
The Reactor
An Object-Oriented Wrapper for Event-Driven
Port Monitoring and Service Demultiplexing

(Part 1 of 2)

Douglas C. Schmidt
schmidt@cs.wustl.edu

http://www.cs.wustl.edu/�schmidt/
Department of Computer Science

Washington University, St. Louis 63130

An earlier version of this paper appeared in the February
1993 issue of the C++ Report.

1 Introduction

This is part one of the third article in a series that describes
techniques for encapsulating existing operating system (OS)
interprocess communication (IPC) services within object-
oriented (OO) C++ wrappers. The first article explains
the main principles and motivations for OO wrappers [1],
which simplify the development of correct, concise, portable,
and efficient applications. The second article describes an
OO wrapper called IPC SAP [2] that encapsulates the BSD
socket and System V TLI system call Application Program-
matic Interfaces (APIs). IPC SAP enables application pro-
grams to access local and remote IPC protocol families such
as TCP/IP via a type-secure, object-oriented interface.

This third article presents an OO wrapper for the I/O
port monitoring and timer-based event notification facilities
provided by the select and poll system calls.1 Both
select and poll enable applications to specify a time-out
interval to wait for the occurrence of different types of input
and output events on one or more I/O descriptors. select
and poll detect when certain I/O or timer events occur and
demultiplex these events to the appropriate application(s).
As with many other OS APIs, the event demultiplexing in-
terfaces are complicated, error-prone, non-portable, and not
easily extensible. An extensible OO framework called the
Reactorwas developed to overcome these limitations. The
Reactor provides a set of higher-level programming ab-
stractions that simplify the design and implementation of
event-driven distributed applications. The Reactor also
shields developers from many error-prone details in the ex-
isting event demultiplexing APIs and improves application
portability between different OS variants.

The Reactor is somewhat different than the IPC SAP
class wrapper described in [2]. IPC SAP added a relatively
“thin” OO veneer to the BSD socket and System V TLI
APIs. On the other hand, the Reactor provides a signif-

1The select call is available on BSD and SVR4 UNIX platforms, as
well as with the WinSock API; poll is available with System V variants of
UNIX.

icantly richer set of abstractions than those offered directly
by select or poll. In particular, theReactor integrates
I/O-based port monitoring together with timer-based event
notification to provide a general framework for demultiplex-
ing application communication services. Port monitoring
is used by event-driven network servers that perform I/O
on many connections simultaneously. Since these servers
must handle multiple connections it is not feasible to perform
blocking I/O on a single connection indefinitely. Likewise,
the timer-based APIs enable applications to register certain
operations that are periodically or aperiodically activated via
a centralized timer facility controlled by the Reactor.

This topic is divided into two parts. Part one (presented in
this article) describes a distributed logging facility that mo-
tivates the need for efficient event demultiplexing, examines
several alternative solution approaches, evaluates the advan-
tages and disadvantages of these alternatives, and compares
them with the Reactor. Part two (appearing in a subse-
quent issue of the C++ Report) focuses on the OO design
aspects of the Reactor. In addition, it discusses the design
and implementation of the distributed logging facility. This
example illustrates precisely how the Reactor simplifies
the development of event-driven distributed applications.

2 Example: A Distributed Logging Fa-
cility

To motivate the utility of event demultiplexing mechanisms,
this section describes the requirements and behavior of a dis-
tributed logging facility that handles event-driven I/O from
multiplesources “simultaneously.” As shown in Figure 1, the
distributed logging facility offers several services to applica-
tions that operate concurrently throughout a network environ-
ment. First, it provides a centralized location for recording
certain status information used to simplify the management
and tracking of distributed application behavior. To facilitate
this, the client daemon time-stamps outgoing logging records
to allow chronological tracing and reconstruction of the ex-
ecution order of multiple concurrent processes executing on
separate host machines. Second, the facility also enables the
prioritized delivery of logging records. These records are
received and forwarded by the client daemon in the order of

1

NETWORKNETWORK

int spawn (void) {
 if (ACE_OS::fork () == -1)
 ACE_ERROR (LM_ERROR,
 "unable to fork in function spawn");

