
An Object-Oriented Framework for
High-Performance Electronic Medical Imaging

Douglas C. Schmidt
Tim Harrison

Department of Computer Science
Washington University, St. Louis, Missouri, 631301

Irfan Pyarali
Kodak Health Imaging Systems

Dallas, Texas, 75240

This paper will appear in the Software Technology Applied
to Imaging and Multimedia Applications mini-conference at
the Symposium on Electronic Imaging in the International
Symposia Photonics West 1996, SPIE, San Jose, California
USA, January 27 - February 2, 1996.

Abstract

This paper describes the design and performance of an
object-oriented communication framework being developed
by Kodak Health Imaging Systems and the Electronic Ra-
diology Laboratory at Washington University School of
Medicine. The framework is designed to meet the demands
of Project Spectrum, which is a large-scale distributed elec-
tronic medical imaging system. A novel aspect of this frame-
work is its seamless integration of flexible high-level CORBA
distributed object computing middleware with efficient low-
level socket network programming mechanisms. In the paper,
we outline the design goals and software architecture of our
framework, illustrate the performance of the framework over
ATM, and describe how we resolved design challenges we
faced when developing an object-oriented communication
framework for distributed medical imaging.

1 Introduction

The demand for distributed electronic medical imaging sys-
tems (EMISs) is driven by technological advances and eco-
nomic necessity [1]. Recent advances in high-speed networks
and hierarchical storage management provide the techno-
logical infrastructure needed to build large-scale distributed,
performance-sensitive EMISs. Consolidating independent
hospitals into integrated health care delivery systems to con-
trol costs provides the economic incentive for such systems.

Two key requirements for the communication infrastruc-
ture in a distributed EMIS are flexibility and performance.
An EMIS must be flexible in order to transfer many types
of message-oriented and stream-oriented data (such as HL7,
DICOM, and domain-specific objects) across local and wide
area networks. EMIS requirements for flexibility motivate
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the use of distributed object computing middleware such as
CORBA [2] in the communication infrastructure. CORBA
automates common network programming tasks (such as ob-
ject selection, location, and activation, as well as parame-
ter marshalling and framing), thereby enhancing application
flexibility.

However, empirical studies [3] reveal that for bulk data
transfer, the performance overhead of widely used CORBA
implementations on high-speed ATM networks is 25% to
40% below that achievable using lower-level transport layer
interfaces such as sockets or TLI. As high-speed networks
like ATM, FDDI, and 100 Mbps Fast-Ethernet become ubiq-
uitous, this performance overhead may impede the adoption
of distributed object computing technologies. This is par-
ticularly problematic for performance-sensitive application
domains including medical imaging, where the use of low-
level tools increases development effort and reduces system
reliability and flexibility.

To address this problem, we have developed an object-
oriented communication software framework called “Blob
Streaming.” In this context, the term Blob refers to a “binary
large object.” Common examples of Blobs in a contemporary
EMIS include CR, MR, and CT images. In addition to medi-
cal images, next-generation EMISs must support multimedia
Blobs such as video streams and audio diagnostic reports.

The Blob Streaming framework provides a uniform inter-
face that enables EMIS developers to flexibly and efficiently
operate on multiple types of Blobs located throughout a large-
scale health delivery system. This framework combines the
flexibility of high-level distributed object computing mid-
dleware (e.g., CORBA) with the efficiency of lower-level
transport mechanisms (e.g., sockets). Developers of EMIS
communication software have traditionally had to choose
between (1) high-performance, lower-level interfaces pro-
vided by sockets or (2) less efficient, higher-level interfaces
provided by communication frameworks like CORBA. Blob
Streaming represents a midpoint in the solution space. It im-
proves the correctness, programming simplicity, portability,
and reusability of performance-sensitive EMIS communica-
tion software. Blob Streaming leverages the flexibility of
CORBA, while its performance remains competitive with
applications developed at the socket level.

This paper is organized as follows: Section 2 outlines the
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main features and design goals of the the Blob Streaming
framework, Section 3 describes the key design challenges
and how we resolved them, Section 4 illustrates the perfor-
mance of Blob Streaming and compares it with alternative
approaches over a high-speed ATM network, and Section 5
presents concluding remarks.

