform callback-style dispatching cor-
rectly and efficiently in a multi-threaded event processing
environment.

The structure of objects in theACEReactor is illus-
trated in Figure 6. These objects are responsible for (1) de-
multiplexing of events (such astemporal eventsgenerated by
a timer-driven callout queue,I/O eventsreceived on commu-
nication ports, andsignal events) and (2) dispatching the ap-
propriate methods of pre-registered event handler(s) to pro-
cess these events. As shown in Figure 6, all the event han-
dler objects derive from theACEEvent Handler abstract
base class. This class specifies an interface that is used by
the ACEReactor to dispatch certain application-specific
methods in response to the arrival of certain events.

The ACEReactor uses the virtual methods de-
clared in the Event Handler interface to integrate
the demultiplexing of I/O handle-based, timer-based, and
signal-based events. I/O handle-based events are dis-
patched via thehandle input , handle output , and
handle exceptions methods; timer-based events are
dispatched via thehandle timeout method; and Signal-
based events are dispatched via thehandle signal
method.

Subclasses ofACEEvent Handler (such as the
Logging Handler described in Section 4.1) may aug-
ment the base class interface by defining additional meth-
ods and data members. In addition, virtual methods in
the ACEEvent Handler interface may be selectively
overridden by subclasses to implement application-specific
functionality. For example, application-specific subclasses
in the PBX monitoring server presented in Section 4.2
define Event Handler objects that communicate with
clients by inheriting and/or instantiating objects of the
SOCK SAPor TLI SAP transport interface classes de-
scribed in Section 3.1. After the virtual methods in the

8

ACEEvent Handler base class have been defined by a
subclass, an application may instantiate the resulting event
handler object.

The following example implements a simple program
that continuously exchanges messages back and forth be-
tween two processes using a bi-directional communica-
tion channel. This example illustrates how services in-
herit from the ACEEvent Handler . It also depicts
how the ACEReactor is used to demultiplex and dis-
patch I/O-based, signal-based, and timer-based events. The
Ping Pong class shown below inherits the interface from
ACEEvent Handler and implements its application-
specific functionality as follows:

class Ping_Pong : public ACE_Event_Handler
{
public:

Ping_Pong (char *b)
: len (min (strlen (b) + 1, BUFSIZ)) {
strncpy (this->buf, b, BUFSIZ);

}
virtual int handle_input (ACE_HANDLE handle) {

return read (handle, this->buf, BUFSIZ);
}
virtual int handle_output (ACE_HANDLE handle) {

return write (handle, this->buf, this->len);
}
virtual int handle_signal (int signum) {

this->finished = 1;
}
virtual int handle_timeout (const Time_Value &,

const void *) {
this->finished = 1;

}
bool done (void) {

return this->finished == 1;
}

private:
sig_atomic_t finished;
char buf[BUFSIZ];
size_t len;

};

The bi-directional communication channel is created us-
ing SVR4 UNIX STREAM pipes:

static int
init_handles (ACE_HANDLE handles[])
{

if (pipe (handles) == -1)
LM_ERROR ((LOG_ERROR, "%p\n%a", "pipe", 1));

// Enable message-oriented mode instead of
// bytestream mode.
int arg = RMSGN;

if (ioctl (handles[0], I_SRDOPT, arg) == -1
|| ioctl (handles[1], I_SRDOPT, arg) == -1)

return -1;
}

The main program begins by opening the appropriate
communication channel. Following this, the program forks
a child process, instantiates aPing Pong event handler ob-
ject namedcallback in each of the two processes, regis-
ters thecallback object for I/O-based, signal-based, and
timer-based events with an instance of theACEReactor ,
and then enters an event loop, as follows:

int main (int argc, char *argv[])
{

ACE_HANDLE handles[2];
ACE_Reactor reactor;

main
program

INITIALIZE

REGISTER HANDLER

callback :
Ping_Pong

START EVENT LOOP

DATA ARRIVES

OK TO SEND

reactor
: Reactor

handle_events()

FOREACH EVENT DO

handle_input()

select()

Reactor::Reactor ()

register_handler(callback)

handle_output()

SIGNAL ARRIVES

TIMER EXPIRES

handle_signal()

handle_timeout()

Figure 7: ACEReactor Interaction Diagram

init_handles (handles);

pid_t pid = fork ();

Ping_Pong callback (argv[1]);

// Register I/O-based event handler
reactor.register_handler (

handles[pid == 0],
&callback,
ACE_Event_Handler::READ_MASK
| ACE_Event_Handler::WRITE_MASK);

// Register signal-based event handler
reactor.register_handler (SIGINT, &callback);

// Register timer-based event handler
reactor.schedule_timer (&callback, 0, 10);

/* Main event loop (run in each process) */
while (callback.done () == false)

reactor.handle_events ();

return 0;
}

The callback event handler for the timer-based and
signal-based events is stored with the appropriate tables in-
side theACEReactor . Likewise, theACEReactor
stores the appropriate handle in an internal table when
the register handler method is invoked to register
the I/O-based event handler. When the application sub-
sequently performs its main event loop by calling the
ACEReactor::handle events method, this handle is
passed as an argument to the underlying OS I/O demultiplex-
ing system call (e.g.,select or poll).

As input, output, signal, and timer events associated
with the pre-registered event handlercallback object oc-
cur at run-time, theACEReactor automatically detects
these events and dispatches the appropriate method(s) of
the event handler object. The dispatched method of the
callback object is responsible for performing application-
specific functionality (such as writing a message to the com-
munication channel, reading a message from the channel, or
setting a flag that triggers termination of the program). The
collaboration between these components is depicted via the
object interaction diagram shown in Figure 7.

9

3.3 Concurrency: Multi-threading and Syn-
chronization Mechanisms

The ACE Concurrency class category contains OO wrappers
(e.g.,ACEMutex , ACECondition , ACESemaphore ,
and ACERWMutex) that encapsulate the corresponding
Solaris [31] and POSIX Pthreads [32] multi-threading and
synchronization mechanisms. These wrappers automate the
initialization of synchronization objects that appear as fields
in classes and also simplify typical usage patterns for the
threading and synchronization mechanisms. For instance,
the following code illustrates the use of the ACE wrap-
pers for the SunOSmutex t andcond t synchronization
mechanisms for a typical shared resource management class:
class Resource_Manager
{
public:

Resource_Manager (u_int initial_resources)
: resource_add_ (this->lock),

resources_ (initial_resources) {}

int acquire_resources (u_int amount_wanted)
{

this->lock_.acquire ();

while (this->resources_ < amount_wanted) {
this->waiting_++;
// Block until resources are released.
this->resource_add_.wait ();

}
this->resources_ -= amount_wanted;
this->lock_.release ();

}

int release_resources (u_int amount_released)
{

this->lock_.acquire ();
this->resources_ += amount_released;
if (this->waiting_ == 1) {

this->waiting_ = 0;
this->resource_add_.signal ()

}
else if (this->waiting_ > 1) {

this->waiting_ = 0;
this->resource_add_.broadcast ();

}
this->lock_.release ();

}
// ...

private:
ACE_Mutex lock_;
ACE_Condition<ACE_Mutex> resource_add_;
u_int resources_;
u_int waiting_;
// ...

};

Note how the constructor for theACECondition object
resource add binds theACEMutex object lock to-
gether with theCondition object. This simplifies the
ACECondition::wait calling interface, in comparison
with the underlying SunOScond t cond wait interface.

Although theACEMutex wrappers provide a relatively
elegant method for synchronizing multiple threads of con-
trol, they are potentially error-prone since it is possible to
forget to call therelease method (either due to program-
mer negligence or due to the occurrence of C++ exceptions).
To improve application robustness, the ACE synchronization
facilities leverage off the semantics of C++ class constructors
and destructors. To ensure thatACEMutex locks will be
automatically acquired and released, ACE provides a helper
class calledACEGuard , which is defined as follows:

template <class MUTEX>
class ACE_Guard
{
public:

ACE_Guard (MUTEX &m): lock (m) {
this->lock_.acquire ();

}
˜ACE_Guard (void) {

this->lock_.release ();
}

private:
MUTEX &lock_;

}

An object of theACEGuard class defines a block of code
over which aACEMutex is acquired and then released au-
tomatically when the block is exited.

Note that theACEGuard class is defined as a template
that is parameterized by mutual exclusion mechanism. There
are several different types of mutex semantics [33]. Each
type of mutual exclusion shares a common interface (i.e.,
acquire /release), but possesses different serialization
and performance properties. Two types of mutual exclusion
supported by ACE arenon-recursiveandrecursivelocks.

