
Addressing Design Challenges of
(Re)Deploying Components for

Distributed Real-time and Embedded Systems

Abstract
Middleware is increasingly being used to develop and de-
ploy components in large-scale distributed real-time and em-
bedded (DRE) systems. A key challenge in component de-
ployment and execution for DRE systems is devising re-
source allocation and control algorithms that (1) map ap-
plication components in DRE systems onto resources avail-
able on target nodes and (2) monitor performance to ensure
QoS requirements are not violated. The design of placement
and control algorithms in DRE systems today involves te-
dious, error-prone, and human-intensive programming. This
paper provides two contributions to the R&D on middle-
ware support to automate the deployment and control of
components in DRE systems. First, it describes the de-
sign of a Resource Allocation and Control Engine (RACE),
which is a middleware framework that integrates multiple
resource management algorithms implemented using stan-
dard Lightweight CORBA Component Model (CCM) mecha-
nisms for (re)deploying and (re)configuring application com-
ponents in DRE systems. Second, it shows how RACE helps
to decouple resource allocation and system adaptation logic
from the time when this logic is applied to configure resource
management algorithms.

1. INTRODUCTION
Components are units of implementation and composition

that contain parameterizable executable code with quality
of service (QoS) requirements (such as maximum latency
and minimum throughput values) and resource consump-
tion profiles (such as expected CPU and memory usage).
Component-based technologies are increasingly used in large-
scale distributed real-time and embedded (DRE) systems,
such as shipboard computing environments [16], avionics
mission computing systems [19], and intelligence, surveil-
lance and reconnaissance systems [18]. In these systems,
applications can be viewed as groups of domain-related tasks
that can be implemented by parameterized and executable
software components using component technologies, such as
the OMG’s Lightweight CORBA Component Model(CCM),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

J2EE, and .NET. Applications generate workflow sequences,
which are represented as operational strings with each task
in the sequence being mapped onto a parameterized and
executable component.

Operational strings can be generated by planners that
map desired mission goals to workflow sequences. These se-
quences in turn are deployed as the executable software com-
ponents. For example, starting from a data collection goal
for a spacecraft science mission, the planner may generate an
operation string with the following executable components:
system and sensor initilization, sensor calibration, data col-
lection, quality check, data fusion (from multiple sensors),
data compression, and telemetry stream communication.

Operational strings also capture data dependencies (e.g.,
producer/consumer dependencies) and control dependencies
(e.g., sequential versus parallel execution of components). In
addition, these strings capture a range of QoS requirements
that may vary in response to runtime changes in mission
goals and changes in system performance. Applications can
adapt to these changes by running the components that com-
prise an operational string in different modes and dynami-
cally reconfiguring and/or migrating application component
implementation(s).

One approach to allocating and controlling operational
strings in DRE systems is to tightly couple handcrafted al-
gorithms and mechanisms [16]. This approach, however, of-
ten produces convoluted implementations that can increase
algorithm complexity and memory footprint. A more effec-
tive design, therefore, is to develop a framework that en-
ables different algorithms for allocating and controlling op-
erational strings to reuse common, automated mechanisms
that include (1) capabilities to parse metadata that describe
operational string resource requirements and QoS character-
istics, (2) monitors that track application and infrastructure
performance and resource usage, (3) the ability to represent
allocation/control algorithm policies via metadata and auto-
matically configure the middleware to enforce these policies,
and (4) the ability to (re)deploy and (re)configure applica-
tion components in operational strings based on decisions
made by allocation and control algorithms.

This paper describes our reusable framework, the Re-
source Allocation and Control Engine (RACE), which sep-
arates resource allocation and control algorithms from the
underlying middleware deployment, configuration, and con-
trol mechanisms so that different algorithms can reuse com-
mon middleware mechanisms to (re)deploy components onto
nodes and manage the node’s resources among competing
applications. RACE enables DRE system developers to con-

Target

Domain

Uniform Interface to parse component resource requirements

Uniform Interface to deploy and manage

components

RACE

Deployment, Configuration & Control Mechanism

Allocation

Algorithms

Control

Algorithms

Application
Performance

Data

Resource
Utilization

Data

Application

Monitors

Resource

Monitors

 Component Middleware Infrastructure (CIAO/DAnCE)

Deploy and manage components

Operation string with

time-varying resource

requirements

Figure 1: A Resource Allocation and Control Engine
(RACE) for DRE Systems

figure allocation and control algorithms depending on the
characteristics of operational strings being deployed and en-
ables the use of multiple algorithms without needing to hand-
craft the mechanisms used to configure the algorithms.