2 Overview of the Blob Streaming
Framework

2.1 Motivation

The Blob Streaming framework is designed to meet the re-
quirements of next-generation electronic medical imaging
systems (EMISs). Figure 1 illustrates the general topology
of a distributed EMIS. In this environment, various types of
modalities (such as CT, MR, and CR) capture patient images
and transfer them to an appropriate Blob Store. Radiolo-
gists use diagnostic workstations to retrieve these images for
viewing and interpretation.

To support a wide spectrum of radiological workflow ef-
ficiently, the EMIS must be flexible. For example, sup-
porting the “batch” workflow of conventional radiology may
require caching Blobs on local disks of diagnostic worksta-
tions. However, supporting more dynamic types of workflow,
(such as “radiology-on-demand”) requires high-speed net-
work access to centralized Blob Stores. The Blob Streaming
framework provides application developers with a uniform
means of operating on multiple types of Blob data residing
on multiple types of Blob Stores.

2.2 Blob Streaming design goals and features

The Blob Streaming framework is designed to meet two key
EMIS requirements: flexibility and performance. It is hard
to achieve these goals simultaneously. Software designs that
improve abstraction (such as encapsulation and layering) of-
ten reduce performance. For instance, excessive function
call layering reduces locality of reference and foils CPU in-
struction and data caching strategies. This can result in high
bus and memory overhead, which is relatively expensive on
modern RISC workstations [4].

This section outlines and evaluates the primary features
and design goals implemented in the Blob Streaming frame-
work. Section 3 explores how we resolved key design chal-
lenges that arose during our development.

2.2.1 Enhance framework abstraction

Developing an enterprise-wide distributed EMIS is difficult.
It requires a deep understanding of networking, databases,
distributed systems, human/computer interfaces, radiologi-
cal workflow, and hospital information systems. There are
many technical challenges related to performance, function-
ality, high availability, information integrity, and security.

Moreover, system requirements and the hardware/software
environment change frequently.

To cope with complexity and inevitable changes, the soft-
ware infrastructure of an EMIS must be flexible. In par-
ticular, developing large-scale distributed EMIS applications
with low-level network programming tools like sockets is
tedious, error-prone, and inflexible. Therefore, we designed
Blob Streaming to elevate the level of programming for these
applications. To accomplish this, we abstract away from the
following tasks:

� Abstracting away from Blob location: Consider the
case of presenting an MR image to a radiologist on a diag-
nostic workstation. In a large-scale distributed EMIS, the
image can be located anywhere throughout the system. The
location of the image is typically determined using name
servers and locators. Once the image has been located, it
must be transported to the radiologist’s workstation for dis-
play. Before being displayed to the radiologist, the image can
be processed (e.g., magnified, rotated, and edge-enchanced)
for optimal presentation.

The location of the image can vary significantly. The im-
age may exist on disk of a remote Blob Store; it may exist
in memory of a modality (such as an Ultrasound scanner); it
may also exist on the radiologist workstation’s local disk. To
enhance the usability of the system the image must be pre-
sented to the radiologist quickly. Thus, the Blob Streaming
framework is responsible for selecting the optimal transfer
techniques for each of these cases. For instance, if the data
is stored locally in a file, Blob Streaming memory maps the
file, thereby avoiding excessive mode switches and read/write
buffering.

The primary advantage of decoupling Blob location from
Blob operations is to reduce software dependencies. Appli-
cation software that operates on Blobs does not depend on
the location of the data.

�Abstracting away from Blob type: In addition to shield-
ing application software from Blob location,the Blob Stream-
ing framework abstracts away from Blob type. Thus a Blob
Store that receives and stores MR images uses the same soft-
ware to receive and store CT and CR images. The type of the
data being transferred is not exposed by the Blob Streaming
interface.

The primary advantage of decoupling Blob type from Blob
transfer is to maximize software reuse. In addition, our de-
sign allows meta-data (such as image identification infor-
mation including patient name and examination data) to be
separated and stored in a database. This allows image data
(pixels) to be transported as fast as possible to the destination
(e.g., using memory-mapped I/O and DMA). If an application
requires access to the image’s meta-data, complex queries can
be performed on the database. Note that consistency manage-
ment between pixel store and database entries are considered
outside the scope of the Blob Streaming framework.

Certain image formats (e.g., DICOM) place meta-data as
header informationof the image. Since BlobStreaming treats

2



DIAGNOSTIC

STATIONS

ATMATM
MANMAN

ATMATM

LANLAN

ATMATM

LANLAN

MODALITIES

(CT, MR, CR)

 CENTRAL

BLOB STORE

CLUSTER

BLOB

STORE

DX

BLOB

STORE

Figure 1: Topology of a distributed electronic medical imaging system.

all Blobs as untyped streams of data, images with integrated
meta-data can be also be transferred easily.