� Non-recursive locks: A non-recursive lock provides an
efficient form of mutual exclusion that define acritical sec-
tion, where only a single thread may execute at a time.
They are non-recursive in the sense that the thread currently
owning a lock may not reacquire the lock without releas-
ing it first. Otherwise, deadlock will occur immediately.
SunOS 5.x provides support for non-recursive locks via its
mutex t , rwlock t , andsema t types (POSIX Pthreads
doesn’t provide the latter two synchronization mechanisms).
TheASX framework provides theMutex , RWMutex , and
Semaphore wrappers to encapsulate these semantics, re-
spectively.

� Recursive lock: A recursive lock, on the other hand, al-
lows acquire method invocations to nest as long as the
thread that owns the lock is the one trying to re-acquire it.
Recursive locks are particularly useful for callback-driven
event dispatching frameworks (such as theReactor de-
scribed in Section 3.2), where the framework event-loop per-
forms callbacks to pre-registered user-defined objects. Since
the user-defined objects may subsequently re-enter the dis-
patching framework via its method entry points, recursive
locks are necessary to prevent deadlock from occurring on
locks held within the framework during callbacks.

The following C++ template class implements recursive
lock semantics for the synchronization mechanisms in So-
laris threads and POSIX Pthreads whose native behavior
does not provide recursive locking semantics:

template <class MUTEX>
class ACE_Recursive_Thread_Mutex
{
public:

// Initialize a recursive mutex.
ACE_Recursive_Thread_Mutex (void);

// Implicitly release a recursive mutex.
˜ACE_Recursive_Thread_Mutex (void);

// Acquire a recursive mutex.
int acquire (void) const;

// Conditionally acquire a recursive mutex.
int tryacquire (void) const;

// Releases a recursive mutex.

10

int release (void) const;

private:
ACE_Mutex nesting_mutex_;
ACE_Condition<ACE_Mutex> mutex_available_;
thread_t owner_id_;
int nesting_level_;

};

Note that the interface for this class is consistent with the
other locking mechanisms available in ACE [22].

The following code illustrates how theACEGuard and
ACERecursive Thread Mutex might be used within a
callback mechanism:

int
Callback::dispatch (const Event_Handler *eh,

Event *event)
{

// Constructor acquires the lock on entry.
ACE_Guard<ACE_Recursive_Thread_Mutex<ACE_Mutex> >

m (this->lock_);

eh->handle_event (event);
// Destructor of Guard releases the lock on exit.

}

This code ensures that registering anEvent Handler ob-
ject executes as a critical section. This example also illus-
trates the use of a C++ idiom [34] where the constructor of
a classacquire s the lock on a synchronization object au-
tomatically when theACEGuard object is created. Like-
wise, the class destruction automatically unlocks the object
when themon object goes out of scope. Moreover, the de-
structor formonwill be invoked automatically to release the
Mutex lock regardless of which arm of theif/else state-
ment returns from the method. In addition, the lock will also
be released automatically if a C++ exception is raised dur-
ing processing within the body of theregister handler
method. TheACERecursive Thread Mutex is used to
ensure that application-specifichandle event callbacks
that are dispatched by thedispatch method do not cause
deadlock if they reenter theCallback object.

ACE also provides aACEThread Manager class that
contains a set of mechanisms to manage groups of threads
that collaborate to implement collective actions. For in-
stance, theACEThread Manager class provides mech-
anisms (such assuspend all andresume all) that al-
low any number of participating threads to be suspended and
resumed atomically.

3.4 Service Configurator: Explicit Dynamic
Linking Mechanisms

Static linkingis a technique for composing a complete ex-
ecutable program by binding together all its object files at
compile-time and/or static link-time.Dynamic linking, in
contrast, enables the addition and/or deletion of object files
into the address space of a process at initial program invoca-
tion or at any point later during run-time. SunOS 4.x and 5.x
support bothimplicit andexplicit dynamic linking:

� Implicit dynamic linkingis used to implement shared
object files, also known as shared libraries [35]. Shared

object files reduce primary and secondary storage uti-
lization since only one copy of shared object code ex-
ists in memory and on disk, regardless of the number of
processes that are executing this code. Moreover, cer-
tain address resolution and relocation operations may
be deferred until a dynamically linked function is first
referenced. This “lazy evaluation” scheme minimizes
link editing overhead during process start-up.

� Explicit dynamic linkingprovides interfaces that al-
low applications to obtain, utilize, and/or remove
the run-time address bindings of symbols defined
in shared object files [36]. Explicit dynamic link-
ing mechanisms significantly enhance the functional-
ity and flexibility of communication software since
services may be inserted and/or deleted at run-
time without terminating and/or restarting the en-
tire application. SunOS 5.x supports explicit dy-
namic linking via the dlopen/dlsym/dlclose
routines and Win32 supports this feature via the
LoadLibrary/GetProcAddress routines.

ACE provides theService Configurator class cat-
egory to encapsulate the explicit dynamic linking mecha-
nisms of SunOS within a set of classes and inheritance hier-
archies. TheService Configurator leverages upon
the other ACE components to extend the functionality of
conventional daemon configuration and control frameworks
[20] (such aslisten [3], inetd [2], and the Windows
NT Service Control Manager [37]) that provide au-
tomated support for (1) static and dynamic configuration of
concurrent, multi-service communication software, (2) mon-
itoring sets of communication ports for I/O activity, and (3)
dispatching incoming messages received on monitored ports
to the appropriate application-specified services. The re-
mainder of this section discusses the primary components in
theService Configurator class category.

3.4.1 The ACEServiceObject Inheritance Hierarchy

The primary unit of configuration in theService
Configurator is the service. A service may be sim-
ple (such as returning the current time-of-day) or highly
complex (such as a distributed, real-time router for PBX
event traffic [6, 38]). To provide a consistent environ-
ment for defining, configuring, and using communication
software, all application services are derived from the
ACEService Object inheritance hierarchy (illustrated
in Figure 8 (1)).

The ACEService Object class is the focal point
of a multi-level hierarchy of types related by inheritance.
The standard interfaces provided by the abstract classes
in this type hierarchy may be selectively implemented
by application-specific subclasses in order to access cer-
tain application-independentService Configurator
mechanisms. These mechanisms provide transparent dy-
namic linking, event handler registration, event demultiplex-
ing, and service dispatching. By decoupling the application-

11

1

1

1

1

Service
Config

REACTOR

n

Service
Repository

1

(2) The Service_Repository
Class

(3) The Service_Config
Class

Service
Repository

Service
Repository

Iterator

F

1

n

1

1

1

Service
Object

A

(1) Service_Object
Inheritance Hierarchy

Event
Handler

A

Shared
Object

A

Service
Object

Task

A

n

Service
Object

Event
Handler

APPLICATION-SPECIFIC

 FUNCTIONALITY

Task

A

Task

A
APPLICATION-

INDEPENDENT

FUNCTIONALITY

Figure 8: Component Relationships for theService Configurator Class Category

specific portions of a handler object from the underly-
ing application-independentService Configurator
mechanisms, the effort necessary to insert and remove ser-
vices from a running application is significantly reduced.

TheACEService Object inheritance hierarchy con-
sists of the ACEEvent Handler
and ACEShared Object abstract base classes, as well
as theACEService Object abstract derived class. The
ACEEvent Handler class was described above in Sec-
tion 3.2. The behavior of the other classes is outlined below.

� The ACE Shared Object Abstract Base Class: This
base class specifies an interface for dynamically link-
ing service handler objects into the address space of an
application. TheACEShared Object abstract base
class exports three abstract methods:init , fini ,
and info . These methods impose a contract between
the application-independent reusable components provided
by the Service Configurator and the application-
specific functionality that utilizes these components. By us-
ing abstract methods, theService Configurator en-
sures that a service handler implementation honors its obli-
gation to provide certain configuration-related information.
This information is subsequently used by theService
Configurator to automatically link, initialize, identify,
and unlink a service at run-time.

The ACEShared Object base class is defined inde-
pendently from theACEEvent Handler class to clearly
separate their two orthogonal sets of concerns. For example,
certain applications (such as a compiler or text editor) might
benefit from dynamic linking, though they might not require
communication port event demultiplexing. Conversely, other
applications (such as anftp server) may require event de-

multiplexing, but might not require dynamic linking. By sep-
arating these interfaces into two base classes, applications
are able to select a subset ofService Configurator
mechanisms without incurring unnecessary storage costs.

� The ACE ServiceObject Abstract Derived Class: In
general, installing and administering complex distributed
systems requires support for dynamic linking, event demul-
tiplexing, and service dispatching in order to automate the
dynamic configuration and reconfiguration of application
services. Therefore, theService Configurator de-
fines theACEService Object class, which combines
the interfaces from both theACEEvent Handler and the
ACEShared Object abstract base classes. The resulting
abstract derived class supplies an interface that developers
use as the basis for implementing and configuring a service
into theService Configurator .

During development, the application-specific subclasses
of ACEService Object must implement the ab-
stract suspend and resume methods specified by the
ACEService Object class interface. These methods are
invoked automatically by theService Configurator
in response to external events. An application developer may
control the actions the object undertakes in order to suspend
a service without removing and unlinking it completely, as
well as to resume a previously suspended service.

