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ABSTRACT† 
Recent trends in distributed real-time and embedded (DRE) systems motivate the development of tactical information 
management capabilities that ensure the right information is delivered to the right place at the right time to satisfy quality 
of service (QoS) requirements in heterogeneous environments. A promising approach to building and evolving large-
scale and long-lived tactical information management systems are standards-based QoS-enabled publish/subscribe 
(pub/sub) platforms that enable applications to communicate by publishing information they have and subscribing to 
information they need in a timely manner. Since there is little existing evaluation of how well these platforms meet the 
performance needs of tactical information management, this paper provides two contributions: (1) it describes three com-
mon architectures for the OMG Data Distribution Service (DDS), which is a QoS-enabled pub/sub platform standard, 
and (2) it evaluates three implementations of these architectures to investigate their design tradeoffs and to compare their 
performance. Our results show that DDS implementations perform well in general and are well-suited for certain classes 
of data-critical tactical information management systems.   
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1. INTRODUCTION 
Mission-critical tactical information management systems run increasingly often in net-centric environments that are 
characterized by thousands of platforms, sensors, decision nodes, and computers connected together to exchange infor-
mation, support collaborative decision making, and effect changes in the physical environment. For example, the Global 
Information Grid (GIG) [11] is designed to ensure that the right information gets to the right place at the right time by 
satisfying end-to-end quality of service (QoS) requirements, such as latency, jitter, throughput, dependability, and 
scalability.  Tactical information management systems often have many applications per computing node, where the 
failure of one application should not degrade other applications. These applications often require point-to-multipoint 
communication mechanisms to distribute data from suppliers to multiple consumers. There are often multiple high-
priority and low-priority datastreams running in parallel, where the high-priority data must pre-empt low-priority data. 

A promising infrastructure for such tactical information management systems is QoS-enabled publish/subscribe 
(pub/sub) middleware that provides:  

 Location-independent, universal access to information from a wide variety of sources running over a multitude of 
hardware/software platform and network deployments. 

 An orchestrated information environment that aggregates, filters, and prioritizes the delivery of this information to 
work effectively under the restrictions of transient and enduring computing and communication resource constraints.  

 Continuous adaptation to changes in the operating environment, such as dynamic network topologies, publisher and 
subscriber membership changes, reprioritization in information importance, and intermittent connectivity. 

 Various QoS parameters and mechanisms that enable applications and administrators to customize the way infor-
mation is delivered, received, and processed in the appropriate form and level of detail to users at multiple levels in a 
tactical information management system.  

Conventional Service-Oriented Architecture (SOA) middleware platforms have had limited success in providing these 
capabilities, due to their lack of support for data-centric QoS mechanisms. For example, the Java Messaging Service for 
Java 2 Enterprise Edition (J2EE) is a SOA middleware platform that is not well-suited for tactical information 
management environments due to its limited QoS support, lack of real-time operating system integration, and high 

                                                 
† This work was sponsored in part by the AFRL/IF Pollux project and Vanderbilt University’s Summer Undergraduate Research 
program. 



 

 

time/space overhead. Even conventional QoS-enabled SOA middleware, such as Real-time CORBA [9], is poorly suited 
for dynamic data dissemination between many publishers and subscribers due to excessive layering, extra time/space 
overhead, and inflexible QoS policies. 

To address these limitations—and to better support tactical information management—the OMG Data Distribution Ser-
vice (DDS) [6] specification has emerged as a standard for QoS-enabled pub/sub communication aimed at mission-
critical tactical information management systems. It is designed to provide (1) location independence via anonymous 
pub/sub protocols that enable communication between collocated or remote publishers and subscribers, (2) scalability by 
supporting large numbers of topics, data readers, and data writers, and (3) platform portability and interoperability via 
standard interfaces and transport protocols. Multiple implementations of DDS are now available, ranging from high-end 
COTS products [4] to open-source community-supported projects. DDS is used in a wide range of distributed real-time 
and embedded (DRE) systems, including traffic monitoring [14], control of unmanned vehicle communication with 
ground stations [16], and semiconductor fabrication devices [15].  