Another advantage of the Blob Streaming design is that it
allows the integration of image processing and Blob transfer
operations. Applications need not wait for an entire Blob
to transfer before processing the data (e.g., compressing it
as it is sent on the network and decompressing while be-
ing received). This technique is a form of Integrated Layer
Processing (ILP) [5], which has been used in high-speed
communication protocol stacks. ILP optimizations signifi-
cantly improve performance by overlapping communication
and computation, as well as reducing memory bus traffic.

� Abstracting away from Blob storage: Blobs reside in
“Blob Stores.” To provide adequate reliability, availability,
and performance, a large-scale EMIS must support a range
of Blob Stores. As shown in Figure 1, these include Cen-
tral Blob Stores (which provide hierarchical storage man-
agement and support long-term archiving of Blobs), Cluster
Blob Stores (which cache Blobs within a cluster of diagnostic
workstations in a local area network in order to increase sys-
tem fault tolerance and decrease load on Central Blob Stores),
Workstation Blob Store (which cache Blobs on the local disk
of a diagnostic (DX) workstation), and Memory Blob Stores
(which caches Blobs in workstation memory).

In the Blob Streaming framework the Blob Store interface
supports operations to query for existing Blobs and to reserve
space for creating new Blobs. The current Blob Streaming
framework supports two types of Blob Stores: A File Store,
which manages blobs on disk and a Memory Store, which
manages Blobs in memory. New implementations of Blob
Stores can be created for more advanced data storage. For
example, a Database Store might be designed to manage
Blobs in a database (e.g., Oracle, Sybase, or ObjectStore)
and an Archival Store can be implemented to maintain legacy

data to comply with legal statutes on image persistence.
The advantage of defining a uniform Blob Store interface

is to reduce software dependencies. The Blob Streaming
framework and its applications are decoupled from various
types of storage (such as file, memory, and databases). Thus,
application software can be written to store and retrieve im-
ages from Blob Stores, not to files or databases directly. This
shields existingsoftware from changes in storage type. A dis-
advantage to this approach is the increased learning curve.
For example, developers who are familiar with a particu-
lar database must learn the Blob Store interface to use Blob
Streaming.

� Abstracting away from OS-specific mechanisms: The
Blob Streaming framework shields applications from non-
portable OS-specific features (such as event demultiplex-
ing, threading, interprocess communication, and dynamic
linking). This, in turn, makes applications using the Blob
Streaming interface portable across platforms without chang-
ing application communication software. The Blob Stream-
ing framework has been ported to a variety of UNIX plat-
forms, as well as Win32 platforms [6].

The primary advantage of decoupling application software
from OS-specific mechanisms is cross-platform portability.
The primary disadvantage is that performance and function-
ality may be compromised to provide a generic OS interface.
For example, the current version of Blob Streaming does
not take advantage of native Windows NT mechanisms for
overlapped I/O [7].

� Abstracting from concurrency policies: On multi-
threaded operating systems like Solaris 5.x [8] or Windows
NT [6], applications can use threads to simplifyprogramming
and take advantage of parallelism. Often, a multi-threaded
application can use synchronous interfaces for long-duration
operations (such as large image transfers) since it will not
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block other threads. In contrast, single-threaded applications
must be programmed to avoid starving time-critical opera-
tions by blocking on long-duration operations.

Tightlycoupling an application to a particular concurrency
policy increases development effort if the concurrency policy
changes (e.g., if a single-threaded applicationbecomes multi-
threaded or vise versa). It is hard to avoid this tight coupling
because reusable frameworks and applications may be de-
veloped without knowledge of the end system concurrency
policies or hardware/software capabilities. The Blob Stream-
ing framework is designed to decouple application software
from dependency on concurrency policies. As discussed in
Section 3.2, Blob Streaming accomplishes this by providing
uniform callback-driven interfaces to both synchronous and
asynchronous operations.

The advantage to this abstraction is increased flexibility
and portability with respect to concurrency policies. The
disadvantage to this approach is that the resulting uniform
interface increases the complexity of synchronous calls in
order to provide the needed concurrency independence.