In addition, application-specific subclasses must also im-
plement the four abstract methods (init , fini , info ,
and get handle) that are inherited (but not defined) by
the ACEService Object subclass. Theinit method
serves as the entry-point to a service handler during run-
time initialization. This method is responsible for perform-
ing application-specific initialization when an instance of a

12

ACEService Object is dynamically linked. Likewise,
the fini method is called automatically by theService
Configurator when aACEService Object is un-
linked and removed from an application at run-time. This
method typically performs termination operations that re-
lease dynamically allocated resources (such as memory, I/O
handles, or synchronization locks). Theinfo method for-
mats a humanly-readablestring that concisely reports service
addressing information and documents service functionality.
Clients may query an application to retrieve this information
and use it to contact a particular service running in the ap-
plication. Finally, theget handle method is used by the
Reactor to extract the underlying I/O handle from a ser-
vice handler object. This I/O handle identifies a transport
endpoint that may be used to accept connections or receive
data from clients.

� Application-Specific Concrete Derived Subclasses:
Service Object is an abstract class since its interface
contains the abstract methods inherited from theEvent
Handler and Shared Object abstract base classes.
Therefore, developers must supply concrete subclasses that
(1) define the six abstract methods described above and (2)
implement the necessary application-specific functionality.
To accomplish the latter task subclasses typically define cer-
tain virtual methods exported by theService Object in-
terface. For example, thehandle input method is often
implemented to accept connections or data that are received
from clients.

TheACEAcceptor class depicted in Figure 8 (1) is an
example of an application-independent subclass that accepts
connection requests as part of a distributed logging facility.
This class is described further in the example presented in
Section 4.1.

3.4.2 The ACE ServiceRepository Class

The Service Configurator class category supports
the
configuration of both single-service and multi-service com-
munication software. Therefore, to simplify run-time admin-
istration, it is often necessary to individually and/or collec-
tively control and coordinate theACEService Object s
that comprise an application’s currently active1 services.
The ACEService Repository is an object manager
that coordinates local and remote queries involving the ser-
vices offered by aService Configurator -based ap-
plication. A search structure within the object manager
binds service names (represented as ASCII strings) with in-
stances ofACEService Object s (represented as object
code). A service name uniquely identifies an instance of a
ACEService Object stored in the repository.

Each entry in theACEService Repository con-
tains a pointer to theACEService Object portion of
an application-specific derived class (shown in Figure 8 (2)).
This enables theService Configurator to load, en-
able, suspend, resume, or unloadACEService Object s

<svc-config-entries> ::=
svc-config-entries svc-config-entry
| NULL

<svc-config-entry> ::= <dynamic> | <static>
| <suspend> | <resume> | <remove>
| <stream> | <remote>

<dynamic> ::= DYNAMIC <svc-location>
[<parameters-opt>]

<static> ::= STATIC <svc-name>
[<parameters-opt>]

<suspend> ::= SUSPEND <svc-name>
<resume> ::= RESUME <svc-name>
<remove> ::= REMOVE <svc-name>
<stream> ::= STREAM <stream_ops>

’{’ <module-list> ’}’
<stream_ops> ::= <dynamic> | <static>
<remote> ::= STRING ’{’ <svc-config-entry> ’}’
<module-list> ::= <module-list> <module>

| NULL
<module> ::= <dynamic> | <static>

| <suspend> | <resume> | <remove>
<svc-location> ::= <svc-name> <type>

<svc-initializer> <status>
<type> ::= SERVICE_OBJECT ’*’ | MODULE ’*’

STREAM ’*’ | NULL
<svc-initializer> ::= <object-name>

| <function-name>
<object-name> ::= PATHNAME ’:’ IDENT
<function-name> ::= PATHNAME ’:’ IDENT ’(’ ’)’
<status> ::= ACTIVE | INACTIVE | NULL
<parameters-opt> ::= STRING | NULL

Figure 9: EBNF Format for a Service Config Entry

Symbol Description

dynamic Dynamically link and enable a service
static Enable a statically linked service
remove Completely remove a service
suspend Suspend service without removing it
resume Resume a previously suspended service
stream Configure a Stream into a daemon

Table 1: Service Config Directives

from an application statically or dynamically. For dy-
namically linked ACEService Objects , the reposi-
tory also maintains a handle to the underlying shared ob-
ject file. This handle is used to unlink and unload a
ACEService Object from a running application when
the service it offers is no longer required.

An iterator class is also supplied in conjunction with the
ACEService Repository . This class is used to visit
everyACEService Object in the repository without un-
duly compromising data encapsulation.

3.4.3 The ACEServiceConfig Class

The ACEService Config class is the unifying com-
ponent in the Service Configurator framework.
As illustrated in Figure 8 (3), this class integrates
the otherService Configurator framework compo-
nents (such as theACEService Repository and the
ACEReactor) to automate the static and/or dynamic con-
figuration of concurrent, multi-service communication soft-
ware.

The ACEService Config class uses a configuration
file (known assvc.conf) to guide its configuration and re-

13

INITIALIZED

CONFIGURE/
Service_Config::process_directives()

NETWORK EVENT/
Reactor::dispatch()

RECONFIGURE/
Service_Config::process_directives()

SHUTDOWN/
Service_Config::close() AWAITING

EVENTS

START EVENT LOOP/
Service_Config::run_event_loop()

CALL HANDLER/
Event_Handler::handle_input()

IDLE

PERFORM
CALLBACK

Figure 10: State Transition Diagram for Service Configura-
tion, Execution, and Reconfiguration

configuration activities. Each application may be associated
with a distinctsvc.conf configuration file. Likewise, a
set of applications may be described by a singlesvc.conf
file. Figure 9 describes the primary syntactical elements
in a svc.conf file using extended-Backus/Naur Format
(EBNF). Eachservice config entryin the file begins with a
service config directivethat specifies the configuration activ-
ity to perform. Table 1 summarizes the valid service config
directives.

Each service config entry contains attributes that indicate
the location of the shared object file for each dynamically
linked service, as well as the parameters required to initialize
the service at run-time. By consolidating service attributes
and initialization parameters into a single configuration file,
the installation and administration of the services in an appli-
cation is significantly simplified. Thesvc.conf file helps
to decouple the structure of an application from the behavior
of its services. This decoupling also permits the “lazy” con-
figuration and reconfiguration of mechanisms provided by
the framework, based on the application-specific attributes
and parameters specified in thesvc.conf file.

Figure 10 depicts a state transition diagram illustrat-
ing the methods in theService Configurator class
category that are invoked in response to events occurring
during service configuration, execution, and reconfigura-
tion. For example, when theCONFIGURE and RECONFIG-
URE events occur, theprocess directives method of
the ACEService Config class is called to consult the
svc.conf file. This file is first consulted when a new in-
stance of a application is initially configured. The file is
consulted again whenever application reconfiguration is trig-
gered upon receipt of a pre-designated external event (such
as the UNIX SIGHUP signal or a notification arriving from
a socket).

3.5 Stream: Layered Serivce Integration

The Stream class category is the primary focal point of the
ADAPTIVE Communication Environment. This class cat-
egory contains the ADAPTIVE Service eXecutive (ASX)
framework [6] (ASX) framework, which integrates the lower-
level OO wrapper components (likeIPC SAP) and higher-
level class categories (like theReactor and theService
Configurator). The ASX framework helps to simplify
the development of hierarchically-integrated communica-
tion software, particularly user-level communication proto-
col stacks and network servers. TheASX framework is de-
signed to improve the modularity, extensibility, reusability,
and portability of both the application-specific services and
the underlying OS concurrency, IPC, explicit dynamic link-
ing, and demultiplexing mechanisms upon which these ser-
vices are built.

The ASX framework provides the following two benefits
to developers of communication software:

1. It embodies, encapsulates, and implements key de-
sign patternsthat are commonly used to develop com-
munication software. Design patterns help to en-
hance software quality by addressing fundamental chal-
lenges in large-scale system development. These chal-
lenges include communication of architectural knowl-
edge among developers; accommodating new de-
sign paradigms or architectural styles; resolving non-
functional forces such as reusability, portability, and ex-
tensibility; and avoiding development traps and pitfalls
that are usually learned only by experience.

2. It strictly separates key development concerns– ACE
separates communication software development into
two distinct categories: (1)application-independent
concerns, which are common to most or all com-
munication software (such as port monitoring; mes-
sage buffering, queueing, and demultiplexing; service
dispatching; local/remote interprocess communication;
concurrency control; and application configuration, in-
stallation, and run-time service management) and (2)
application-specific concerns, which depend on an in-
dividual application. By reusing the OO wrappers and
frameworks provided by ACE, developers are freed
from spending their time reinventing solutions to com-
monly recurring tasks. In turn, this enables them to con-
centrate on the key higher-level functional requirements
and design concerns that constitute particular applica-
tions.