Figure 1 shows how RACE can support multiple appli-
cations running in a variety of DRE system environments
and allow applications with diverse QoS requirements to
share resources simultaneously. RACE provides a range of
resource allocation and control algorithms that use middle-
ware deployment and configuration mechanisms to allocate
resources to operational strings and control system perfor-
mance after operational strings have been deployed.

RACE’s algorithms determine how to deploy and rede-
ploy operational strings of application components at sys-
tem initialization and during runtime. Its allocation al-
gorithms determine the initial component deployment by
deciding how to map these components to the appropriate
target nodes based on the availability of system resources.
Likewise, RACE’s control algorithms adapt the execution of
an operational strings’s components at runtime in response
to changing environments and variations in resource avail-
ability and/or demand.

RACE uses mechanisms provided by the underlying mid-
dleware to perform the allocation and control decisions made
by its algorithms. For example, RACE uses standard mecha-
nisms defined by the Lightweight CORBA Component Model
(CCM) [14] to (1) (re)deploy and (re)configure application
components, (2) transition application components from idle
states to operational states and monitor the performance of
the DRE system, and (3) modify components and/or oper-
ational strings to realize the adaptation decisions of control
algorithms.

The remainder of this paper is organized as follows: Sec-
tion 2 motivates the need for RACE in the context of ap-
plications for DRE systems; Section 3 describes the de-
sign of RACE and shows how it leverages the OMG De-
ployment and Configuration (D&C) specification [13] in the
Lightweight CCM standard; Section 4 illustrates how we
are applying RACE to the applications described in Sec-
tion 2; Section 5 compares our work on RACE with related
research; and Section 6 presents concluding remarks.

2. MOTIVATING APPLICATION SCENAR-
IOS

The computational architecture in Figure 1 is applica-
ble to large-scale DRE systems that perform a number of

Mission
Goals

Intelligent
Mission

Planner

RACE

System Monitors

System

Status

Deploy

Components

Deployment (in)flexible &
(un)successful

Mission

Status

Science Mission
Monitors

Satellite System

Operational

strings

Figure 2: Architecture of Earth Science Enterprise
System

coordination and heterogeneous data handling and analy-
sis tasks. An example is NASA’s Earth Science Enterprise
(ESE) mission, whose goal is to collect significant amounts
of atmospheric and earth surface data to enable computa-
tional models that can accurately predict climate, weather,
and natural hazard occurrences. The architecture of a DRE
system that implements the ESE mission is shown in Fig-
ure 2. Although these missions have traditionally been con-
ducted using large, independently operated spacecraft, the
goals of better physical coverage and richer data collection
with a variety of sensors at lower cost motivates the deploy-
ment of large networked constellations of satellites [11].

In addition to deploying a constellation of satellites, mod-
ern science missions often operate in multiple application
modes, such as signal space coverage, combination, and iso-
lation, depending on the current task requirements. For ex-
ample, the Global Precipitation Measurement (GPM) con-
stellation [15] requires an evenly distributed network of or-
biters to sample every point in the globe at periodic time in-
tervals driven by the rate at which thunderstorms can form
and dissipate. Depending on evolving weather conditions,
the satellite may perform data collection in slow, medium,
and fast modes of operation. In other situations, it may
be important for separate platforms with different sensors
to cooperate and analyze a phenomena, e.g., the Cloudsat
and Calipso spacecraft use different sensors to study the re-
lationship between aerosols and precipitation [5]. In these
applications, the spacecraft will switch to a special mode
where they fly in close coordinated formations to capture
different information from the same region.

Future spacecraft on science missions (e.g., NASA’s Leon-
ardo-BRDF [20]) will have the ability to operate in multiple
modes, such as the ones outlined above. They will also be
capable of autonomously switching between modes as condi-
tions and requirements change, e.g., as a new storm system
begins to form over the Gulf of Mexico. Mode switching
implies that the satellite systems and their computational
resources can be reconfigured dynamically during system
operation.