SERVER

CLIENTCLIENT

TANGOTANGO

NAMED PIPE
CLIENT

LOGGING

DAEMON

P1

P3

P2

{
 if (Options::instance ()->debug())
 ACE_DEBUG (LM_DEBUG,
 "sending request to server %s",
 server_host);

HOST A HOST BTANGO MAMBO

SERVER LOGGING

DAEMON

STORAGE DEVICESTORAGE DEVICE

PR
IN

T
E

R

PR
IN

T
E

R

CLIENTCLIENT

MAMBOMAMBONAMED PIPE
CLIENT

LOGGING

DAEMON

P1

P3

P2

T
C

P

C

O
N

N
E

C
T

IO
N

CONSOLECONSOLE

Oct 29 14:50:13 1992@crimee.ics.uci.edu@22677@7@client-test::unable to fork in function spawn
Oct 31 14:50:28 1996@mambo.cs.wustl.edu@18352@2@drwho::sending request to server mambo
Oct 31 14:48:13 1996@tango.cs.wustl.edu@38491@7@client::unable to fork in function spawn

TCP CONNECTION

Figure 1: Network Environment for the Distributed Logging
Facility

their importance, rather than in the order they were originally
generated.

Centralizing the logging activities of many distributed ap-
plications within a single server is also useful since it serial-
izes access to shared output devices such as consoles, printers,
files, or network management databases. In contrast, without
such a centralized facility, it becomes difficult to monitor and
debug applications consisting of multiple concurrent pro-
cesses. For example, the output from ordinary C stdio
library subroutines (such as fputs and printf) that are
called simultaneously by multiple processes or threads is
often scrambled together when it is displayed in a single
window or console.

The distributed logging facility is designed using a
client/server architecture. The server logging daemon2 col-
lects, formats, and outputs logging records forwarded from
client logging daemons running on multiple hosts throughout
a local and/or wide-area network. Output from the logging
server may be redirected to various devices such as print-
ers, persistent storage repositories, or logging management
consoles.

As shown in Figure 1, the InterProcess Communication
(IPC) structure of the logging facility involves several lev-
els of demultiplexing. For instance, each client host in
the network contains multiple application processes (such
as P1; P2; andP3) that may participate with the distributed

2A daemon is an OS process that runs continuously “in the background,”
performing system-related services such as updating routing table entries or
handling network file system requests.

logging facility. Each participating process uses the ap-
plication logging API depicted in the rectangular boxes in
Figure 1 to format debugging traces or error diagnostics into
logging records. A logging record is an object containing
several header fields and a payload with a maximum size
of approximately 1K bytes. When invoked by an applica-
tion process, the Log Msg::log API prepends the current
process identifier and program name to the record. It then
uses the “record-oriented” named pipe IPC mechanism to
demultiplex these composite logging records onto a single
client logging daemon running on each host machine. The
client daemon prepends a time-stamp to the record and then
employs a remote IPC service (such as TCP or RPC) to de-
multiplex the record into a server logging daemon running
on a designated host in the network. The server operates in
an event-driven manner, processing logging records as they
arrive from multiple client daemons. Depending on the log-
ging behavior of the participating applications, the logging
records may be sent by arbitrary clients and arrive at the
server daemon at arbitrary time intervals.

A separate TCP stream connection is established between
each client loggingdaemon and the designated server logging
daemon. Each client connection is represented by a unique
I/O descriptor in the server. In addition, the server also
maintains a dedicated I/O descriptor to accept new connection
requests from client daemons that want to participate with the
distributedlogging facility. Duringconnection establishment
the server caches the client’s host name (illustrated by the
ovals in the logging server daemon), and uses this information
to identify the client in the formatted records it prints to the
output device(s).

The complete design and implementation of the distributed
logging facility is described in [3]. The remainder of the
current article presents the necessary background material
by exploring several alternative mechanisms for handling
I/O from multiple sources.