3.5.1 Primary ASXFeatures

The ASX framework increases the flexibility of communi-
cation software by decoupling application-specific process-
ing policies from the following configuration-related devel-
opment activities and mechanisms:

� The type and number of services associated with each
application process: The ASX framework permits appli-

14

cations to consolidate one or more services into a single ad-
ministrative unit. This multi-service approach to configuring
communication software helps to (1) simplify development
and reuse code by performing common service initialization
activities automatically, (2) reduce the consumption of OS
resources (such as process table slots) by spawning service
handlers “on-demand,” (3) allow application services to be
updated without modifying existing source code or terminat-
ing an executing dispatcher process (such as theinetd su-
perserver), and (4) consolidate the administration of network
services via a uniform set of configuration management op-
erations.

� The point of time at which a service is configured
into an application: TheASXframework leverages off the
Service Configurator framework (described in Sec-
tion 3.4.1) to provide an extensible object-oriented interface
that automates the use of OS mechanisms for explicit dy-
namic linking. Dynamic linking enhances the extensibility
of communication software by permitting internal services
to be configured when an application first begins executing
or while it is running. This feature enables an application’s
services to be dynamic reconfiguredwithout requiring the
modification, recompilation, relinking, or restarting of active
services. In theASXframework, the choice between static or
dynamic configuration may selected on a per-service basis.
Furthermore, this choice may be deferred until an application
begins execution.

� The type of execution agents: In the ASX framework,
services may be performed at run-time via several different
types of process and thread execution agents. By decoupling
service functionality from the execution agent used to invoke
the service, theASX framework increases the range of ap-
plication concurrency configuration alternatives available to
developers.

An efficient application concurrency configuration often
depends upon certain service requirements and platform
characteristics. For example, a process-based configuration
may be appropriate for implementing long-duration services
(such as the Internetftp and telnet) that base their se-
curity mechanisms on process ownership. In this case, each
service (or each active instance of a service) may be mapped
onto a separate process and executed in parallel on a multi-
processor platform. Different configurations may be more
suitable in other circumstances, however. For instance, it is
often simpler and more efficient to implement cooperating
services (such as those found in end-systems of distributed
database engines) in separate threads since they frequently
reference common data structures. In this approach, each
service may be executed on a separate thread within the
same process to reduce the overhead of scheduling, context
switching, and synchronization [6].

� The order in which hierarchically-related services are
combined into an application: Complex services may be
composed using an interconnected series of independent ser-
vice objects that communicate by passing messages. These

objects may be joined together in essentially arbitrary con-
figurations to satisfy application requirements and enhance
component reuse.

� The I/O handle-based and timer-based event demulti-
plexing mechanisms: These mechanisms are used to dis-
patch incoming connection requests and data onto a pre-
registered application-specific handler. TheASXframework
uses theReactor class category to integrate the demulti-
plexing of I/O handle-based, timer-based, and signal-based
events via an extensible and type-safe object-oriented inter-
face.

� The underlying IPC mechanisms: Application services
may use theIPC SAP mechanisms described in Section 3.1
to exchange data with participating communication entities
on local or remote end-systems. Unlike the weakly-typed,
“handle-based” socket and TLI interfaces, theIPC SAP
wrappers enable applications to access the underlying OS
IPC mechanisms via a type-safe, portable interface.

The ASX framework incorporates concepts from several
modular communication frameworks including System V
STREAMS [39], thex-kernel [40], and the Conduit frame-
work [41] from the Choices object-oriented operating system
(a survey of these and other communication frameworks ap-
pears in [42]). These frameworks all contain features that
support the flexible configuration of communication subsys-
tems by inter-connecting “building-block” protocol and ser-
vice components. In general, these frameworks encourage
the development of standard communication-related com-
ponents (such as message managers, timer-based event dis-
patchers, demultiplexors [40], and assorted protocol func-
tions [43]) by decoupling processing functionality from the
surrounding framework infrastructure. As described below,
theASX framework contains additional features that further
decouple processing functionality from the underlying pro-
cess architecture.3

Unlike STREAMS, application services configured into
the ASX framework execute in user-space rather than in
kernel-space. There are several advantages to develop-
ing general-purpose communication software in user-space,
rather than within the OS kernel:

� Access to general OS features: Applications developed
to run in user-space have access to the full range of OS mech-
anisms (such as dynamic linking, memory-mapped files,
multi-threading, large virtual address spaces, interprocess
communication mechanisms, file systems, and databases). In
contrast, kernel-resident components are often restricted to a
limited set of kernel-specific mechanisms. Although there
are idioms that overcome some of these limitations (e.g.,
maintaining a user-level daemon that performs file I/O on
behalf of a kernel-resident component), these workarounds
tend to be somewhat inelegant and non-portable.

3A process architecture represents a binding between one or more CPUs
together with the application tasks and messages that implement services in
a communication system [6].

15

� Enhanced development environment: Higher-level
programming tools (such as symbolic debuggers) may be
used to develop applications in user-space. Conversely, de-
veloping network services within a OS kernel is a complex
and challenging task, due to the primitive debugging tools
and subtle timing interactions in a kernel programming envi-
ronment [44]. It is risky to expect application developers to
program effectively in such a constrained environment.

� Increased system robustness: Exceptional conditions
(such as dereferencing NULL pointers, dividing by 0, etc.)
generated in a user-level process or thread should only affect
the offending process or thread. However, exceptional con-
ditions within a OS kernel may cause the entire operating
system to panic and crash. Moreover, rebooting the OS after
every crash quickly becomes tedious.

� Portability: Porting kernel-level drivers between differ-
ent OS platforms (and even different variants of the same
OS platform) typically entails many more complications
than porting user-level application components between plat-
forms. The SunOS 5.x DDI/DKI API is intended to alle-
viate some of the portability problems on UNIX platforms,
but that does not solve the portability problem for applica-
tions running on other platforms such as OS/2, Windows NT,
VMS, and Novell Netware.

The primary rationale for implementing distributed ser-
vices in a OS kernel is to improve performance. For ex-
ample, a kernel-resident implementation of a communication
protocol stack often helps reduce scheduling, context switch-
ing, and protection-domain boundary crossing overhead and
may exhibit more predictable response time due to the use
of “wired” (rather than paged) memory. However, for many
communication software applications, the increased flexibil-
ity, simplicity, robustness, and portability offered by user-
space development are key requirements that offset potential
performance degradations.

3.5.2 Stream Class Category Components

Components in theStream class category are responsible
for coordinating the configuration and run-time execution of
one or moreACE Streamobjects. AnACEStream is an
object that user applications collaborate with to configure
and execute application-specific services in theASX frame-
work. As illustrated in Figure 3.5, anACEStream contains
a series of inter-connectedACEModule objects that may
be linked together by (1) developers at installation-time or
(2) applications at run-time.ACEModule s are objects used
to decompose the architecture of an application into a series
of inter-connected, functionally distinct layers. Each layer
typically implements a cluster of related service functional-
ity (such as an end-to-end transport service or a presentation
layer formatting service). EveryACEModule contains a
pair of ACETask objects that partition a layer into its con-
stituent read-side and write-side processing functionality.

OO language features (such as classes, inheritance, dy-
namic binding, and parameterized types) enable develop-

NETWORK INTERFACE

OR PSEUDO-DEVICES

STREAM
Tail

Multiplexor

APPLICATION

Stream

STREAM
Head

APPLICATION

Stream

U
P

S
T

R
E

A
MD

O
W

N
S

T
R

E
A

M
MESSAGEMESSAGE WRITEWRITE

TASKTASK

READREAD

TASKTASK
MODULEMODULE

open()=0
close()=0
put()=0
svc()=0

Figure 11: Components in theASXFramework

ers to incorporate application-specific functionality into a
Stream without modifying the application-independentASX
framework components. For example, adding a service
layer into a Stream involves (1) inheriting from the default
ACETask interface and selectively overriding several vir-
tual methods in the subclass to provide application-specific
functionality, (2) allocating a newACEModule that con-
tains two instances (one for the read-side and one for the
write-side) of the application-specificACETask subclass,
and (3) inserting theACEModule into a Stream. Services
in adjacent inter-connectedACETask s collaborate by ex-
changing typed messages via a message passing interface.

To avoid reinventing familiar terminology, many class
names in the Stream class category correspond to similar
componentry available in the System V STREAMS frame-
work [39]. However, the techniques used to support exten-
sibility and concurrency in the two frameworks are signif-
icantly different. For example, adding application-specific
functionality to theASX Stream classes is performed by
inheriting several well-defined interfaces and implementa-
tions from existing framework components. Using inheri-
tance to add new functionality provides greater type-safety
than the pointer-to-function techniques used in System V
STREAMS. TheASXStream classes also employ a differ-
ent concurrency control scheme to reduce the likelyhood
of deadlock and to simplify flow control betweenTask s
in a Stream. TheASXStream classes completely redesign
and reimplement the co-routine-based, “weightless”4 service

4A weightless process executes on a run-time stack that is also used by

16

processing mechanisms used in System V STREAMS [45].
TheseASXchanges are intended to utilize multiple PEs on a
shared memory multi-processor platform more effectively.