A key challenge, therefore, is to develop intelligent mission
planners [2], which decompose the overall science mission
goal(s) into sets of application tasks that can be executed
concurrently. As discussed in Section 1, these application
tasks can be mapped to parameterized components that are
characterized by execution profiles (such as CPU utilization,
memory usage, and communication latency) and intelligent
resource allocation and control algorithms that can config-
ure application task placement on target nodes so that the
overall performance and system utilization meets the QoS
requirements. To support efficient resource allocation and
adaptation for these operational strings and application sce-
narios, we need a reusable middleware architecture that re-
solves the following challenges:

1. Support for converting science mission goals
to a sequence of end-to-end application tasks that

are represented as operational strings. The intelligent
mission planner employs decision-theoretic and hierarchical
task decomposition methods to operationalize mission goals
in terms of prioritized navigation, control, data gathering,
data fusion, data analysis, and telemetry stream generation
tasks. In addition to initial system bootstrapping, the plan-
ner also incrementally generates new task sequences (Fig-
ure 2) in response to (1) changing mission goals and re-
source requirements or (2) degraded performance reported
by the mission and system monitors. These tasks are indis-
pensable units of computation and can be implemented as
software components using standard component middleware
technologies.

2. Support for describing the characteristics of the
generated tasks in a standard deployment schema.
The intelligent mission planner generates (1) the operational
strings and a partial schedule for corresponding component
deployment, (2) the data and control dependencies between
the different components, (3) the execution profiles of each
component, and (4) the resource requirements for each com-
ponent. This application-specific information can be cap-
tured via XML metadata to support interoperability among
various tools in a science mission [11] and enable the use
of standard deployment middleware to deploy those com-
ponents automatically. To ensure this XML description in-
formation is available for processing without incurring the
overhead of parsing XML data dynamically, the middleware
must provide mechanisms for parsing the metadata once and
then storing the parsed information efficiently so it can be
transferred quickly across multiple processes at runtime.

3. Support for storing component implementa-
tions in a repository for efficient retrieval. The com-
ponents can be parameterized using different algorithmic im-
plementations with different execution characteristics. Some
characteristics tradeoff resource requirements, e.g., memory
versus CPU requirements, whereas others point to different
application scenarios, e.g., where the data collection rate will
be higher during certain time intervals in predefined regions
of interest. Still other characteristics may directly relate to a
selected component implementation, e.g., minimal memory
footprint. During system initialization and at runtime, in-
telligent resource allocation and control algorithms can help
optimize system performance and meet mission goals by se-
lecting the appropriate algorithmic implementations. Sup-
port is therefore needed for effectively storing and retrieving
component implementations.

4. Support for selecting resource allocation and
control algorithms. A single resource allocation and con-
trol strategy will not handle all resource allocation and adap-
tation needs for heterogeneous application components, which
include guidance, navigation, control, data acquisition, data
handling, and data analysis algorithms [11]. The middle-
ware should therefore provide mechanisms that select dif-
ferent resource allocation and control algorithms depending
on the behavior, interactions, and priorities of operational
strings composed of application components.

5. Support for sharing common middleware de-
ployment framework. It is tedious and error-prone to
hand-craft certain aspects of resource allocation and con-
trol algorithms, e.g., locating component binaries and li-
braries, connecting components using the interaction specifi-
cation information, and configuring underlying OS and mid-
dleware to ensure proper end-to-end QoS. Reimplementing

these tasks manually for each algorithm leads to convoluted
implementations, increased memory footprint, and longer
system development and quality assurance cycles. Middle-
ware should therefore provide mechanisms that efficiently
and automatically (1) interact with an intelligent mission
planner to convey the resource allocation and control deci-
sions and (2) configure the underlying system resources to
ensure end-to-end QoS requirements.

Section 3 describes how the our resource allocation and
control engine (RACE) leverages the OMG Deployment and
Configuration specification [13] in the Lightweight CCM stan-
dard [14] to address the challenges described above.

3. THE DESIGN OF RACE
RACE is built atop of CIAO and DAnCE, which are open-

source implementations of the OMG Lightweight CCM [14],
Deployment and Configuration (D&C) [13], and Real-time
CORBA [12] specifications. This section presents a brief
overview of CIAO and DAnCE, which are the standard mid-
dleware platforms underlying RACE (CIAO, DAnCE, and
RACE are available from the CVS repository at cvs.doc.

wustl.edu). It then describes how RACE enhances these
platforms to provide a reusable framework for (re)deploying
and (re)configuring components onto nodes and managing
node resources among competing operational strings.