Although DDS is designed to be scalable, efficient, and predictable, few researchers have evaluated and compared the 
performance of DDS implementations empirically for common tactical information management scenarios. This paper 
addresses this gap in the literature by describing the results of the Pollux project, which is an ongoing R&D activity 
aimed at evaluating a range of pub/sub platforms to compare how their architecture and design features affect their 
performance and suitability for tactical information management. This paper also describes the design and application of 
an open-source DDS benchmarking environment we developed in Pollux to automate the comparison of pub/sub latency, 
jitter, throughput, and scalability. 

The remainder of this paper is organized as follows: Section 2 summarizes the DDS specification and the architectural 
differences of three popular DDS implementations; Section 3 describes the hardware configurations of our testbed and 
introduces an open-source DDS Benchmark Environment (DBE); Section 4 analyzes the results of benchmarks con-
ducted using DBE; Section 5 compares our work with related research on performance evaluation of pub/sub platforms; 
and Section 6 presents concluding remarks. 

2. OVERVIEW OF DDS 
2.1 Core Features and Benefits of DDS 
The OMG Data Distribution Service (DDS) specification provides a data-centric communication standard for a range of 
DRE computing environments, from small networked embedded systems to large-scale information backbones. At the 
core of DDS is the Data-Centric Publish-Subscribe (DCPS) model, whose specification defines standard interfaces that 
enable applications running on heterogeneous platforms to write/read data to/from a virtual global data space in a DRE 
system. Applications willing to share information can use this data space to declare their intent to publish data that is 
categorized into one or more topics of interest to others. Similarly, applications that are interested in certain topics can 
use the data space to declare their intent to become subscribers and access the data.  
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Fig. 1. Architecture of DDS 

The underlying DCPS middleware propagates data samples written by publishing applications into the global data space, 
where they are disseminated to subscribing applications [6]. The DCPS model decouples the declaration of information 
access intent from the information access itself [4], thereby enabling the DDS middleware to support and optimize QoS-



 

 

enabled communication. As shown in Fig. 1, a canonical DCPS model is comprised of the following elements that 
provide functionalities for a DDS application to publish/subscribe to data samples of interest. 

 Domain. DDS applications send and receive data within a Domain. A Domain is a virtual space that connects certain 
publishing and subscribing applications. Only applications within the same domain can communicate, and this 
restriction helps isolate and optimize communication within a community that shares common interests. Note that 
although only one domain is shown in Fig. 1, a system can be divided into as many domains as needed to meet system 
requirements. 

 Entity. Within a domain, DDS defines an abstract element called Entity, which contains a few generic operations that 
it passes to the elements listed below that specialize it. All entities have associated QoS policies, initialized to default 
values unless explicitly modified. 

 DomainParticipant.  Created by a singleton factory, a DomainParticipant is the application’s access point to a 
Domain. Applications use DomainParticipants to create Topics, Publishers, and Subscribers, which are described next. 

o Publisher. A Publisher creates and manages one or more DataWriter entities  
o Subscriber. A Subscriber creates and manages one or more DataReader entities.. 
o DataWriter. A DataWriter is the actual object used to send data samples, and is always associated with a 

particular Topic. 
o DataReader. A DataReader is the actual object used to receive data samples, and is always associated with a 

particular Topic. 
o Topic. A Topic consists of a data type and a name, and it connects a DataWriter with a DataReader. Data samples 

start flowing only when the Topic associated with a DataWriter matches the Topic associated with a DataReader.  
 
The DCPS middleware layer is responsible for marshaling/de-marshaling and sending/receiving the data to/from the 
virtual global data space using standard DDS transports, such as UDP or other protocols like shared memory. 
Applications simply use the DDS entities outlined above to read/write data from/to the global data space without having 
to wrestle with low-level implementation details, and without having to know which, or how many, entities are at the 
other end of the data transfer. 

Compared with conventional client/server-based SOA middleware that is designed to support the requirements of 
business systems, DDS is data-oriented and designed to support applications with DRE QoS requirements. Since DDS 
focuses on data rather than object interfaces, the DDS standard can be implemented in a more flexible way to make the 
data transmission more efficient, e.g., it can maximize throughput and minimize latency and jitter in a tactical network 
environment.  