The remainder of this section discusses the primary com-
ponents of the Stream class category (e.g., ACEStream
class, theACEModule class, theACETask class in de-
tail:

� The ACE Stream Class: The ACEStream class de-
fines the application interface to a Stream. AnACEStream
object contains a stack of one or more hierarchically-related
services that provide applications with a bi-directional
get /put -style interface for sending and receiving data and
control messages through the inter-connectedModules that
comprise a particular Stream. TheACEStream class also
implements apush /pop -style interface that allows applica-
tions to configure a Stream at run-time by inserting and re-
moving objects of theACEModule class described below.

� The ACE Module Class: The ACEModule class de-
fines a distinct layer of application-specific functional-
ity. A Stream is formed by inter-connecting a series
of ACEModule objects. ACEModule objects in a
Stream are loosely coupled, and collaborate with adjacent
ACEModule objects by passing typed messages. Each
ACEModule object contains a pair of pointers to objects
that are application-specific subclasses of theACETask
class described shortly below.

As shown in Figure 3.5, two defaultACEModule ob-
jects (ACEStream Head and ACEStream Tail) are
installed automatically when a Stream is opened. These two
ACEModule s interpret pre-definedASX framework con-
trol messages and data messages that circulate through a
Stream at run-time. TheACEStream Head class provides
a message buffering interface between an application and a
Stream. TheACEStream Tail class typically transforms
incoming messages from a network or from a pseudo-device
into a canonical internal message format that may be pro-
cessed by higher-level components in a Stream. Likewise,
for outgoing messages it transforms messages from their in-
ternal format into network messages.

� The ACE Task Abstract Class: The ACETask class
is the central mechanism in ACE for creating user-defined
active objects[11] andpassive objectsthat process applica-
tion messages. An ACETask can perform the following
activities:

� Can be dynamically linked;

� Can serve as a demultiplexing endpoint for I/O opera-
tions;

� Can be associated with multiple threads of control (ı.e.,
become a so-called “active object”);

� Can store messages in a queue for subsequent process-
ing;

other processes, which complicates programming and increases the poten-
tial for deadlock. For example, a weightless process may not suspend exe-
cution to wait for resources to become available or events to occur.

� Can execute user-defined services.

The ACETask abstract class defines an interface that
is inherited and implemented by derived classes in order
to provide application-specific functionality. It is an ab-
stract class since its interface defines the abstract methods
(open , close , put , andsvc) described below. Defin-
ing ACETask as an abstract class enhances reuse by de-
coupling the application-independent components provided
by the ACEStream class category from the application-
specific subclasses that inherit from and use these compo-
nents. Likewise, the use of abstract methods allows the com-
piler to ensure that a subclass ofTask honors its obligation
to provide the following functionality:

� Initialization and Termination Methods– Subclasses
derived fromACETask must implementopen and
close methods that perform application-specific
ACETask initialization and termination activities.
These activities typically allocate and free resources
such as connection control blocks, I/O handles, and syn-
chronization locks.

ACETasks can be defined and used either to-
gether withACEModule s or separately. When used
with ACEModules they are stored in pairs: one
ACETask subclass handles read-side processing for
messages sent upstream to itsACEModule layer and
the other handles write-side processing messages send
downstream to itsModule layer. The open and
close methods of aModule ’s write-side and read-
side ACETask subclasses are invoked automatically
by theASX framework when theACEModule is in-
serted or removed from a Stream, respectively.

� Application-Specific Processing Methods– In addition
to open and close , subclasses ofACETask must
also define theput and svc methods. These meth-
ods perform application-specific processing functional-
ity on messages. For example, when messages arrive
at the head or the tail of a Stream, they are escorted
through a series of inter-connectedACETasks as a
result of invoking theput and/orsvc method of each
ACETask in the Stream.

A put method is invoked when aACETask at one
layer in a Stream passes a message to an adjacent
ACETask in another layer. Theput method runs
synchronouslywith respect to its caller,i.e., it borrows
the thread of control from theTask that originally in-
voked its put method. This thread of control typi-
cally originate either “upstream” from an application
process, “downstream” from a pool of threads that han-
dle I/O device interrupts [40], or internal to the Stream
from an event dispatching mechanism (such as a timer-
driven callout queue used to trigger retransmissions in a
connection-oriented transport protocolACEModule).

If an ACETask executes as apassive object(i.e.,
it always borrows the thread of control from the

17

SVC A

SVC B

SVC C

SVC A

SVC B

SVC C

2:svc()

1:put()

4:svc()

3:put()

2:put()

1:put()

(1) TASK-BASED
CONCURRENCY ARCHITECTURE

(2) MESSAGE-BASED
CONCURRENCY ARCHITECTURE

MSG

MSG MSG

MSG

MSG
MSG

MSG

Figure 12: Alternative Methods for Invokingput andsvc Methods

caller), then theACETask::put method is the en-
try point into theACETask and serves as the con-
text in which ACETask executes its behavior. In
contrast, if an ACEACETask executes as anactive
object the ACETask::svc method is used to per-
form application-specific processingasynchronously
with respect to otherACETask s. Unlike put , the
svc method is not directly invoked from an adja-
cent ACETask . Instead, it is invoked by a separate
thread associated with itsACETask . This thread pro-
vides an execution context and thread of control for the
ACETask ’s svc method. This method runs an event
loop that continuously waits for messages to arrive on
theACETask ’s ACEMessage Queue (see next bul-
let).

Within the implementation of aput or svc method, a
message may be forwarded to an adjacentACETask
in the Stream via theput next ACE Task utility
method.Put next calls theput method of the next
ACETask residing in an adjacent layer. This invo-
cation ofput may borrow the thread of control from
the caller and handle the message immediately (i.e.,
the synchronous processing approach illustrated in Fig-
ure 12 (1)). Conversely, theput method may enqueue
the message and defer handling to itssvc method that
is executing in a separate thread of control (i.e., the
asynchronous processing approach illustrated in Fig-
ure 12 (2)). As discussed in [6], the particular process-
ing approach that is selected has a significant impact on
performance and ease of programming.

� Message Queueing Mechanisms– In addition to the
open , close , put , andsvc abstract method inter-
faces, each
ACETask also contains anACEMessage Queue.
An ACEMessage Queue is a standard compo-
nent in ACE that is used pass information between

ACETasks . Moreover, when aACETask exe-
cutes as an active object, itsACEMessage Queue is
used to buffer a sequence of data messages and con-
trol messages for subsequent processing in thesvc
method. As messages arrive, thesvc method dequeues
the messages and performs theACETask subclass’s
application-specific processing tasks.

Two types
of messages may appear on aACEMessage Queue:
simple and composite. A simple message contains a
single ACEMessage Block and a composite mes-
sage contains multipleACEMessage Block s linked
together. Composite messages generally consist of a
control block followed by one or moredatablocks. A
control block contains bookkeeping information (such
as destination addresses and length fields), whereas data
blocks contain the actual contents of a message. The
overhead of passingACEMessage Block s between
Task s is minimized by passing pointers to messages
rather than copying data.

ACEMessage Queues contain a pair of high and low
water mark variables that are used to implement layer-
to-layer flow control between adjacentACEModules
in a Stream. The high water mark indicates the amount
of bytes of messages theACEMessage Queue is
willing to buffer before it becomes flow controlled. The
low water mark indicates the level at which a previously
flow controlledACETask is no longer considered to
be full.

4 ACE Examples

The ACE components are currently being used in several re-
search [46] and commercial environments [6, 38, 47] to en-
hance the configuration flexibility and software component

18

NETWORK

int spawn (void) {
 if (fork () == -1)
 Log_Msg::log (LOG_ERROR,
 "unable to fork in function spawn");

SERVER

CLIENT
CRIMEE

NAMED PIPE
CLIENT

LOGGING

DAEMON

P1

P3
P2

{
 if (Options::debugging)
 Log_Msg::log (LOG_DEBUG,
 "sending request to server %s",
 server_host);
 Comm_Manager::send (request, len);

HOST A HOST BCRIMEE ZOLA

SERVER LOGGING

DAEMON

STORAGE DEVICE

PRIN
TER

CLIENT
ZOLANAMED PIPE

CLIENT

LOGGING

DAEMON

P1

P3
P2

TC
P

 C
O

N
N

EC
TI

O
N

CONSOLE

Oct 29 14:50:13 1992@crimee.ics.uci.edu@22677@7@client-test::unable to fork in function spawn
Oct 29 14:50:28 1992@zola.ics.uci.edu@18352@2@drwho::sending request to server bastille
Oct 29 14:48:13 1992@crimee.ics.uci.edu@38491@7@client::unable to fork in function spawn

TCP CONNECTION

Figure 13: The Distributed Logging Facility

reuse of communication software that operate efficiently and
portably across multiple hardware and software platforms.
To illustrate how theASXframework is used in practice, this
section examines the architecture of two commercial appli-
cations currently being developed using ACE components: a
distributed logging facility and a distributed monitoring sys-
tem for telecommunication switch devices.