� Abstracting away from transport mechanism: Blob
Streaming presently uses a combination of CORBA and
TCP/IP as data transport mechanisms. CORBA is used, pri-
marily, for location and control operations,whereas TCP/IP is
used for bulk data transfer. To shield applications from these
low-level communication details, however, the public inter-
face of Blob Streaming does not expose its internal transport
mechanisms. In particular, CORBA is not visible to applica-
tion programmers. This design allows transport mechanisms
to be changed without affecting application software. For
example, different implementations of CORBA can be used
(such as ORBeline or Expersoft). Moreover, CORBA can
be removed entirely and replaced with another mechanism
(such as Network OLE, DCE RPC, or Sun RPC). We plan to
optimize future versions of Blob Streaming to omit TCP/IP
and use a lightweight transport protocol directly over ATM.

The primary advantages of decoupling the Blob Streaming
public interface from its internal transport mechanisms are
to improve flexibility and enable transparent performance
tuning. The primary disadvantage is performance overhead
of the extra level of abstraction. Although the cost of these
abstractions can be reduced through optimizations such as
C++ inlining, some overhead remains, as shown in Section 4.

�Abstracting from multiple event loops: Complex EMIS
applications must react to events from multiple sources such
as DICOM toolkits, HL7 interface engines, GUI window
events, and Blob Streaming transfers. Furthermore, the Blob
Streaming library must handle socket level descriptor events,
CORBA descriptor events, and timer events.

Frameworks such as X Windows and CORBA handle their
respective events from their own event loops. In order for
applications to use these tools efficiently, the multiple event
loops must be integrated. We solved this problem by us-
ing ACE’s Reactor [9] as the central event demultiplexor.
The Reactor is an object-oriented interface to lower-level OS
event demultiplexing operations (such as select, poll,

and WaitForMultipleObjects) that react to descrip-
tor events, timer events, and signal events. The Reactor
provides a convenient solution to integrating the event de-
multiplexing and event handler dispatching components of
multiple frameworks.

The advantage of integrating multiple event loops is that
it allows developers to use Blob Streaming while continuing
to program with other frameworks. For instance, an applica-
tion developer building X-window applications can perform
Blob Streaming operations without changing how the appli-
cation interfaces with the event-loop. Since Blob Streaming
uses the Reactor, the framework can be integrated with the
necessary event-loop without affecting internal framework
software or external framework interfaces. The disadvan-
tage to this approach is that the Reactor must be integrated
with each new framework. This can be time consuming and
tricky if the framework does not provide adequate hooks into
its internal event demultiplexing logic.

2.2.2 Improve framework performance

As noted above, an EMIS must be flexible to handle many
types of data and to adapt quickly to changes in requirements
and in the hardware/software infrastructure. Distributed ob-
ject computingmiddleware (such as CORBA) provides much
of the flexibility required by an EMIS. However, current im-
plementations of CORBA attain only one-half to two-thirds
of the performance achievable by using lower-level mech-
anisms (like sockets) directly [3]. Achieving EMIS per-
formance requirements is crucial because medical imaging is
particularlybandwidth-intensiveand delay-sensitive. Below,
we outline our approach to this problem.

We address the performance problems of CORBA by
integrating it with sockets. Our approach uses CORBA
for control messages and sockets for bulk data transfer.
This two-tiered design leverages CORBA’s extensibility and
socket’s efficiency. CORBA is particularly useful for short-
duration, request/response operations that exchange richly
typed data. Modifying or extending the type of information
exchanged between applications is also straightforward since
CORBA automatically generates code to marshall the param-
eters. Thus, for many types of inter-process communication,
CORBA offers a powerful solution.

A disadvantage of CORBA is that current implementations
incur significant performance overhead when used to transfer
large amounts of data [3]. To avoid this overhead, Blob
Streaming uses CORBA only as a “signaling mechanism”
to negotiate TCP/IP connections for large transfers. This
negotiation is a short-duration operation that exchanges a
small amount of typed data and is therefore well-suited for
CORBA.

The poor performance of CORBA bulk data transfer is a
result of existing implementations that fail to optimize com-
mon sources of overhead. This overhead stems primarily
from inefficient presentation layer conversions, data copy-
ing, memory management, and inefficient receiver-side de-
multiplexing and dispatching operations. To overcome these
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inefficiencies, we use sockets to perform the bulk data trans-
fers. Since Blob Streaming does not interpret the data it
transfers, the untyped nature of socket-level data exchange is
acceptable.