3.1 The Middleware Infrastructure Underly-
ing RACE

Overview of CIAO. The OMG Lightweight CCM spec-
ification standardizes the development, configuration, and
deployment of component-based applications that are not
tied to any particular language, OS platform, or network.
Components in Lightweight CCM are implemented by ex-
ecutors and collaborate with other components via ports,
including (1) facets, which define an interface that accepts
point-to-point method invocations from other components,
(2) receptacles, which indicate a dependency on point-to-
point method interface provided by another component, and
(3) event sources/sinks, which indicate a willingness to ex-
change typed messages with one or more components. There
are two categories of components in Lightweight CCM: (1)
monolithic components, which are executable binaries, and
(2) assembly-based components, which are a set of intercon-
nected components that can either be monolithic or assembly-
based (note the intentional recursion).

CIAO is an open source implementation of Lightweight
CCM and Real time CORBA [12] specifications by the OMG.
The architecture of CIAO is designed based on (1) patterns
for composing component-based middleware [21] and (2) re-
flective middleware techniques to enable mechanisms within
the component-based middleware to support different QoS
aspects.

Overview of DAnCE. In Lightweight CCM (and hence
CIAO), component assemblies are deployed and configured
via the OMG D&C [13] specification, which manages the
mapping of application components onto nodes in a tar-
get environment. The information about the component
assemblies and the target environment in which the applica-
tion components will be deployed are captured in the form
of standard XML descriptors. To support automatic de-
ployment and configuration of components based on their
descriptors, we developed the Deployment And Configura-
tion Engine (DAnCE). DAnCE’s runtime framework parses

XML assembly descriptors and deployment plans, extracts
connection and deployment information from the descriptors
and plans, and then automatically deploys the system into
the CIAO component middleware platform and establishes
the connections between component ports.1

3.2 The Structure and Functionality of RACE
The RACE architecture consists of the entities shown in

Figure 3. These entities are implemented as CCM compo-

Target

Manager

Resource

Monitor

Resource

Monitor
Resource

Monitor

Deployment

Manager

Utilization Data Data Ready

Application

Qos

Monitors

Application

QoS Data
Application

QoS Data

Application

Qos

Monitors

Operational string with time-varying resource requirements

Figure 3: RACE Structure

nents using CIAO and are deployed via DAnCE. Each entity
in the RACE architecture is described below:

• ResourceMonitors are CCM components that track
resource utilization in a domain. One or more Resource-
Monitors are associated with each domain resource,
such as CPU and memory utilization monitors on each
node and network bandwidth utilization monitors on
interconnects and bridges.

• ApplicationQoSMonitors are CCM components that
track the performance of application components by
observing QoS properties, such as throughput and la-
tency. One or more ApplicationQoSMonitors are as-
sociated with each type of application component.

• The TargetManager is a CCM component defined
in the D&C specification [13] that receives periodic
resource utilization updates from ResourceMonitors

within a domain. It uses these updates to track re-
source usage of all resources within the domain. The
TargetManager provides a standard interface for re-
trieving information pertaining to resource consump-
tion of each component and an assembly in the domain,
as well as the domain’s overall resource utilization.
The TargetManager provides information on resource
utilization component ports in operational strings.

• The DeploymentManager is an assembly of CCM
components that encapsulates and coordinates one or
more allocation and control algorithms. This manager
deploys assemblies by allocating resources to individ-
ual components in an assembly. After assemblies are

1In the context of this paper, a connection refers to the
high-level binding between an object reference and its target
component, rather than a lower-level transport (e.g., TCP)
connection.

deployed, the DeploymentManager manages the per-
formance of (1) operational strings and (2) domain re-
source utilization. This manager ensures desired per-
formance of the operational strings by performing the
following actions to the components that make up the
operational strings: (1) (re)allocating resources to the
component, (2) modifying component parameters such
as executional mode, and/or (3) dynamic replacing the
component implementations.

The DeploymentManager is the most novel contribution of
RACE, so the remainder of this section focuses on its input/-
output handling, structure and functionality, and extensibil-
ity mechanisms.
Input and output handling. Two types of inputs are
processed by a DeploymentManager: allocation algorithm in-
puts and control algorithm inputs. Allocation algorithm in-
puts can be decomposed into static and dynamic inputs.
Static inputs include (1) assembly(s) of components to de-
ploy, along with their resource requirements, (2) topology of
target domain, and (3) operational strings along with their
QoS requirements. The static input is represented in XML
descriptors generated off-line via domain-specific modeling
tools, such as PICML [4], which can visually define, design,
and configure CIAO-based applications. Dynamic inputs
capture information regarding current resource utilization/-
availability in the target domain, which is provided by the
TargetManager.

Control algorithm inputs are also decomposed into static
and dynamic inputs. Static inputs include application end-
to-end QoS requirements and bounds on system resource
utilization. Dynamic inputs include runtime information
from TargetManager and ApplicationQoSMonitors within
the domain, which conveys information related to (1) do-
main resource utilization/availability and (2) the performance
of application components in operational strings, respec-
tively.