3 Operating System Event Demulti-
plexing

Modern operating systems such as UNIX, Windows NT,
and OS/2 offer several techniques that allow applications to
perform I/O on multiple descriptors “simultaneously.” This
section describes four alternatives and compares and con-
trasts their advantages and disadvantages. To focus the dis-
cussion, each alternative is characterized in terms of the dis-
tributed logging facility described in Section 2 above. In
particular, each section presents a skeletal server logging
daemon implemented with the alternative being discussed.
To save space and increase clarity, the examples utilize the
OO IPC SAP socket-wrapper library described in a previous
C++ Report article [2].

The handle logging record function shown in Fig-
ure 2 is also invoked by all the example server daemons.
This function is responsible for receiving and processing the

2

typedef int ACE_HANDLE;
const int ACE_INVALID_HANDLE = 1;

// Perform two recvs to simulate a message-oriented service
// via the underlying bytestream-oriented TCP connection.
// The first recv reads the length (stored as a fixed-size
// integer) of the adjacent logging record. The second recv
// then reads "length" bytes to obtain the actual record.
// Note that the sender must also follow this protocol...

ssize_t
handle_logging_record (ACE_HANDLE handle)
{

size_t msg_len;
Log_PDU log_pdu;

ssize_t n = ACE_OS::recv (handle, (char *) &msg_len,
sizeof msg_len);

if (n != sizeof msg_len)
return n;

else {
msg_len = ntohl (msg_len); // Convert byte-ordering.

n = ACE_OS::recv (handle, (char *) &log_pdu, msg_len);
if (n != msg_len)

return -1;
log_pdu.decode ();
if (log_pdu.get_len () == n)

// Obtain lock here for concurrent designs.
log_pdu.print (output_device);
// Release lock here for concurrent designs.

return n;
}

}

Figure 2: Function for Handling Logging Records

logging records and writing them to the appropriate output
device.3 Any synchronization mechanisms required to se-
rialize access to the output device(s) are also performed in
this function. In general, the concurrent multi-process and
multi-thread approaches are somewhat more complicated to
develop since output must be serialized to avoid scrambling
the logging records generated from all the separate processes.
To accomplish this, the concurrent server daemons cooperate
by using some form of synchronization mechanisms (such as
semaphores, locks, or other IPC mechanisms like FIFOs or
message queues) in the handle logging record sub-
routine.

3.1 A Non-blocking I/O Solution

One method for handling I/O on multiple descriptors in-
volves the use of “polling.” Polling operates by cycling
through a set of open descriptors, checking each one for
pending I/O activity. Figure 4 presents a code fragment that
illustrates the general structure of this approach. Initially,
an IPC SAP acceptor object is created and set into “non-
blocking mode” via the ACE SOCK Acceptor::enable
member function. Next, the main loop of the server it-
erates across the open descriptors, attempting to receive
logging record input from each descriptor. If input is
available immediately, it is read and processed. Other-
wise, the handle logging record function returns�1,
errno is set to EWOULDBLOCK, and the loop con-
tinues polling at the next descriptor. After all the open
I/O connections have been polled once, the server accepts

3Note that this implementation isn’t portable to Win32 since socket
endpoints are represented as void * HANDLEs, rather than ints.

NETWORKNETWORK

SERVERSERVER

LOGGING DAEMONLOGGING DAEMON

SERVER

HOST

LOGGING

RECORDS

LOGGING

RECORDS

CONNECTION

REQUEST

maxhandlep1maxhandlep1
acceptoracceptor

Figure 3: Nonblocking I/O Server

const u_short LOGGER_PORT = 10000;

int
main (void)
{
// Create a server end-point.
ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) LOGGER_PORT);
ACE_SOCK_Stream new_stream;

// Extract descriptor.
ACE_HANDLE s_handle = acceptor.get_handle ();
ACE_HANDLE maxhandlep1 = s_handle + 1;

// Set acceptor in non-blocking mode.
acceptor.enable (ACE_NONBLOCK);