However, low-level network programming interfaces like
sockets are hard to program because they have complex in-
terfaces and are error prone. Our solution to this problem was
to use C++ wrappers from the ACE toolkit [10] to encapsu-
late the C interfaces. ACE provides a rich set of efficient,
reusable C++ wrappers, class categories, and frameworks
that perform common communication software tasks (such
as event demultiplexing, event handler dispatching, connec-
tion establishment, message routing, dynamic configuration
of application services, and concurrency control).

It is important to note that ACE does not offer all the
services of CORBA (such as object selection, location, ac-
tivation, and parameter marshalling). Therefore, CORBA
provides important value as a higher-level distributed object
computing framework.

3 Resolving Design Challenges

This section describes the software design challenges we
faced when developing the Blob Streaming framework for
EMIS applications. The following explains how we resolved
these challenges using object-oriented design techniques and
C++ language features.

3.1 Automating common network program-
ming tasks

Many low-level programming tasks (such as object loca-
tion and activation, parameter marshalling and framing) per-
formed when building distributed applications are tedious
and error-prone. Blob Streaming uses CORBA to automate
these common low-level network programming tasks. The
use of CORBA enabled us to concentrate on higher-level
Blob Streaming issues (such as performance, reliability, and
interface uniformity), rather than wrestling with low-level
communication details. We used the following CORBA
mechanisms extensively to implement the Blob Streaming
framework:

� Strongly-typed interfaces: In CORBA, all interfaces are
defined using the CORBA interface definition language (IDL)
[2]. A CORBA IDL compiler generates stubs and skeletons
that translate IDL interface definitions into C++ classes. For
instance, the following IDL interface definition describes a
BlobTransporter that is used internally by the frame-
work to control Blob transfer from a server to a client:

interface BlobTransporter
{
// Timeout value representation.
struct TimeValue { long sec; long usec; };

// Transaction notification options. These
// options allow the framework to control blob
// transfers acknowledgements.

enum NotificationSemantics {
SEND_NOTIFICATIONS,
QUEUE_NOTIFICATIONS,
IGNORE_NOTIFICATIONS

};

// A request to the server to send <length> bytes
// of Blob data starting from <absoluteOffset>.
// Since this can potentially be a long-duration
// operation, a <timeout> can also be specified.
// The <semantics> vary depending on the reliability
// required.
oneway void send (in long length,

in long absoluteOffset,
in boolean useTimeout,
in TimeValue timeout,
in NotificationSemantics semantics);

// Informs the server to receive <length> bytes of Blob
// data. This data is copied to the Blob
// starting at <absoluteOffset>. Other options are
// similar to send().
oneway void recv (in long length,

in long absoluteOffset,
in boolean useTimeout,
in TimeValue timeout,
in NotificationSemantics semantics);

// ... others omitted...

Clients use the BlobTransporter to selectively request
certain sections of a Blob. The ability to randomly access
Blobs is useful when only the header information from the
Blob is required or when a disrupted transaction must be
restarted.

The use of CORBA IDL interfaces allows the transmission
of strongly-typed data across the network. Strong typing im-
proves abstraction and eliminates errors common to socket-
level programming. For instance, if the send and recv
operations shown above were implemented over a socket
connection, we would need to convert the typed informa-
tion manually into a stream of untyped bytes. Moreover, the
sender and receiver software for parsing messages must be
tightly coupled to ensure correctness. Since this provides
many opportunities for errors, automating this process via
CORBA significantly improves system robustness.

� Parameter marshalling and framing: CORBA IDL
compilers automatically generate client-side stubs and server-
side skeletons. These stubs and skeletons ensure cor-
rect byte ordering and linearization of all parameters sent
via operation calls on CORBA interfaces over a network.
For instance, the send and recv operations in the IDL
BlobTransporter interface shown above pass various
types of binary parameters. The IDL compiler maps these
parameters into C++ data types such as char for the IDL
boolean type and a C++ struct containing two long
fields for the TimeValue parameter.

Marshalling the BlobTransfer parameters manually
using sockets would require copying the parameter values
into a transfer buffer and then doing a send. We would
also have to convert the representation of the longs from
host-byte order to network-byte order. In addition, if the
bytestream-orientedTCP/IP was used, we would be responsi-
ble for framing the data correctly at the receiver. Marshalling
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and framing are two tedious and error-prone aspects of net-
work programming. By using CORBA, we did not need to
implement these low-level operations.