4.1 Distributed Logging Example

Debugging distributed communication software is frequently
challenging since diagnostic output appears in different win-
dows and/or on different remote host systems. Therefore,
ACE provides a distributed logging facility that simplifies
debugging and run-time tracing. This facility is currently
used in a commercial on-line transaction processing system
[14] to provide logging services for a cluster of worksta-
tions and multi-processor database servers in a high-speed
network environment.

As shown in Figure 13, the distributed logging facility al-
lows applications running on multiple client hosts to send
logging records to a server logging daemon running on a
designated server host. This section focuses on the ar-
chitecture and configuration of the server daemon portion
of the logging facility, which is based on theService
Configurator andACEReactor class categories pro-
vided by theASXframework. The complete design and im-
plementation of the distributed logging facility is described
in [10].

ServiceService
ConfiguratorConfigurator

StreamStream
ConnectionConnection

Logging

Acceptor

Logging_Handler
SOCK_Acceptor

Logging

Handler

SOCK_Stream
Null_Synch

Svc

HandlerAcceptor

SVC_HANDLER
PEER_ACCEPTOR

PEER_STREAM
SYNCH_STRAT

C
O

N
N

E
C

T
IO

N
-

O
R

IE
N

T
E

D

C
O

M
P

O
N

E
N

T
S

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

--
S

P
E

C
IF

IC
S

P
E

C
IF

IC

C
O

M
P

O
N

E
N

T
S

C
O

M
P

O
N

E
N

T
S

A
C

E
A

C
E

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

C
O

M
P

O
N

E
N

T
S

C
O

M
P

O
N

E
N

T
S

PEER

ACCEPTOR
PEER

STREAM

IPC_SAPIPC_SAP

ReactorReactor

ACTIVATES

1 n

ConcurrencyConcurrency

Figure 14: Class Components in the Server Logging Daemon

4.1.1 Server Logging Daemon Components

The server logging daemon is a concurrent, multi-service
daemon that processes logging records received from one
or more client hosts simultaneously. The object-oriented
design of the server logging daemon is decomposed into
several modular components (shown in Figure 14) that per-
form well-defined tasks. The application-specific compo-
nents (Logging Acceptor and Logging Handler)
are responsible for processing logging records received from
clients. The connection-oriented application components
(Acceptor and Client Handler) are responsible for
accepting connection requests and data from clients. Fi-
nally, the application-independent ASX framework compo-
nents (theACEReactor , Service Configurator ,
andIPC SAP class categories) are responsible for perform-
ing IPC, explicit dynamic linking, event demultiplexing, ser-
vice dispatching, and concurrency control.

The Logging Handler subclass is a parameterized
type that is responsible for processing logging records sent
to the server logging daemon from participating client hosts.
Its communication mechanisms may be instantiated with ei-
ther theSOCK SAPor TLI SAP wrappers, as follows:

class Logging_Handler : public Client_Handler <
#if defined (MT_SAFE_SOCKETS)

ACE_SOCK_Stream,
#else

ACE_TLI_Stream,
#endif /* MT_SAFE_SOCKETS */

ACE_INET_Addr>
{

/* ... */
};

The Logging Handler class inherits from Event
Handler (indirectly via Client Handler) rather than

19

Service Object since it is not dynamic linked into the
server logging daemon.

When logging records arrive from the client host as-
sociated with a particularLogging Handler object,
the ACEReactor automatically dispatches the object’s
handle input method. This method formats and dis-
plays the records on one or more output devices (such as the
printer, persistent storage, and/or console devices illustrated
in Figure 13).

TheLogging Acceptor subclass is also a parameter-
ized type that is responsible for accepting connections from
client hosts participating in the logging service:

class Logging_Acceptor :
public Client_Acceptor<Logging_Handler,

#if defined (MT_SAFE_SOCKETS)
ACE_SOCK_Acceptor,

#else
ACE_TLI_Acceptor,

#endif /* MT_SAFE_SOCKETS */
ACE_INET_Addr>

{
/* ... */

};

Since the Logging Acceptor
class inherits fromACEService Object (indirectly via
its ACEAcceptor base class), it may be dynamically
linked into the server logging daemon and manipulated
at run-time via the server logging daemon’ssvc.conf
configuration file. Likewise, sinceLogging Acceptor
indirectly inherits from theACEEvent Handler inter-
face, its handle input method will be invoked au-
tomatically by theACEReactor when connection re-
quests arrive from clients. When a connection request
arrives, the Logging Acceptor subclass allocates a
Logging Handler object and registers this object with
theACEReactor .

The modularity, reusability, and configurability of the dis-
tributed logging facility is significantly enhanced by de-
coupling the functionality of connection establishment and
logging record reception into the two distinct class hi-
erarchies shown in Figure 14. This decoupling allows
the ACEAcceptor class to be reused for other types of
connection-oriented services. In particular, to provide com-
pletely different processing functionality, only the behavior
of theACEClient Handler portion of the service would
need to be reimplemented. Furthermore, the use of parame-
terized types decouples the reliance on a particular type IPC
mechanism.

4.1.2 Server Logging Daemon Configuration

TheASX framework uses theService Configurator
to enable the dynamic and static configuration of logging ser-
vices into the server logging daemon. Dynamically config-
ured services may be inserted, modified, or removed at run-
time, thereby improving service flexibility and extensibility.
The following svc.conf file entry is used to to dynami-
cally configure the logging service into the server logging
daemon:

 Logging
Handler

 Service
Repository

 Service
Config

 Reactor

SERVER

SERVERSERVER

LOGGINGLOGGING

DAEMONDAEMON

 Service Service
ManagerManager

 Logging
Handler

 Logging
Acceptor

CONNECTION

REQUEST

REMOTE

CONTROL

OPERATIONS

CLIENT

LOGGING

RECORDS

CLIENT CLIENT
CLIENT

Figure 15: ACE Components in the Distributed Logging Fa-
cility

dynamic Logger Service_Object *
./Logger.so:_alloc() "-p 7001"

The <svc-name > token Logger specifies the ser-
vice name that is used at installation and run-time to
identify the correspondingService Object within the
ACEService Repository . Service Object *
is the return type of the alloc method that is lo-
cated in the shared object file indicated by the pathname
./Logger.so . TheService Configurator frame-
work locates and dynamically links this shared object file
into the logging daemon’s address space. The service lo-
cation also specifies the name of the application-specific
object derived fromService Object . In this case,
the alloc function is used to dynamically allocate a
newLogging Acceptor object. The remaining contents
on the line ("-p 7001") represent a application-specific
set of configuration parameters. These parameters are
passed to theinit method of the service asargc/argv -
style command-line arguments. Theinit method for the
Logging Acceptor class interprets"-p 7001" as the
port number where the server logging daemon listens for
client connection requests.

Statically configured services are always available to
a daemon when it first begins execution. For exam-
ple, the Service Manager is a standardService
Configurator framework component that clients use to
obtain a listing of active daemon services. The following en-
try in thesvc.conf file is used to statically configure the
Service Manager service into the server logging dae-

20

: Service
Config

L :
Logging_Handler

Logger
Daemon

REGISTER SERVICE

A :
Logging Acceptor

START EVENT LOOP

CONNECTION EVENT

DATA EVENT

REGISTER NEW HANDLER

FOR CLIENT I/O

PROCESS LOGGING

RECORD

register_handler(A)

: Reactor

run_event_loop()

handle_events()
FOREACH EVENT DO

handle_input()

L = new Logging_Handler
L.open (A);
register_handler(L)

handle_input()

write()

LOAD SERVICE

CONFIGURE

FOREACH SVC ENTRY DO

open()

: Service
Repository

process_directives()

load_service()

Figure 16: Interaction Diagram for the Server Logging Daemon

mon during initialization:

static ACE_Svc_Manager "-p 911"

In order for thestatic directive to work, the object
code that implements theACESvc Manager service must
be statically linked together with the main daemon driver
executable program. In addition, theACESvc Manager
object must be inserted into theService Repository
before dynamic configuration occurs (this is done automati-
cally by theACEService Config constructor). Due to
these constraints, a statically configured service may not be
reconfigured at run-time without being removed from the
Service Repository first.