// Loop forever performing logger server processing.
for (;;) {
// Poll each descriptor to see if logging
// records are immediately available on
// active network connections.
for (ACE_HANDLE handle = s_handle + 1;

handle < maxhandlep1;
handle++) {

ssize_t n = handle_logging_record (handle);
if (n == ACE_INVALID_HANDLE) {
if (errno == EWOULDBLOCK) // No input pending.
continue;

else ACE_DEBUG ((LM_DEBUG, "recv failed\n"));
}
else if (n == 0) {
// Keep descriptors contiguous.
ACE_OS::dup2 (handle, --maxhandlep1);
ACE_OS::close (maxhandlep1);

}
}
// Check if new connection requests have arrived.
while (acceptor.accept (new_stream) != -1) {
// Make new connection non-blocking.
new_stream.enable (ACE_NONBLOCK);
handle = new_stream.get_handle ();
ACE_ASSERT (handle + 1 == maxhandlep1);
maxhandlep1++;

}
if (errno != EWOULDBLOCK)
ACE_DEBUG ((LM_DEBUG, "accept failed"));

}
/* NOTREACHED */

}

Figure 4: A Nonblocking I/O Server (Version 1)

3

int
main (void)
{

// Create a server end-point.
ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) PORTNUM);
ACE_SOCK_Stream new_stream;

// Extract descriptor.
ACE_HANDLE s_handle = acceptor.get_handle ();
ACE_HANDLE maxhandlep1 = s_handle + 1;

fd_set in_use; // Bitmask for active descriptors.
FD_ZERO (&in_use);
FD_SET (s_handle, &in_use);

// Set acceptor SAP into non-blocking mode.
acceptor.enable (ACE_NONBLOCK);

// Loop forever performing logger server processing.
for (;;) {

// Poll each descriptor to see if logging
// records are immediately available on
// active network connections.
for (ACE_HANDLE handle = s_handle + 1;

handle < maxhandlep1;
handle++) {

ssize_t n;
if (FD_ISSET (handle, &in_use) &&

(n = handle_logging_record (handle)) == -1) {
if (errno == EWOULDBLOCK) // No input pending.

continue;
else

ACE_DEBUG ((LM_DEBUG, "recv failed"));
}
else if (n == 0) {
ACE_OS::close (handle);
FD_CLR (handle, &in_use);
if (handle + 1 == maxhandlep1) {

// Skip past unused handles.
while (!FD_ISSET (--handle, &read_handles))

continue;
maxhandlep1 = handle + 1;

}
}

}
// Check if new connection requests have arrived.
while (acceptor.accept (new_stream) != -1) {

// Make new connection non-blocking.
new_stream.enable (ACE_NONBLOCK);
handle = new_stream.get_handle ();
FD_SET (handle, &in_use);
if (handle >= maxhandlep1)
maxhandlep1 = handle + 1;

}
if (errno != EWOULDBLOCK)

ACE_DEBUG ((LM_DEBUG, "accept failed"));
}
/* NOTREACHED */

}

Figure 5: A Polling, Nonblocking I/O Server (Version 2)

NETWORK

MASTER SERVERMASTER SERVER

PROCESSPROCESS
SERVERSERVER

: logging: logging
acceptoracceptor

SLAVESLAVE

PROCESSESPROCESSES

CONNECTION

REQUEST : logging: logging
handlerhandler

: logging: logging
handlerhandler

CLIENTCLIENT

CLIENTCLIENT

CLIENTCLIENT

LOGGING

RECORDS
LOGGING

RECORDS

Figure 6: Multi-process Server

any new connection requests that have arrived and starts
polling the descriptors from the beginning again. When the
handle logging record function returns 0 (signifying
the client has closed the connection), the corresponding I/O
descriptor is closed. At this point, the server makes a dupli-
cate of the highest descriptor and stores it into the slot number
of the terminating descriptor (in order to maintain a contigu-
ous range of descriptors). In contrast, Figure 5 illustrates a
similar approach that uses an fd set bitmask to keep track
of the currently active descriptors.