For example, unlike CORBA pub/sub services such as its Event and Notification Services, DDS does not implement its 
capabilities as a layer built on top of an object request broker, which helps reduce transmission latency and jitter. 
Another DDS capability that distinguishes it from conventional SOA middleware is its support of nearly two dozen QoS 
policies to control many aspects of data delivery and quality, including:  

• The lifetime of each data sample, i.e., whether the data is destroyed after being sent, kept available during the pub-
lisher’s lifetime, or allowed to stay persistent for a specified duration after the publisher shuts down. 

• The degree and scope of coherency for information updates, i.e., whether a group of updates can be received as a unit 
and in the order in which they were sent. 

• The frequency of information updates, i.e., the rate at which updated values are sent or received. 
• The maximum latency of data delivery, i.e., a bound on the acceptable interval between the time data is sent and the 

time it is received 
• The priority of data delivery, i.e., the priority used by the underlying transport to deliver the data. 
• The reliability of data delivery, i.e., whether missed deliveries will be retried. 
• How to arbitrate simultaneous modifications to shared data by multiple writers, i.e., to determine which modification 

to apply. 
• Mechanisms to assert and determine liveliness, i.e., whether or not a publish-related entity is active. 
• Parameters for filtering by data receivers, i.e., determine which data values are accepted and which are rejected. 
• The duration of data validity, i.e., the specification of an expiration time for data to avoid delivering “stale” data. 



 

 

• The depth of the ‘history’ included in updates, i.e., how many prior updates will be available at any time, e.g., ‘only 
the most recent update,’ ‘the last n updates,’ or ‘all prior updates’. 

 
These DDS QoS policies can be configured at various levels of granularity (i.e., topics, publishers, data writers, subscrib-
ers, and data readers), thereby allowing application developers to construct customized contracts based on the specific 
QoS requirements of individual use cases. Since the identity of publishers and subscribers are unknown to each other, the 
DDS middleware is responsible for determining whether QoS policies offered by a publisher are compatible with those 
required by a subscriber, allowing data distribution only when compatibility is satisfied. 

2.2 Overview of DDS Implementation Architectures 
As outlined in Section 2.1, the DDS specification defines a wide range of QoS policies and interfaces used to exchange 
data samples between entities. The specification intentionally does not address how to implement the services or manage 
DDS resources internally, so DDS providers are free to innovate. Naturally, the communication models, distribution 
architectures, and implementation techniques used by DDS providers significantly impact application behavior and QoS, 
i.e., different choices affect the suitability of DDS implementations and configurations for various types of tactical 
information management applications. 

Table 1. Supported DDS Communication Models 

Impl Unicast Multicast Broadcast 
DDS1 Yes (default) Yes No 
DDS2 No Yes Yes (default) 
DDS3 Yes (default) Yes No 

By design, DDS specification allows implementations and applications to take advantage of various communication 
models, such as unicast, multicast, and broadcast transports. The communication models supported for the three DDS 
implementations we evaluated are shown in Table 1 (the specific DDS product names are “shrouded” pending final 
approval from the companies that produce them). DDS1 and DDS3 support unicast and multicast, whereas DDS2 
supports multicast and broadcast. These DDS implementations all use layer 3 network interfaces (IP multicast and 
broadcast) to handle the network traffic for different communication models, rather than more scalable multicast 
protocols, such as Richocet [5], which combine native IP group communication with proactive forward error correction 
to achieve high levels of consistency with stable and tunable overhead. Each DDS implementation has a different 
architectural design, as described in the remainder of this section. 

2.2.1 Federated Architecture 
The federated DDS architecture shown in Fig. 2 uses a separate daemon process for each network interface. These 
daemons are typically started when the nodes are booted and must be initialized before entities in the domain can 
communicate.  