� Object location and object activation: CORBA sup-
ports location transparency, where services can be located
anywhere in a distributed system. Objects accessed may be
remote, local (on the same host) or co-located (in the same
address space). We used this feature in the Blob Streaming
framework to shield applications from the location of Blob
Stores where a Blob of interest resides. The Blob Streaming
framework, however, violates this transparency to transfer
the Blob efficiently. This violation occurs internally to the
framework, however, and is not exposed to developers.

Applications need not know the location of a Blob Store
to perform operations on their Blobs. The framework uses
a Blob Location service to locate the appropriate Blob Store
server, marshalls the request, and sends it to the server. If
the Blob Store server is not running when a client sends the
request, the ORB will automatically start the server.

3.2 Supporting uniform interfaces

The uniformity of features in the Blob Streaming framework
was inspired by the System V Release 4 (SVR4) UNIX file
system. SVR4 UNIX adapts a wide variety of disk and com-
munication devices into a common set of operations (such as
open, close, read, write, and seek). Unlike UNIX,
however (which is implemented in C and provides C-level
system call interfaces), Blob Streaming is implemented in
C++. The use of C++ enforces encapsulation and leads to a
more modular, extensible, and less error-prone programming
interface.

In general, uniform interfaces are easier to work with
than those containing many inconsistencies and special cases.
With Blob Streaming, we found it useful to provide appli-
cation developers with a programming interface whose op-
erations behave uniformly irrespective of where the Blob
actually resides or what type of Blob is being transfered.
Therefore, Blob Store software that receives and stores MRI
images to a database remains unchanged whether the MRI
data is in memory, on a local file, in memory of a remote
client, or on disk of a remote client.

Support for asynchronous and synchronous operations is
another example of uniform interfaces in the Blob Streaming
framework. Different applications require different types
of operation invocation semantics from a framework. For
instance, a multi-threaded server can simplify application
software by using synchronous interfaces. Conversely, a
single-threaded server that cannot afford to block on any
one transaction needs an asynchronous interface to all long-
duration operations. Similarly, client applications are fre-
quently single-threaded and event-driven (e.g., GUIs), which
cannot block indefinitely on synchronous calls.

Switching between synchronous/return-value and asyn-
chronous/callback interfaces requires changes to application
software. Consider the case where a server that is imple-

mented using multiple threads needs to be ported to a plat-
form that does not support threads. If the software run by
the threads uses synchronous interfaces, many changes are
required to support asynchronous transactions through a sin-
gle thread. To address this problem, the Blob Streaming
framework supports a uniform callback interface for both
synchronous and asynchronous operations. These callbacks
indicate when an operation completes. For instance, a single-
threaded application that needs to load a large image from
a remote server performs an asynchronous Blob Streaming
read that does not block the application from handling GUI
events. When the library completes the operation, the appli-
cation is notified via a callback.

Similarly, synchronous Blob Streaming operations also
complete with callback notifications. The difference from
asynchronous calls is that, when the synchronous call re-
turns, the callback has already been executed. There are two
advantages to this approach: (1) increased uniformity and
(2) increased flexibility of concurrency strategies. The same
software that is used asynchronously in a single-threaded
application can be used synchronously in a multi-threaded
application. Because both synchronous and asynchronous
operations use callbacks, switching concurrency policies is
merely toggling a flag. Therefore, no application software
will change. This flexibility is particularly useful for devel-
opers of reuseable components who write software that can
be used with a variety of concurrency strategies.

The disadvantage to this approach is that some developers
may never want to program asynchronous operations. To
address this issue, the Blob Streaming library offers wrap-
pers around the synchronous callback operations to provide
a synchronous/return-value API.

4 Blob Streaming Performance

Sections 2 and 3 outline and motivate the design of the
Blob Streaming framework. This design abstracts away from
many low-level communication tasks to achieve the flexibil-
ity requirements of distributed EMISs. In practice, however,
we recognized that the framework will not be widely used
unless applications built using it meet their performance re-
quirements. This section describes performance tests of the
Blob Streaming framework. The test scenario involved the
point-to-point transfer of Blobs between a client and a server.