Upon receiving the inputs, the DeploymentManager’s allo-
cation algorithm computes a feasible allocation of resources
to various application components, which is captured in a
resource allocation plan. If resource allocation to all the
input components is not possible an error message is gen-
erated. Upon receiving the inputs, the control algorithm
verifies whether the end-to-end QoS requirements of appli-
cations are met. If end-to-end requirements are met, no
control action is necessary. If not, however, the control al-
gorithm may recommend one or more of the following: (1)
reallocation of resources to application components, which
may involve recomputation of resource allocation, (2) mod-
ification of application execution properties, such as execu-
tion mode, and/or (3) modification of application compo-
nent implementations by swapping in different implementa-
tions. These control/adaptation decisions are captured in a
control plan.

A DeploymentManager processes the resource allocation
plan from the allocation algorithm to produce a deployment
plan, as defined by the D&C specification, which describes
the nodes in a target environment and the type/number of
components to be deployed on a node. Likewise, it processes
the control plan from the control algorithm to produce a run-
time adaptation plan that captures the recommended mod-
ification to the application components. These plans then
become policies that CIAO and DAnCE mechanisms (Sec-
tion 3.1) use to (re)allocate resources to applications and

manage system performance.
Structure and functionality. The DeploymentManager is
implemented as a CCM assembly-based component that is
composed of the monolithic components shown in Figure 4
and described below:

<connection>

 <name>compressionQosPredictor_qosLevels</name>

 <internalEndpoint>

 <portName>qosLevels</portName>

 <instance portName>

 <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-

F5EA-4D1A-942E-13AE7CFED30A"/>

 </internalEndpoint>

…

…

</connection>

Deployment / Control Plan

Deployment Manager
Core

Algorithm

Manager

Allocators Controllers

Historian

Configurators

Operational string with time-varying resource requirements

Figure 4: Deployment Manager Structure

Allocators are CCM components that implement various
resource allocation algorithms used during system initial-
ization to allocate various domain resources, such as CPU,
memory, and network bandwidth, among components. Ex-
ample allocation algorithms include Bin-Packing [8] and Rate-
Monotonic General Task Model [9]. Allocators map applica-
tion components in operational strings to available domain
resources via a deployment plan. Allocators are also de-
signed to work with efficient QoS-enabled operating systems,
such as the Class-based Kernel Resource Management [?],
so that the component resource comsumptions can be allo-
cated as planned and controlled dynamically at run-time. In
this context, the allocators can be viewed as a sequence of
planners, where members of the sequence could (1) use allo-
cation algorithms, such as Bin-Packing [8], to decide which
component needs to be placed on which node and (2) help
DAnCE honour those allocation algorithm decisions by de-
riving component resource reservation mappings. DAnCE
places components on nodes and uses the reservation map-
pings to instruct the OS to provide the necessary resources
to the components.

Controllers are CCM components that implement vari-
ous control algorithms used at runtime to adapt the execu-
tion of an application’s components at runtime in response
to changing operational context and variations in resource
availability and/or demand. Example control algorithms in-
clude HySUCON [7] and FCS [10]. Controllers can make
(1) coarse-grained control decisions, which apply to many/-
all nodes in a domain and can migrate components across
nodes or reducing the priority of an operational string, and/-
or (2) fine-grained control decisions, which apply to indi-
vidual nodes in a domain and can (1) reduce the resource
allocation to sepcific component(s) on a node by modify-
ing the component’s resource reservation [?], (2) modify the
execution mode of the component and/or (3) reconfigure a
component’s priority.

The AlgorithmManager is a CCM component that se-

lects the appropriate Allocator(s) and Controller(s) that
are employed to allocate resources and manage the per-
formance of the application components in an operational
string. The selection of algorithms depends on the charac-
teristics and resource requirements conveyed in the meta-
data associated with an operational string.

Configurators are CCM components that automatically
configure the middleware settings (such as threading policy,
CORBA priority model and request processing policy) for
application components in an operational string. The input
to a Configurator includes (1) the behavioral characteris-
tics and QoS requirements of each component in an opera-
tional string and (2) the deployment plan. The Configurator
parses (1) the behavioral characteristics of the application
components to understand the invocation behavior of the
components, (2) the QoS requirements to understand the
latency and throughput of such invocations, and (3) the
deployment plan to understand the middleware resources
present in each node of a domain. The output of a Config-

urator is a configuration plan that specifies to DAnCE and
CIAO which middleware settings to configure automatically
in each node.