The main driver program for the server logger daemon is
implemented by the following code:

int
main (int argc, char *argv[])
{

ACE_Service_Config loggerd;

// Configure server logging daemon.
if (loggerd.open (argc, argv) == -1)

return -1;

// Perform logging service.
loggerd.run_reactor_event_loop ();
return 0;

}

Figure 16 depicts the run-time interaction between the vari-
ous framework and application-specific objects that collabo-
rate to provide the logging service. Daemon configuration is
performed in theACEService Config::open method.
This method consults the followingsvc.conf file, which
specifies the services to configure into the daemon:

static ACE_Svc_Manager -p 911
dynamic Logger Service_Object *

./Logger.so:_alloc() "-p 7001"

Each of the service config entries in thesvc.conf file is
pro-
cessed by inserting the designatedACEService Object

into theACEService Repository and registering the
ACEEvent Handler portion of the service object handler
with theACEReactor .

When all the configuration activities have been com-
pleted, the main driver program shown above in-
vokes the run reactor event loop method of the
ACEService Config . This method enters an event loop
that
continuously calls theACEReactor::handle events
service dispatch method. As shown in Figure 10, this dis-
patch function blocks awaiting the occurrence of events
(such as connection requests or I/O from clients). As these
events occur, theACEReactor automatically dispatches
previously-registered event handlers to perform the desig-
nated application-specific services.

TheASXframework also responds to external events that
trigger daemon reconfiguration at run-time. The dynamic
configuration steps outlined above are performed whenever
an executingASX-based daemon receives a pre-designated
external event (such as the UNIX SIGHUP signal). Depend-
ing on the updated contents of thesvc.conf file, services
may be added, suspended, resumed or removed from the dae-
mon.

The ASX framework’s dynamic reconfiguration mecha-
nisms enable developers to modify server logging daemon
functionality or fine-tune performance without extensive re-
development and reinstallation effort. For example, debug-
ging a faulty implementation of the logging service simply
requires the dynamic reinstallation of a functionally equiva-
lent service that contains additional instrumentation to help
isolate the source of erroneous behavior. Note that this re-
installation process may be performed without modifying,
recompiling, relinking, or restarting the currently executing
server logging daemon.

21

4.2 Distributed PBX Monitoring System

Figure 17 illustrates the client/server architecture of a private
branch exchange (PBX) telecommunication switch monitor-
ing system implemented usingASXframework components
[20]. In this distributed communication system, the server
receives and processes status information generated by one
or more PBXs attached to the server via a high-speed com-
munication link. The server transforms and forwards this sta-
tus information across a network to client end-systems that
graphically display the information to end-users. End-users
are typically supervisors who use the PBX status informa-
tion to monitor the performance of personnel and forecast
the allocation of resources to meet customer demands.

The PBX devices attached to the server are con-
trolled by the Device Adapter ACE Module . This
ACEModule shields the rest of the server from PBX-
specific communication characteristics. The read-side of the
Device Adapter ACE Module maintains a collection of
Device Handler objects (one per-PBX) that are respon-
sible for parsing and transforming incoming device events
into a canonical PBX-independent message object built atop
a flexible message management class described in [6].

After being initialized, incoming canonical message ob-
jects are passed to the read-side of theEvent Analyzer
ACEModule . This Module implements the application-
specific functionality for the server. An internal addressing
table maintained within theEvent Analyzer is used to
determine which client(s) should receive each message ob-
ject. After theEvent Analyzer determines the proper
destination(s), the message object is forwarded to the read-
side of theMulticast Router ACE Module .

The Multicast Router ACE Module is a reusable
component that shields the rest of the application-specific
server code from knowledge of the client/server interactions
and from the particular choice of communication protocols.
Clients subscribe to receive events published by the server by
establishing a connection with theMulticast Router
ACEModule . The write-side of theMulticast Router
ACEModule accepts connection requests from clients and
creates a separateClient Handler object to manage
each client connection. ThisClient Handler object han-
dles all subsequent data transfer and control operations be-
tween the server and its associated client. Once a client
has connected with the server, it indicates the type of PBX
event(s) it is interested in monitoring. From that point, when
the read-side of theMulticast Router receives a mes-
sage object from theEvent Analyzer , it automatically
multicasts the message to all clients that have subscribed to
receive the particular type of event encapsulated in the mes-
sage object.

The ACEService Config object is used by the
server to control the initialization and termination of
StreamACEModule components that are configured stat-
ically at installation-time or dynamically during run-time.
The ACEService Config object contains an instance
of the ACEReactor event demultiplexor that is used

: Reactor

: Service
Repository

: Service
Config

CCM
Stream

: Event
Filter

ASX RUN-TIME: Switch
Handler

: Switch
Handler

: Session
Handler

: Session
Handler

: Session
Handler

TELECOM
SWITCHES

SUPER-
VISOR

EVENT
SERVER

SUPER-
VISOR

SUPER-
VISOR

: Session
Router

: Switch
Adapter

: Event
Analyzer

u
p
st
re
a
m

d
o
w
n
st
re
a
m

Figure 17:ASXComponents for the PBX Application

to dispatch incoming client messages to the appropri-
ate Client Handler or Device Handler event han-
dler. Control messages arriving from clients are sent
down the write-side of the Stream, starting with the
Multicast Router and continuing through the inter-
connected write-side of the StreamACEModule s to the
Device Adapter , which sends them to the appropriate
PBX device. Likewise, theReactor detects incoming
events from PBX devices and dispatches them up the Stream
starting at theDevice Adapter ACE Module .

4.3 Server Configuration

The ACEModule s that comprise the PBX server may be
configured into the server at any time. TheASX framework
provides this degree of flexibility via the use of explicit dy-
namic linking driven by thesvc.conf configuration script.
The following configuration script indicates which services
are to be dynamically linked into the address space of the
server:

stream Server_Stream dynamic
STREAM * /svcs/Server_Stream.so : _alloc()

{
dynamic Device_Adapter

Module * /svcs/DA.so:_alloc() "-p 2001"
dynamic Event_Analyzer

Module * /svcs/EA.so:_alloc()
dynamic Multicast_Router

Module * /svcs/MR.so:_alloc() "-p 2010"
}

22

This configuration script indicates the order in which the
hierarchically-related services are dynamically linked and
pushed onto theServer Stream . During application ini-
tialization, theService Config class parses this config-
uration script and carries out the directives that describe each
entry.

The Server Stream is
composed of threeACEModule s (theDevice Adapter ,
the Event Analyzer , and theMulticast Router)
that are dynamically configured into the server. The indi-
cated shared object file is linked dynamically into the server
(as specified by thedynamic directive). An instance of
Module object is then extracted from the shared object li-
brary by calling the alloc function. As described be-
low, theseModule s may be subsequently updated and re-
linked if necessary (e.g., to install an updated version of a
ACEModule) without completely terminating the execut-
ing PBX server.

4.4 Server Reconfiguration

There are a number of drawbacks associated with statically
configuring services into a communication software applica-
tion. For example, performance bottlenecks may result if too
many services are configured into the server-side an applica-
tion and too many active clients simultaneously access these
services. Conversely, configuring too many services into the
client-side may also result in bottlenecks since clients often
execute on less powerful end-systems. In general, it is diffi-
cult to determine the appropriate partitioning of application
servicesa priori since processing characteristics and work-
loads may vary over time. Therefore, a primary objective of
the ASX framework was to develop object-oriented service
configuration mechanisms that allow developers to defer un-
til very late in the development cycle (i.e., installation-time
or run-time) decisions regarding which services ran in the
client-side and which ran in the server-side.

To facilitate flexible reconfiguration, the run-time control
environment provided by theASX framework enables de-
velopers to alter their application service configurations ei-
therstaticallyat installation-time ordynamicallyduring run-
time. This is useful since different OS/hardware platforms
and different network characteristics often require different
service configurations. For example, in some configurations
the server performs most of the work, whereas in others the
clients do more of the work. Moreover, different end-system
configurations may be appropriate under different circum-
stances (such as whether multi-processor server platforms or
high-speed networks are available). Figure 18 illustrates how
the configuration shown in Figure 17 may be altered to oper-
ate efficiently in a distributed environment where the server
processing constitutes the primary bottleneck.

This reconfiguration process is accomplished via the fol-
lowing script:

suspend Server_Stream
stream Server_Stream
{

TELECOM
SWITCHES

: Event
Filter

: Session
Handler

: Session
Handler

: Session
Handler CCM

Stream: Session
Router

: Switch
Adapter

ASX RUN-TIME

: Reactor

: Service
Repository

: Service
Config

SUPER-
VISOR

SUPER-
VISOR

: Switch
Handler

: Switch
Handler

: Event
Analyzer

u
p
st
re
a
m

d
o
w
n
st
re
a
m

: Event
Filter: Event

Filter

SUPER-
VISOR

EVENT
SERVER

Figure 18: Reconfiguration of PBX Monitoring System

remove Event_Analyzer
}
remote "-h all -p 911"
{

stream Server_Stream
{

dynamic Event_Analyzer
Module * /svcs/EA.so : _alloc()

}
}
resume Server_Stream

This new script migrates processing functionality from
the server to the clients by dynamically unlinking
ACEModule s from the server’s Stream and dynamically
linking them into each client’s Stream [20].