The primary disadvantage with polling is that it consumes
excessive CPU cycles by making unnecessary system calls
while “busy-waiting.” For instance, if input occurs only
intermittently on the I/O descriptors, the server process will
repeatedly and superfluously poll descriptors that do not have
any pending logging records. On the other hand, if I/O is
continuously received up all descriptors, this approach may
be reasonable. In addition, an advantage with polling is that
it is portable across OS platforms.

3.2 A Multi-Process Solution

Another approach (shown in Figure 6) involves designing
the application as a “concurrent server,”4 which creates a
separate OS process to manage the communication channel
connected to each client logging daemon. Figure 7 presents
code that illustrates this technique. The main loop in the
master server blocks while listening for the arrival of new
client connection requests. When a request arrives, a sepa-
rate slave process is created via fork. The newly created
slave process performs blocking I/O on a single descriptor
in the logging handler subroutine, which receives all
logging records sent from its associated client. When the

4Concurrent servers are described in detail in [4].

4

// Handle all logging records from a particular
// client (run in each slave process).
static void
logging_handler (ACE_HANDLE handle)
{

// Perform a "blocking" receive and process
// client logging records until client shuts down
// the connection.
for (ssize_t n;

(n = handle_logging_record (handle)) > 0;)
continue;

if (n == -1)
ACE_DEBUG ((LM_DEBUG, "recv failed"));

// Shutdown the child process.
ACE_OS::exit ();

}

// Reap zombie’d children (run in the master process).
static void
child_reaper (int)
{

for (int res;
(res = ACE_OS::waitpid (-1, 0, WNOHANG)) > 0
|| (res == -1 && errno == EINTR);)

continue;
}

static void
logging_acceptor (void)
{

// Create a server end-point.
ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) LOGGER_PORT);
ACE_SOCK_Stream new_stream;

// Loop forever performing logging server processing.
for (;;) {

// Wait for client connection request and create a
// new ACE_SOCK_Stream endpoint (note, accept is
// automatically restarted after interrupts).
acceptor.accept (new_stream);

// Create a new process to handle client request.
switch (ACE_OS::fork ()) {
case -1:

ACE_DEBUG ((LM_DEBUG, "fork failed"));
break;

case 0: // In child.
acceptor.close ();
logging_handler (new_stream.get_handle ());
/* NOTREACHED */

default: // In parent.
new_stream.close ();
break;

}
}
/* NOTREACHED */

}

// Master process.
int
main (void)
{

// Set up the SIGCHLD signal handler.
sigaction sa;

// Restart interrupted system calls.
sa.sa_flags = SA_RESTART;
ACE_OS::sigemptyset (&sa.sa_mask);
sa.sa_handler = child_reaper;
// Arrange to reap deceased children.
if (ACE_OS::sigaction (SIGCHLD, &sa, 0) == -1)

ACE_ERROR_RETURN ((LM_ERROR, "sigaction"), -1);

logging_acceptor ();
}

Figure 7: A Multi-Process Server

corresponding client daemon terminates, a 0 is returned from
the recv system call, which terminates the slave process.
At this point, the OS sends a SIGCHLD signal to the master
process. The child reaper signal handler catches this
signal and “reaps” the zombie’d child’s exit status informa-
tion. Note that the occurrence of signals in the server requires
the main loop in the master process to handle interrupts cor-
rectly. On most UNIX platforms, certain system calls (e.g.,
accept) are not restarted automatically when signals occur.
An application may detect this by checking if errno con-
tains the EINTR value when the accept system call returns
ACE INVALID HANDLE.

The multiple process design has several disadvantages.
First, it may consume excessive OS resources (such as
process-table slots, one of which is allocated for each client),
which may increase the OS scheduling overhead. Second,
a context switch is typically required to restart a waiting
process when input arrives. Third, handling signals and in-
terrupted system calls properly involves writing subtle and
potentially error-prone code. For example, the sigaction
interface must be used with SVR4 to ensure that the signal
disposition remains set to the previously registered call-back
function after the first SIGCHLD signal is caught. Finally,
increased software complexity results from implementing the
mutual exclusion mechanisms that serialize access to output
devices. Given the “event-driven, discrete message” com-
munication pattern of the distributed logging facility, this
additional overhead and complexity is unnecessarily expen-
sive.