The Historian is a CCM component that maintains the
current mapping of resource allocations to application com-
ponents in an operational string. It also maintains informa-
tion pertaining to past successful and unsuccessful deploy-
ment and control plans. Although this information could
be stored internally within each algorithm, the Historian

supports the automated sharing of this information across
multiple algorithms to enhance reuse.
Extensibility mechanisms. Our experience developing
RACE indicates that one algorithm is not sufficient to man-
age QoS for DRE systems with many types of applications
executing on heterogeneous distributed resources. The De-

ploymentManager therefore supports multiple implementa-
tions of resource allocation and control algorithms, as shown
in Figure 4. These algorithms can differ in performance and
behavior under dynamic operating conditions and applica-
tion requirements.

The DeploymentManager uses the Component Configura-
tor pattern [17] and SwapCIAO [3] to dynamically (re)con-
figure the appropriate algorithms available to make resource
allocation and control decisions, depending on operating
conditions and application requirements. Together, this pat-
tern and SwapCIAO enable the DeploymentManager to link
and unlink its algorithm implementations at runtime with-
out having to modify, recompile, statically relink, or shut-
down or restart the RACE processes. Moreover, the abil-
ity to dynamic (un)link allocation and control algorithms
into RACE allows multiple algorithm policies to share the
same CIAO and DAnCE mechanisms, thereby simplifying
the development, integration, and comparison of multiple
allocation and control algorithms.

4. RESOLVING DRE SYSTEM REQUIRE-
MENTS WITH RACE

To evaluate the pros and cons of the RACE framework de-
scribed in Section 3, we are applying it to the science mission
application scenarios described in Section 2. Figure 5 shows
the sequence of actions performed by RACE as the intelli-
gent mission planner generates the sets of operational strings
to solve the goal(s) of the Global Precipitation Measurement

(GPM) science mission. The performance of science mis-

Figure 5: Apply RACE to the GPM Science Mission

sions depend on the application components producing the
expected data collection, quality checking, fusion, compres-
sion, and transmission in a timely manner. To ensure the
success of the mission, RACE performs following activities:
(1) allocating adequate resources at appropriate times to the
executable components of the operational strings, (2) mon-
itoring resource utilization in the system, and (3) ensuring
the QoS requirements specified for each operational string
is met. This section describes how the intelligent mission
planner and RACE work together to achieve the goals for
the GPM multi-satellite DRE system presented in Section 2.

Converting science mission goals to a sequence of
end-to-end application tasks that are represented as
operational strings. In the GPM mission, an evenly dis-
tributed constellation of satellites cover the earth’s surface
and collect precipitation data in a synchronized manner.
The intelligent mission planner employs decision-theoretic
and hierarchical task decomposition methods to operational-
ize mission goals in terms of navigation, control, data gath-
ering, data fusion, data analysis, and telemetry stream gen-
eration tasks. The planner can also incrementally generate
new task sequences (see Figure 2) in response to changing
mission goals and resource requirements, or degraded per-
formance reported by the mission and system monitors.

Describing characteristics of the generated tasks
in a standard deployment schema. The intelligent mis-
sion planner generates a nearly identical set of operational
strings for each satellite, which capture their navigation,
control, data capture, data analysis, and data transmission
behaviors. Key QoS specifications emphasize synchroniza-
tion in the data capture process. Other characteristics in-
clude the resource consumption profiles of the components,
as well as the different modes of operation of the compo-
nents. These characteristics are captured in the standard
D&C [13] specification’s deployment plan, so that all infras-
tructural components of RACE can interact using standard
interfaces and data.

Efficiently extracting component resource require-
ments from the deployment plan. RACE parses the
XML descriptors of each application component in the op-
erational string to extract application resource and QoS re-
quirements. This information is stored in an in-memory data

structure, which the XML parser exposes to the Deployment-
Manager via a strongly typed interface. RACE therefore
avoids the runtime overhead of parsing XML at each step,
yet retains the information to make allocation and control
decisions at initialization- and run-time.

Selecting the resource allocation and control al-
gorithms. The DeploymentManager parses the in-memory
data structure inputs provided by the XML parser and em-
ploys the AlgorithmManager that determines the set of Al-
locators and Controllers to use for the application com-
ponents in the operational string. RACE then automat-
ically deploys the corresponding ApplicationQoSMonitors

and ResourceMonitors into the target environment, i.e., the
appropriate satellites in the constellation.