TheASXframework replaced a previous architecture that
used ad hoc techniques (such as parameter passing and
shared memory) to exchange messages between related ser-
vices in the server. In contrast to the previous approach, the
highly uniformACEModule inter-connection mechanisms
provided by theASXframework greatly simplify portability
and configurability.

5 Concluding Remarks

The ADAPTIVE Communication Environment (ACE) is a
toolkit containing OO components that help reduce dis-
tributed software complexity by reifying successful design
patterns and software architectures. ACE consolidates com-
mon communication-related activities (such as local and re-

23

mote IPC [4], event demultiplexing and service handler dis-
patching [14], service initialization [16, 17] configuration
mechanisms for distributed applications containing mono-
lithic and layered services [20], distributed logging [13], and
intra- and inter-service concurrency [46]) into reusable OO
components and frameworks.

ACE is freely available via the World Wide Web at URL
www.cs.wustl.edu/˜schmidt/ACE.html . This
distribution contains the source code, documentation, and
example test drivers developed at Washington University, St.
Louis. ACE is currently being used in communication soft-
ware at many companies including Bellcore, Siemens, DEC,
Motorola, Ericsson, Kodak, and McDonnell Douglas. ACE
has been ported to Win32 (i.e., WinNT and Win95), most
versions of UNIX (e.g., SunOS 4.x and 5.x, SGI IRIX, HP-
UX, OSF/1, AIX, Linux, and SCO), and POSIX systems
(such as VxWorks and MVS OpenEdition). There are both
C++ [6] and Java [48] versions of ACE available.

References
[1] F. P. Brooks, The Mythical Man-Month. Reading, MA:

Addison-Wesley, 1975.

[2] S. J. Leffler, M. McKusick, M. Karels, and J. Quarterman,The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

[3] S. Rago,UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[4] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the1st Conference on Object-
Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

[5] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1994.

[6] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[7] D. E. Comer and D. L. Stevens,Internetworking with TCP/IP
Vol III: Client – Server Programming and Applications. En-
glewood Cliffs, NJ: Prentice Hall, 1992.

[8] W. R. Stevens,UNIX Network Programming, First Edition.
Englewood Cliffs, NJ: Prentice Hall, 1990.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[10] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design(J. O.
Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading, MA:
Addison-Wesley, 1995.

[11] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” inPattern
Languages of Program Design(J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[12] R. Johnson and B. Foote, “Designing Reusable Classes,”
Journal of Object-Oriented Programming, vol. 1, pp. 22–35,
June/July 1988.

[13] D. C. Schmidt, “The Reactor: An Object-Oriented Interface
for Event-Driven UNIX I/O Multiplexing (Part 1 of 2),”C++
Report, vol. 5, February 1993.

[14] D. C. Schmidt, “The Object-Oriented Design and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX I/O Multi-
plexing (Part 2 of 2),”C++ Report, vol. 5, September 1993.

[15] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Asynchronous
Completion Token: an Object Behavioral Pattern for Effi-
cient Asynchronous Event Handling,” inThe3rd Annual Con-
ference on the Pattern Languages of Programs (Washington
University technical report #WUCS-97-07), (Monticello, Illi-
nois), pp. 1–7, February 1997.

[16] D. C. Schmidt, “Design Patterns for Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,”
C++ Report, vol. 7, November/December 1995.

[17] D. C. Schmidt, “Connector: a Design Pattern for Actively
Initializing Network Services,”C++ Report, vol. 8, January
1996.

[18] D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” inThe1

st European
Pattern Languages of Programming Conference (Washington
University technical report #WUCS-97-07), July 1997.

[19] D. C. Schmidt, “IPCSAP: An Object-Oriented Interface to
Interprocess Communication Services,”C++ Report, vol. 4,
November/December 1992.

[20] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,”IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[21] P. Jain and D. C. Schmidt, “Service Configurator: A Pat-
tern for Dynamic Configuration and Reconfiguration of Com-
munication Services,” inThe3rd Pattern Languages of Pro-
gramming Conference (Washington University technical re-
port #WUCS-97-07), February 1997.

[22] D. C. Schmidt, “An OO Encapsulation of Lightweight OS
Concurrency Mechanisms in the ACE Toolkit,” Tech. Rep.
WUCS-95-31, Washington University, St. Louis, September
1995.

[23] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current I/O,” inPattern Languages of Program Design(J. O.
Coplien, J. Vlissides, and N. Kerth, eds.), Reading, MA:
Addison-Wesley, 1996.

[24] D. C. Schmidt and T. Harrison, “Double-Checked Locking
– An Object Behavioral Pattern for Initializing and Access-
ing Thread-safe Objects Efficiently,” inThe3rd Pattern Lan-
guages of Programming Conference (Washington University
technical report #WUCS-97-07), February 1997.

[25] Bjarne Stroustrup and Margret Ellis,The Annotated C++ Ref-
erence Manual. Addison-Wesley, 1990.

[26] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,”USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[27] R. Davis, Win32 Network Programming. Reading, MA:
Addison-Wesley, 1996.

[28] D. L. Presotto and D. M. Ritchie, “Interprocess Communica-
tion in the Ninth Edition UNIX System,”UNIX Research Sys-
tem Papers, Tenth Edition, vol. 2, no. 8, pp. 523–530, 1990.

24

[29] W. R. Stevens,Advanced Programming in the UNIX Environ-
ment. Reading, Massachusetts: Addison Wesley, 1992.

[30] R. Gingell, J. Moran, and W. Shannon, “Virtual Memory Ar-
chitecture in SunOS,” inProceedings of the Summer 1987
USENIX Technical Conference, (Phoenix, Arizona), 1987.

[31] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedings of the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[32] IEEE, Threads Extension for Portable Operating Systems
(Draft 10), February 1996.

[33] D. C. Schmidt, “Transparently Parameterizing Synchroniza-
tion Mechanisms into a Concurrent Distributed Application,”
C++ Report, vol. 6, July/August 1994.

[34] G. Booch and M. Vilot, “Simplifying the Booch Compo-
nents,”C++ Report, vol. 5, June 1993.

[35] R. Gingell, M. Lee, X. Dang, and M. Weeks, “Shared
Libraries in SunOS,” inProceedings of the Summer 1987
USENIX Technical Conference, (Phoenix, Arizona), 1987.

[36] W. W. Ho and R. Olsson, “An Approach to Genuine Dy-
namic Linking,” Software: Practice and Experience, vol. 21,
pp. 375–390, Apr. 1991.

[37] H. Custer,Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[38] D. C. Schmidt and P. Stephenson, “Experiences Using Design
Patterns to Evolve System Software Across Diverse OS Plat-
forms,” in Proceedings of the9th European Conference on
Object-Oriented Programming, (Aarhus, Denmark), ACM,
August 1995.

[39] D. Ritchie, “A Stream Input–Output System,”AT&T Bell
Labs Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[40] N. C. Hutchinson and L. L. Peterson, “Thex-kernel: An Ar-
chitecture for Implementing Network Protocols,”IEEE Trans-
actions on Software Engineering, vol. 17, pp. 64–76, January
1991.

[41] J. M. Zweig, “The Conduit: a Communication Abstraction in
C++,” in Proceedings of the2nd USENIX C++ Conference,
pp. 191–203, USENIX Association, April 1990.

[42] D. C. Schmidt and T. Suda, “Transport System Architecture
Services for High-Performance Communications Systems,”
IEEE Journal on Selected Areas in Communication, vol. 11,
pp. 489–506, May 1993.

[43] D. C. Schmidt, B. Stiller, T. Suda, A. Tantawy, and M. Zit-
terbart, “Language Support for Flexible, Application-Tailored
Protocol Configuration,” inProceedings of the18th Con-
ference on Local Computer Networks, (Minneapolis, Min-
nesota), pp. 369–378, IEEE, Sept. 1993.

[44] A. McRae, “Hardware Profiling of Kernels,” inUSENIX Win-
ter Conference, (San Diego, CA), USENIX Association, Jan.
1993.

[45] S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Krish-
nan, “Pitfalls in Multithreading SVR4 STREAMS and other
Weightless Processes,” inProceedings of the Winter USENIX
Conference, (San Diego, CA), pp. 85–106, Jan. 1993.

[46] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration,
and eValuation Environment,”Journal of Concurrency: Prac-
tice and Experience, vol. 5, pp. 269–286, June 1993.

[47] D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,”The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2,
no. 1, 1996.

[48] P. Jain and D. Schmidt, “Experiences Converting a C++
Communication Software Framework to Java,”C++ Report,
vol. 9, January 1997.

25