4.1 Test platform and benchmarks

The performance results in this section were collected us-
ing a Bay Networks LattisCell 10114 ATM switch connected
to two dual-processor SPARCstation 20 Model 712s run-
ning SunOS 5.4. The LattisCell 10114 is a 16 Port, OC3
155Mbs/port switch. Each SPARCstation 20 contains two
70 Mhz Super SPARC CPUs with a 1 Megabyte cache per-
CPU. The SunOS 5.4 TCP/IP protocol stack is implemented
using an optimized version of the STREAMS communica-
tion framework [11]. Each SPARCstation has 128 Mbytes of
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RAM and an ENI-155s-MF ATM adaptor card, which sup-
ports 155 Megabits per-sec (Mbps) SONET multimode fiber.
The Maximum Transmission Unit (MTU) on the ENI ATM
adaptor is 9,180 bytes. Each ENI card has 512 Kbytes of
on-board memory. A maximum of 32 Kbytes is allotted per
ATM virtual circuit connection for receiving and transmitting
frames (for a total of 64 K). This allows up to eight switched
virtual connections per card.

Data for the experiment was produced and consumed by
a client and server test application. The client represents a
diagnostic workstation. The server application represents a
Blob Store server. Various client and server parameters may
be selected at run-time. These parameters include the size of
the Blob being transferred and the size of the socket transmit
and receive queues.

Our test environment is similar to the widely available
ttcp benchmarking tool. However, our test application
differs from ttcp since the test applications implement
a “transaction” model rather than the conventional ttcp
“flooding” model. In our model, the client can request the
server to send it data (the “pull” model) or move data to the
server (the “push” model). This is different from ttcp be-
cause the data transmitter does not merely flood the receiver
with a continuous unidirectional stream of bytes.

The push and pull transaction models implemented by our
test application are describe below:

� The push model: The push model is representative of
the use case where a modality stores data on a Blob Store. In
addition, it can be used by a Blob Store to precache data to a
workstation. The push transaction model behaves as follows:
(1) the client sends control data to the server characterizing
the image being transferred from the client to the server (size
and name of the image), (2) the client then sends the image
data, and (3) the server sends a confirmation to the client on

receiving all the data. This acknowledgement is necessary to
insure end-to-end reliability of the transaction.
� The pull model: The pull model is representative of the
use case where a workstation retrieves data from a Blob Store.
The pull transaction model behaves as follows: (1) the client
sends control data to the server characterizing the image the
client wants from the server (size and name of the image) and
(2) the server then sends the image data. Note that the pull
model does not require an extra acknowledgement. Once the
client receives the data that was requested from the server,
the transaction is complete.

We implemented and benchmarked the following versions
of the test application for Blob transfers:

� C version – this is implemented completely in C. It
uses C socket calls to transfer and receive the data and
control messages via TCP/IP.

� ACE C++ version – this version replaces all C socket
calls in the applications with the C++ wrappers for sock-
ets provided by the ACE network programming com-
ponents [10]. ACE encapsulates sockets with typesafe,
portable, and efficient C++ interfaces.

� CORBA version – the Orbix implementation of
CORBA was used: version 1.3 of Orbix from IONA
Technologies. This version replaces all socket calls in
the test applications with stubs and skeletons generated
from a pair of CORBA interface definition language
(IDL) specifications.

� Blob Streaming version – the Orbix implementation of
CORBA was used for exchanging control messages and
C++ wrappers for sockets provided by ACE were used
for bulk data transfer.

All these versions test the push model. Due to space limi-
tations, we have not included performance data for the pull
model.

4.2 Results

We ran a series of tests that transferred 1 MB, 8 MB, 16
MB, and 32 MB of user data using TCP/IP over our ATM
network testbed. Previous test have shown that different
versions of ttcp for Ethernet show much less variation,
with the performance for all tests ranging from around 8 to
8.7 Mbps with 64 K socket queues. Therefore, the Ethernet
benchmarks were not included in these tests.

Two different sizes for socket queues were used: 8 K (the
default on SunOS 5.4) and 64 K (the maximum size supported
by SunOS 5.4). Each test was run 20 times to account for
performance variation due to transient load on the networks
and hosts. The variance between runs was very low since the
tests were conducted on otherwise idle networks.

Figure 3 summarizes the performance results for all the
benchmarks using 64 K and 8 K socket queues over a 155
Mbps ATM link. The C and ACE C++ wrapper versions of
the tests obtained the highest throughput: 60 Mbps using 64
K socket queue. This indicates that the performance penalty
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Figure 3: C, ACE C++, Blob Streaming, and Orbix performance over ATM.

for using the higher-level ACE C++ wrappers is insignificant,
compared with using low-level C socket library calls directly.
The Blob Streaming performance was slightly more than
80% of the C and C++ versions, reaching 50 Mbps with 64
K socket queues.2 However, the Orbix CORBA versions
peaked at around 66% of the C and C++ versions, reaching
40 Mbps with 64 K socket queues.