 
Fig. 2. Federated DDS Architecture 

Once started, each daemon communicates with others and establishes data channels based on reliability requirements 
(e.g., reliable or best-effort), importance (i.e. priority), urgency (i.e. latency-budget) and transport mode (e.g., broadcast 
or multicast inclusive traffic shaping and reactivity).. Each channel handles communication and QoS for all the entities 
requiring its particular properties. Using a daemon process decouples the entities (which run in a separate user process) 



 

 

from configuration- and communication-related details. For example, the daemon process can use a configuration file to 
store common system parameters shared by communication endpoints associated with a network interface, so that chang-
ing the configuration does not affect application code or processing.  

The advantage of a federated architecture is that applications can support a larger number of DDS entities on the same 
node, e.g., by bundling messages that originate from collocated entities. Using a separate daemon process to mediate 
access to the network can also help to (1) simplify application configuration of policies for a group of entities associated 
with the same network interface, (2) provide a network scheduler that prioritize messages from different communication 
channels, and (3) prevent faulty applications from generating uncontrolled or excessive network-traffic. One 
disadvantage of a daemon-based federated architecture is that it introduces configuration steps that must be managed 
separately from applications to ensure proper functioning and avoid single points of failure. Moreover, applications must 
cross extra process boundaries to communicate, which can introduce overhead that increases latency and jitter.  

2.2.2 Decentralized Architecture 
The decentralized DDS architecture shown in Fig. 3 places the communication- and configuration-related capabilities 
into the same process as the application itself. These capabilities execute in separate threads (rather than in a separate 
process) and are used by the middleware to handle communication and QoS. 

 
Fig. 3. Decentralized DDS Architecture 

The advantage of a decentralized architecture is that each application is self-contained, without the need of a separate 
daemon. As a result, latency and jitter are reduced because fewer context switches are involved compared to the 
federated architecture, and there is one less configuration and failure point. A disadvantage, however, is that specific 
configuration details, such as multicast address, port number, reliability model, and parameters associated with different 
transports, must be defined at the application level. Requiring each application developer to handle these details is 
tedious, error-prone, and potentially non-portable. This architecture also makes it hard to buffer data sent between 
multiple DDS applications on a node, and thus does not provide the same entity-per-node scalability benefits offered by 
the federated architecture. 

2.2.3 Centralized Architecture 
The centralized architecture shown in Fig. 4 uses a single daemon server running on a designated node to store the 
information needed to manage topics and connections. The data itself passes directly from publishers to subscribers, but 
the control and initialization activities (such as data type registration, topic creation, and QoS value assignment, 
modification and matching) require communication with this server. 

 
Fig. 4. Centralized DDS Architecture 



 

 

The advantage of the centralized approach is its simplicity of implementation and configuration since all control 
information resides in a single location. The disadvantage is that the daemon is a single point of failure, as well as a 
potential performance bottleneck in a heavily loaded system. 

The remainder of this paper investigates how the architecture differences described above can affect the performance 
experienced by certain types of tactical information management applications, i.e., those that transmit small amounts of 
data in a point-to-point manner.  

3.METHODOLOGY FOR DDS IMPLEMENTATION EVALUATION 
This section describes our methodology for evaluating DDS implementations to determine how well they support certain 
classes of tactical information management applications, particularly those that generate small amounts of data 
periodically, which require low latency and jitter.  

3.1  Benchmarking Environment 

Hardware and Software Infrastructure 
The computing nodes we used to run our experiments are hosted on ISISlab [19], which is a cluster of computers and 
network switches that can be arranged in many configurations, as shown in Fig. 5. Each computer used in our tests 
contained the following hardware configuration: dual 2.8 GHz Xeon CPUs, 1GB of ram, 40GB HDD, and gigabit 
Ethernet cards. To ensure system stability and minimum operating system jitter, real-time Fedora Core 4 Linux kernels 
were installed on each computer and the machines were isolated from the rest of the network throughout the duration of 
each test. In addition, all processes were run as root and executables used the Linux real-time scheduling class to further 
leverage features provided by the real-time kernel. 