However, certain other types of network servers do ben-
efit significantly from creating separate processes that han-
dle client requests. In particular, this approach improves
the response times of servers that are either (1) I/O bound
(e.g., complicated relational database queries) or (2) involve
simultaneous, longer-duration client services that require a
variable amount of time to execute (e.g., file transfer or re-
mote login) [5]. Another advantage is that overall server
performance may be improved in an application-transparent
manner, if the underlying operating system supports multiple
processing elements effectively.

3.3 A Multi-Threaded Solution

The third approach utilizes a multi-threaded approach. The
example illustrated in Figure 9 uses the SunOS 5.x threads
library [6] to implement a multi-threaded concurrent server.
Other thread libraries (such as POSIX and Windows NT
threads) offer an equivalent solution. In the example code, a
new thread a spawned by the ACE Thread::spawn rou-
tine to handle each client connection. In addition to creating
the necessary stack and other data structures necessary to exe-
cute a separate thread of control,theACE Thread::spawn
routine calls the logging handler function. This func-
tion receives all the logging records that arrive from a particu-
lar client. Note that when a client shuts down, thethr exit
routine is used to exit the particular thread, not the entire pro-
cess.

5

NETWORK

SERVERSERVER

LOGGING DAEMONLOGGING DAEMON

CLIENTCLIENT

SERVERSERVER

: logging: logging
acceptoracceptor

: logging: logging
handlerhandler

CONNECTION

REQUEST

LOGGING

RECORDS

CLIENTCLIENT

CLIENTCLIENT

: logging: logging
handlerhandler

LOGGING

RECORDS

Figure 8: Multi-thread Server

// Handle all logging records from a particular
// client (run in each slave thread).
static void *
logging_handler (ACE_HANDLE handle)
{

ssize_t n;

// Perform a "blocking" receive and process
// client logging records until client shuts
// down the connection.
while ((n = handle_logging_record (handle)) > 0)

continue;
if (n == -1)

ACE_DEBUG ((LM_DEBUG, "recv failed"));
ACE_OS::close (handle);

// Exits thread, *not* entire process!
ACE_Thread::exit ();

}

static void
logging_acceptor (void)
{

// Create a server end-point.
ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) LOGGER_PORT);
ACE_SOCK_Stream new_stream;

// Loop forever performing logging server processing.
for (;;) {

// Wait for client connection request and create a
// new ACE_SOCK_Stream endpoint (automatically
// restarted upon interrupts).
acceptor.accept (new_stream);

// Create a new thread to handle client request.

if (ACE_Thread::spawn
(ACE_THR_FUNC (logging_handler),
(void *) new_stream.get_handle (),
THR_DETACHED | THR_NEW_LWP) != 0)

ACE_ERROR ((LM_ERROR, "thr_create failed"));
}
/* NOTREACHED */

}

// Master server.
int
main (void)
{

logging_acceptor ();
}

Figure 9: A Multi-Threaded Server

int select
(
// Maximum descriptor plus 1.
int width,
// bit-mask of "read" descriptors to check.
fd_set *readfds,
// bit-mask of "write" descriptors to check.
fd_set *writefds,
// bit-mask of "exception" descriptors to check.
fd_set *exceptfds,
// Amount of time to wait for events to occur.
struct timeval *timeout

);

Figure 10: The select Interface

int poll
(
// Array of descriptors of interest.
struct pollfd fds[],
// Number of descriptors to check.
unsigned long nfds,
// Length of time to wait, in milliseconds.
int timeout

);

Figure 11: The poll Interface

The multi-threaded approach is relatively simple to im-
plement, assuming a reasonable thread library is available,
and provides several advantages over a multi-process ap-
proach. For example, the complicated signal handling se-
mantics are no longer an issue since the server spawns new
threads as “detached.” A detached thread in SunOS 5.x never
re-synchronizes nor re-joins with the main thread of control
when it exits. Moreover, compared with a process, it may
be more efficient to create, execute, and terminate a thread,
due to a reduction in context switching overhead [7]. In
addition, sharing of global data objects is also often more
convenient since no special operations must be performed to
obtain shared memory.