Deploying and configuring application components.
Using the input from the (1) XML parser, (2) Application-
QoSMonitors, (3) TargetManager, (4) Allocators, and (5)
Configurators, RACE’s DeploymentManager generates the
deployment and configuration plans for the science mission’s
operational strings. Rather than generating individual de-
ployment and configuration plans for each Allocator and
Configurator pair, RACE generates a global deployment
plan and conveys this plan to the CIAO and DAnCE mid-
dleware (Section 3.1). This separation of concerns allows
RACE to use multiple Allocators without having to de-
ploy the application components itself, based on the deci-
sions made by the Allocators.

Updated application scenario. At some point, the
mother satellite may determine that a storm system is de-
veloping over the Gulf of Mexico, so operators may decide
to track this storm. As a first reorganization step, satellites
in the vicinity are asked to accelerate their data collection
rates. Meanwhile, part of the GPM system switches from
the signal space coverage to the signal isolation mode, which
reconfigures these satellites in the original constellation into
a new tightly-coupled formation to track the expected path
of the storm. The intelligent mission planner responds by
generating a new set of operational strings, and the reallo-
cation process is initiated by RACE. The control activities
RACE performs in response to these varying operational
conditions is summarized next.

System management. After application components
are deployed, RACE monitors application performance and
domain resource utilization using ApplicationQoSMonitors

and the TargetManager. The accelerated data collection
rates results in new QoS requirements for some of the ap-
plication components. If the performance of an operational
string or an individual application component falls below
the QoS performance level specified by the mission planner,
RACE’s Controllers will intervene to manage and main-
tain domain resource utilization. RACE uses the under-
lying CIAO and DAnCE middleware to fine-tune applica-
tion properties when applying the coarse-grained and fine-
grained control decisions. Similarly, when the mission plan-
ner generates a new set of operational strings to implement
the the tightly-coupled formation, RACE uses the config-
ured Allocators and Controllers to allocate resources and
manage and maintain domain resource utilization, respec-
tively.

5. RELATED WORK
As component middleware becomes more pervasive, there

has been an increase in focus on technologies, platforms, and

tools for deploying components effectively within distributed
systems. This section compares our work on RACE with
related efforts.

The Autonomic Deployment and Management Engine
(ADME) [6] provides a framework for deploying and auto-
nomically managing application components in distributed
systems. Allocating resources to application components in
ADME is framed as a constraint solving problem, where
domain resources are allocated to application components,
subject to specified constraints. ADME uses a domain-
specific constraint language called “DEclarative LAnguage
for Describing Autonomic Systems” (DELDAS) to specify
desired system performance as goals at design time. At run-
time, the ADME infrastructure deploys and manages appli-
cation components to satisfy these goals. RACE has similar
motivations as ADME, though RACE provides a pluggable
framework where multiple resource allocation and control
algorithms can be (re)configured at runtime. RACE also fo-
cuses more on the (re)deployment and (re)configuration of
QoS-enabled applications executing in DRE systems.

Plaint [1] is a tool that uses a temporal planner to manage
and reconfigure a software system. A plan is defined as a
sequence of execution steps that ensures desired system per-
formance. Plaint generates to types of plans: (1) deployment
plans that allocate resources to application components, and
(2) reconfiguration plans that dynamically reconfigure sys-
tems in response to changes in their operation that may
be attributed to factors such as external attacks that re-
sult in loss of critical application components. The output
from various planning techniques can be viewed as deploy-
ment plans and control plans that RACE can execute to
ensure desired system performance. RACE also augments
this planning approach to system reconfiguration by provid-
ing the capability to link and unlink various planning mech-
anisms at runtime to handle system reconfiguration more
transparently.

6. CONCLUDING REMARKS
This paper describes the design and application of a Re-

source Allocation and Control Engine (RACE), which is
a middleware framework that integrates multiple resource
management algorithms based on standard OMG Lightweight
CORBA Component Model (CCM) and Deployment and
Configuration capabilities for (re)deploying and (re)configuring
operational strings consisting of application components in
DRE systems. RACE manages system resource utilization
and ensures QoS requirements of operational strings are met
even under varying operational contexts and/or varying re-
source requirement/availability.

Our future work will apply CIAO, DAnCE, and RACE
to a broader range of DRE systems, including more science
applications presented in Section 2, as well as total ship com-
puting systems [16]. We are evaluating the pros and cons of
RACE qualitatively and quantitatively to document lessons
learned and pinpoint opportunities for further optimization.