 
                             Fig. 5: ISISlab structure                                 Fig. 6. DDS Benchmarking Environment (DBE) 

DDS Benchmark Environment (DBE) 
Achieving good coverage of a test space where parameters can vary in several orthogonal dimensions leads to a combi-
natorial explosion of test types and configurations. Manually running tests for each configuration and each middleware 
implementation on each node is tedious, error-prone, and time-consuming. The task of managing and organizing test re-
sults also grows exponentially along with the number of distinct test configuration combinations. 

To facilitate the growth of our tests both in variety and complexity, we created the DDS Benchmarking Environment 
(DBE), which is an open-source framework for automating our DDS testing. The DBE consists of (1) a repository that 
contains scripts, configuration files, test ids, and test results, (2) a hierarchy of Perl scripts to automate test setup and 
execution, and (3) a shared library for gathering results and calculating statistics. 

Our efforts to streamline test creation, execution and analysis are ongoing. As shown in Fig. 6, the DBE currently has 
three levels of execution designed to enhance flexibility, performance, and portability, while incurring low overhead. 
Each level of execution has a specific purpose: the top level is the user interface, the second level manipulates the node 
itself, and the bottom level is comprised of the actual executables (e.g., publishers and subscribers for each DDS 



 

 

implementation). DBE runs all test executables locally, eliminating the effects on network traffic due to DBE test 
artifacts. 

3.2 Evaluation Metrics 
Our evaluations in this paper compare the performance of the C++ implementations of DDS shown in Table 2 against 
each other using micro-benchmarks in the ISISlab environment described in Section 3.1.  

Table 2: DDS Implementations Tested 

Impl Version Distribution Architecture 
DDS1 4.1d Decentralized Architecture 
DDS2 2.2.5  Federated Architecture (with “Direct-Write” optimization)‡ 
DDS3 0.11 Centralized Architecture 

We compare the performance of these pub/sub mechanisms by using the following metrics: 

 Latency, which is defined as the roundtrip time between the sending of a message and reception of an acknowledg-
ment from the subscriber. In our test, the roundtrip latency is calculated as the average value of 10,000 round trip 
measurements.  

 Jitter, which is the standard deviation of the latency. 

As part of the ongoing AFRL/IF Pollux project, we are enhancing the DBE to evaluate other interesting features of DDS 
needed by large-scale tactical information management systems, including:  

• Benchmarking other performance metrics for the various DDS implementations, including 1-to-n latency, jitter, and 
throughput for reliable and best-effort communication, as well as CPU and memory utilization. 

• Tailoring our DBE benchmarks to explore key classes of applications in tactical information management systems, 
including periodic sensor processing, track processing systems, and asynchronous alert systems. 

• Empirically evaluating a wider range of QoS configurations, e.g. durability, reliable vs. best-effort, and integration of 
durability, reliability and history depth,  

• Measuring  discovery time for various entities,  

These results will appear in our Pollux project website at www.dre.vanderbilt.edu/DDS as they are completed, along with 
the source code for DBE. 

4. EMPIRICAL RESULTS 
This section analyzes the results of our initial benchmarks conducted using the DBE on ISISlab. We evaluate point-to-
point (i.e., 1-to-1) roundtrip latency performance of DDS implementations within a single node, as well as between two 
distributed nodes. To ensure optimal product performance, configurations for each DDS implementation were tuned 
carefully based on extensive discussion with the DDS vendors. 

Benchmark design. Latency is an important measurement to evaluate tactical information management performance. 
Our test code measures roundtrip latency for each DDS implementation described in Section 3.1. The IDL structure for 
our benchmark test is shown below.  
 
 
 
 
 
 
 
 
 

                                                 
‡ DDS2 applies an internode optimization called “Direct-Write” that enables publishers to write the data directly to the subscriber 
daemon rather than going through a daemon on the publisher node, thereby helping to reduce latency relative to a pure Federated 
architecture described in Section 2.2.1. 

const short MAX_MSG_LENGTH = 16384; 
struct PubMessage { 
  long seqnum; 
  sequence<octet, MAX_MSG_LENGTH> data; 
}; 
struct AckMessage  { long seqnum; } 



 

 

 

The DataWriter object in the publisher writes an octet sequence of a designated payload size, which ranges from 4 bytes 
to 16,384 bytes by powers of 2. When the DataReader in the subscriber receives the data it replies to the publisher with a 
4-byte application-level acknowledgement. We use this “request/response” protocol to ensure that the round-trip 
timestamp is recorded on the publisher node, thereby eliminating clock skew problems. Since DDS traffic typically uses 
‘one way’ communication from publisher to subscriber(s) without any application-level acknowledgements, however, 
this request/response protocol make the performance look somewhat worse that would actually occur in practice.  