In addition to comparing the performance of the various
transport mechanisms, Figure 3 also illustrates the generally
low level of utilization of the ATM network. In particular,
60 Mbps represents only 40 percent of the 155 Mbps ATM
link. This disparity between network channel speed and
end-to-end application throughput is known as the through-
put preservation problem [12]. This problem occurs when
only a portion of the available bandwidth is actually de-
livered to applications. The throughput preservation prob-
lem stems from operating system and protocol processing
overhead (such as data movement, context switching, and
synchronization [5]). This throughput preservation prob-
lem is exacerbated by contemporary implementations of dis-
tributed object computing middleware like CORBA, which
copy data multiple times during fragmentation/reassembly,
marshalling, and demarshalling. Furthermore, the latency
associated with the request-response protocol implemented
by ttcp significantly reduced performance. An earlier im-
plementation of ttcp [3] attained 90 Mbps over the same

2Subsequent code profiling revealed that the Blob Streaming receiver
was performing an unnecessary data copy. With this copy removed, the
performance of Blob Streaming should be comparable to the C and ACE
C++ wrapper versions.

ATM testbed by using a “flooding” traffic generation model
that did not use an end-to-end acknowledgment scheme.

Finally, Figure 3 illustrates the impact of socket queue size
on throughput. Larger socket queues increase the TCP win-
dow size [13], which allows the transmission of multiple TCP
segments back-to-back. Increasing the socket queue from 8
K to 64 K doubled performance from 28 Mbps to 60 Mbps.
These results demonstrate the importance of having hooks
to manipulate underlying OS mechanisms (such as transport
layer and socket layer options). Communication frameworks
that do not offer these hooks to application developers are
destined to perform poorly over high-speed networks.

5 Concluding Remarks

We are currently deploying the Blob Streaming framework in
a production distributed electronic medical imaging system
being developed as part of Project Spectrum at the Electronic
Radiology Lab (ERL) at the Washington University School
of Medicine and BJC Health System, in collaborationwith in-
dustrial partners Kodak Health Imaging Systems, IBM/ISSC,
and Southwestern Bell Corporation. BJC is one of the na-
tion’s largest integrated health delivery systems, representing
an alliance of health care partners in Missouri and southern
Illinois.

The primary objective of Project Spectrum is to link the
stand-alone heterogeneous computer systems of 15 acute care
facilities, as well as over 5,500 physicians, in the BJC system
into a single integrated network. Key system requirements
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are to support seamless electronic access to clinical exper-
tise from any point in the system. Other requirements call
for immediate, on-line access to information via advanced
clinical workstations attached to high-speed networks, tel-
eradiology and remote consultation capabilities, and practice
management support tools.

Distributed electronic medical imaging systems like
Project Spectrum require high-performance bulk data com-
munication. Existing implementations of higher-level dis-
tributed object computing middleware like CORBA do not
provide adequate performance for bulk data transfer due
to data copying, demultiplexing, and memory management
overhead. This overhead is often masked on low-speed net-
works like Ethernet and Token Ring. On high-speed net-
works like ATM or FDDI, however, this overhead becomes a
significant factor limiting communication performance [14].

The Blob Streaming framework described in this paper
provides more efficient data transfer than using CORBA as
the sole bulk data transport mechanism. Blob Streaming
uses CORBA as a control mechanism to negotiate endpoints
of TCP/IP communication in a location-independent manner.
The lower-level C++ wrappers for sockets are then used to
establish point-to-point TCP connections and transmit bulk
data efficiently across the connections. This strategy builds
on the strengths of both CORBA and sockets. It shields
application developers from lower-level details of sockets
without incurring the performance overhead associated with
using a CORBA-only solution.

Blob Streaming uses sockets to achieve the performance
of lower-level networking tools and uses CORBA to pro-
vide the flexibility needed for distributed electronic medical
imaging systems. Blob Streaming allows application code
to be developed independent of Blob location, Blob type,
and Blob Storage. These abstractions allow image process-
ing algorithms to be reused for many types and locations
of Blobs. In addition, Blob Streaming is designed to allow
flexibility across platforms by abstracting from concurrency
OS-specific mechanisms, concurrency policies, and event
loops.

Thanks to Chris Tarr of ObjectSpace for his contributions
to the design of Blob Streaming.
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