7. REFERENCES
[1] N. Arshad, D. Heimbigner, and A. L. Wolf. Deployment and

Dynamic Reconfiguration Planning For Distributed Software
Systems. In Proc. of the 15th IEEE International Conference
on Tools With Artificial Intelligence (ICTAI 2003),
Sacramento, CA, USA, Nov. 2003.

[2] S. Bagchi, G. Biswas, and K. Kawamura. Task Planning under
Uncertainty using a Spreading Activation Network. IEEE
Transactions on Systems, Man, and Cybernetics,
30(6):639–650, Nov. 2000.

[3] J. Balasubramanian, B. Natarajan, D. C. Schmidt, A. Gokhale,
G. Deng, and J. Parsons. Evaluating Techniques for Dynamic
Component Updating. In International Symposium on
Distributed Objects and Applications (DOA), Agia Napa,
Cyprus, Oct. 2005.

[4] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt. A Platform-Independent
Component Modeling Language for Distributed Real-time and
Embedded Systems. In Proc. of the 11th IEEE Real-Time and
Embedded Technology and Applications Sym., San Francisco,
CA, Mar. 2005.

[5] B. J. Clement and A. C. Barrett. Coordination Challenges for
Autonomous Spacecraft. In AAMAS-02 Workshop Notes on
Towards an Application Science: MAS Problem Space and
Their Implications to Achieving Globally Coherent Behavior,
Bologna, Italy, July 2002.

[6] A. Dearle, G. N. C. Kirby, and A. J. McCarthy. A Framework
for Constraint-Based Deployment and Autonomic Management
of Distributed Applications. In ICAC, pages 300–301. IEEE
Computer Society, 2004.

[7] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu. Hybrid
Supervisory Control of Real-Time Systems. In 11th IEEE
Real-Time and Embedded Technology and Applications
Symposium, San Francisco, California, Mar. 2005.

[8] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior. In Proceedings of the 10th IEEE Real-Time
Systems Symposium (RTSS 1989), pages 166–171. IEEE
Computer Society Press, 1989.

[9] J. Liebeherr, A. Burchard, Y. Oh, and S. H.Son. New strategies
for assigning real-time tasks to multiprocessor systems. IEEE
Trans. Comput., 44(12):1429–1442, 1995.

[10] C. Lu. Feedback Control Real-Time Scheduling. PhD thesis,
University of Virginia, Charlottesville, VA, May 2001.

[11] NASA Science Mission Directorate. NASA Science Missions.
http://science.hq.nasa.gov/directorate/index.html, 2004.

[12] Object Management Group. Real-time CORBA Specification,
OMG Document formal/02-08-02 edition, Aug. 2002.

[13] Object Management Group. Deployment and Configuration
Adopted Submission, OMG Document ptc/03-07-08 edition,
July 2003.

[14] Object Management Group. Light Weight CORBA
Component Model Revised Submission, OMG Document
realtime/03-05-05 edition, May 2003.

[15] C. S. Ruf, C. M. Principe, and S. P. Neek. Enabling
Technologies to Map Precipitation with Near-Global Coverage
and Hour-Scale Revisit Times. In Proc. of IEEE Intl.
Geoscience and Remote Sensing Symposium (IGARSS),
Honolulu, HI, July 2000.

[16] D. C. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp,
and L. DiPalma. Towards Adaptive and Reflective Middleware
for Network-Centric Combat Systems. CrossTalk, Nov. 2001.

[17] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. Wiley & Sons,
New York, 2000.

[18] P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro,
and G. Duzan. Component-Based Dynamic QoS Adaptations in
Distributed Real-Time and Embedded Systems. In Proc. of the
Intl. Symp. on Dist. Objects and Applications (DOA’04),
Agia Napa, Cyprus, Oct. 2004.

[19] D. C. Sharp and W. C. Roll. Model-Based Integration of
Reusable Component-Based Avionics System. In Proc. of the
Workshop on Model-Driven Embedded Systems in RTAS
2003, May 2003.

[20] G. Silverman, K. Bhasin, L. Capots, D. Enlow, and J. Sroga.
Technology Drivers for Space-Based Science Communication. In
IEEE Military Communications Conference (MILCOM
2001), Vienna, Virginia, Oct. 2001.

[21] M. Volter, A. Schmid, and E. Wolff. Server Component
Patterns: Component Infrastructures Illustrated with EJB.
Wiley Series in Software Design Patterns, West Sussex,
England, 2002.