The publisher test code measures latency by timestamping the data transmission and subtracting that from the timestamp 
value it receives in the ack message from subscriber. This test evaluates how fast data is transferred from one node to 
another at different payload sizes. To ensure that our benchmark applications will be in a steady state when collecting 
statistical data, we send primer samples to “warm up” the applications before actually measuring the data. This warm-up 
period allows time for possible discovery activity related to other subscribers to finish, and for any other first-time 
actions, on-demand actions, or lazy evaluations to be completed, so that their extra overhead does not affect the statistics 
calculations. We also use the Linux real-time scheduling class in our tests to minimize jitter. 

Analysis of Results. Fig. 7 and Fig. 8 compare latency/jitter results for simple sequence types running on a single node. 
Fig. 9 and Fig. 10 compare latency/jitter results for simple sequence types running on multiple nodes. As discussed in 
Section 2.1, DDS is data-oriented rather than object-oriented, which helps explain why DDS implementations have good 
overall performance, e.g., their latency and jitter are within the bounds expected by most DRE systems. 
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Fig. 7. Single Node Latency                                            Fig. 8. Single Node Jitter 
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Fig. 9. Multiple Node Latency                                           Fig. 10. Multiple Node Jitter     

DDS1 and DDS2 both perform better than DDS3 on same-node latencies because they use a shared memory transport, 
whereas DDS3 uses UDP loopback. Despite the lack of shared memory usage, single node jitter for DDS3 is well-paced 
with its competitors, though eventually tapering off with larger payloads (see Fig. 8 from 2k onward.) Further investi-
gation is needed for same-node round trip latency when data payloads exceed 16k to see if the DDS1 and DDS3 latencies 
continue to grow while those of DDS2 remain constant. 



 

 

From our preliminary analysis outlined in Section 2, we expect DDS2 to perform better with more DDS entities per node. 
Moreover, increases in data size are less likely to affect DDS2 performance on same-node communication since DDS2 
eliminates the marshaling/de-marshaling that occurs during the same operations on DDS1. The single DDS2 daemon 
per-network interface allows these types of optimizations, since byte ordering on the same machine is extremely unlikely 
to change. 

The results for the multiple node tests vary more than the single-node tests since the latency and jitter graphs show a 
wider difference between the DDS1 and DDS3 latency on one hand and DDS2 latency on the other. DDS1 and DDS3 
have lower latency because their architectures are optimized for direct communication between Publishers and 
Subscribers. DDS2, in contrast, is designed for DRE system configurations where many DDS application processes run 
on each node, thereby leveraging the scalability of its federated architecture. A consequence of its federated architecture, 
however, is the higher latency when moving DDS data from the DataWriter on the Publisher node to the daemon and 
DataReader on the Subscriber node.  The “Direct-Write” optimization described in Section 3.2 helps minimize this 
overhead, but extra context switching, synchronization, and data copying are still incurred. 

Although our results above demonstrated the impact of DDS architectural choices on certain performance characteristics, 
it is important to note that tactical information management applications typically require much more than low point-to-
point latency. In particular, they also require advanced QoS capabilities, such as traffic-shaping, priority-banding, 
network partitioning, and data bundling. Systematically evaluating the impact of different DDS architectures on these 
capabilities motivates the need for enhancements to the DBE described in Section 3.2. Our future work on DDS will also 
include  

• Devising generators that can emulate various workloads and use cases for various types of tactical information man-
agement systems, including periodic sensor processing, track processing systems, and asynchronous alert systems 

• Identifying scenarios that distinguish performance of QoS policies and features (e.g., collocation of applications), 
and  

• Evaluating the suitability of DDS in heterogeneous dynamic environments, e.g., mobile ad hoc networks, where 
system resources are limited and dynamic topology, domain and entity changes are common. 

5. RELATED WORK 
To support emerging tactical information management systems, pub/sub middleware in general, and DDS in particular, 
have attracted an increasing number of research efforts (such as COBEA [20] and Siena [12]) and commercial products 
and standards (such as JMS [10], WS_NOTIFICATION [13], and the CORBA Event and Notification services [17]). 
This section describes several projects that are related to the work presented in this paper. 

Open Architecture Benchmark. Open Architecture Benchmark (OAB) [8] is a DDS benchmark effort associated with 
the Open Architecture Computing Environment, an open architecture developed by the US Navy. Joint efforts have been 
conducted in OAB to evaluate DDS products, in particular DDS1 and DDS2, to understand the ability of these DDS 
products to support the bounded latencies required by naval systems. Their results indicate that both products perform 
quite well and meet the requirements of typical naval systems. Our DDS work extends that effort by (1) including DDS3 
in the comparisons and (2) classifying the different architectures used by these implementations, and offering 
explanations of performance results by referring to these differences.  

S-ToPSS. There has been an increasing demand for content-based pub/sub applications, where subscribers can use a 
query language to filter the available information, and receive only a subset of the data that is of interest. Most solutions 
support only syntactic filtering, i.e., matching based on syntax, which greatly limits the selectivity of the information. In 
[7] the authors investigated how current pub/sub systems can be extended with semantic capabilities, and proposed a pro-
totype of such middleware called the Semantic - Toronto Publish/Subscribe System (S-ToPSS). For a highly intelligent 
semantic-aware system, simple synonym transformation is not sufficient. S-ToPSS extends this model by adding another 
two layers to the semantic matching process, concept hierarchy and matching functions. Concept hierarchy makes sure 
that events (data messages, in the context of this paper) that contain generalized filtering information do not match the 
subscriptions with specialized filtering information, and that events containing more specialized filtering than the 
subscriptions will match. Matching functions provide a many-to-many structure to specify more detailed matching 
relations, and can be extended to heterogeneous systems. DDS also provides QoS policies that support content-based 
filters for selective information subscription, but they are currently limited to syntactic match. Our future work will 
explore the possibility of introducing semantic architectures into DDS and evaluate their performance.  



 

 

PADRES. The Publish/subscribe Applied to Distributed Resource Scheduling (PADRES) [1] is a distributed, content-
based publish/subscribe messaging system. A PADRES system consists of a set of brokers connected by an overlay 
network. Each broker in the system employs a rule-based engine to route and match publish/subscribe messages, and is 
used for composite event detection. PADRES is intended for business process execution and business activity 
monitoring, rather than for DRE systems. While not conforming to the DDS API, its publish/subscribe model is close to 
that of DDS, so we plan to explore how a DDS implementation might be based on PADRES. 

6.CONCLUDING REMARKS 
This paper described the architectures of three implementations of the OMG Data Distribution Service (DDS). DDS is 
particularly relevant for tactical information management since (1) its communication model provides a range of QoS 
parameters that allow applications to control many aspects of data delivery in a network, (2) its implementations can be 
optimized heavily for various real world scenarios, and (3) DDS implementations can be configured to leverage fast 
transports, e.g., using shared memory to minimize data copies within a single node, and to improve scalability, e.g., by 
using multicast to communicate between nodes. 

We then presented the DDS Benchmarking Environment (DBE) and showed how we used the DBE to compare the 
performance of these DDS implementations for point-to-point latency and jitter of a simple datatype.  Based on our test 
results, experience developing the DBE, and numerous DDS experiments, we learned the following lessons: (1) DDS 
holds great promise for DRE systems, (2) architectural differences in DDS implementations produce a line of products 
with varying specialties that appeal to different types of applications and real time scenarios, and (3) DDS vendors are 
working diligently to improve their products and innovate within the constraints of a standard specification. 

All the source code for the DBE and DDS tests described in this paper are available in open-source format at 
www.dre.vanderbilt.edu/DDS. 
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