Traditional operating systems (such as older versions of
UNIX and Windows) do not provide adequate support for
threads. For example, some thread variants only allow one
outstandingsystem call per-process, and others do not permit
multiple threads of control to utilize certain OS APIs (such
as sockets or RPC). In particular, many traditional UNIX and
standard C library routineswere not designed to be re-entrant,
which complicates their use in a multi-threaded application.

3.4 The Event Demultiplexing Solution

The fourth approach utilizes the event demultiplexing facili-
ties available via theselect and poll system calls. These
mechanisms overcome many limitations with the other so-
lutions described above. Both select and poll allow
network applications to wait various lengths of time for dif-
ferent types of I/O events to occur on multiple I/O descriptors
without requiring either polling or multiple process or thread
invocations. This section outlines the select and poll
system calls, sketches example implementations of the log-
ging server daemon using these two calls, and contrasts the
limitationsof the existing event demultiplexingservices with
the advantages of the Reactor OO class library.

6

3.4.1 The select and poll System Calls

The following paragraphs describe the similarities and dif-
ferences of the select system call (shown in Figure 10)
and the poll system call (shown in Figure 11). Both these
calls support I/O-based and timer-based event demultiplex-
ing. The syntax and semantics of both select and poll
are described in greater detail in [8].

Despite their different APIs, select and poll share
many common features. For example, they both wait for
various input, output, and exception5 events to occur on a
set of I/O descriptors, and return an integer value indicating
how many events occurred. In addition, both system calls en-
able applications to specify a time-out interval that indicates
the maximum amount of time to wait for I/O events to tran-
spire. The three basic time-out intervals include (1) waiting
“forever,” (i.e., until an I/O event occurs or a signal inter-
rupts the system call), (2) waiting a certain number of time
units (measured in either seconds/micro-seconds (select)
or milli-seconds (poll)), and (3) performing a “poll” (i.e.,
checking all the descriptors and returning immediately with
the results).

There are also several differences between select and
poll. For example, select uses three descriptor sets (one
for reading, one for writing, and one for exceptions), which
are implemented as bit-masks to reduce the amount of space
used. Each bit in a bit-mask corresponds to a descriptor that
may be enabled to check for particular I/O events. The poll
function, on the other hand, is somewhat more general and has
a less convoluted interface. The pollAPI includes an array
of pollfd structures, a count of the number of structures
in the array, and a timeout value. Each pollfd structure in
the array contains (1) the descriptor to check for I/O events
(a value of �1 indicates that this entry should be ignored),
(2) the event(s) of interest (e.g., various priorities of input
and output conditions) on that descriptor, and (3) the event(s)
that actually occurred on the descriptor (such as input, output,
hangups, and errors), which are enabled upon return from the
poll system call. Note that in versions of System V prior
to release 4, poll only worked for STREAM devices such
as terminals and network interfaces. In particular, it did not
work on arbitrary I/O descriptors such as ordinary UNIX files
and directories. The select and SVR4 poll system calls
operate upon all types of I/O descriptors.

3.4.2 Select-based Logging Server Example

Figure 13 illustrates a code fragment that uses the BSD
select system call to perform the main processing loop
of the server logging daemon. This server implementation
employs two descriptor sets: (1) read handles (which
keeps track of the I/O descriptors associated with active
client connections) and (2) temp handles (which is a
copy of the read handles descriptor set that is passed

5A common example of exception events are the TCP protocol’s “urgent”
data, which informs applications that special activities may have occurred
on a communication channel.

NETWORK

SERVERSERVER

LOGGING DAEMONLOGGING DAEMON

maxhandlep1maxhandlep1

read_handlesread_handles

CONNECTION

REQUEST

LOGGING

RECORDS LOGGING

RECORDS

LOGGING

RECORDS

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT CLIENTCLIENT

SERVERSERVER

acceptoracceptor

Figure 12: Select-based Server

by “value/result” to the select system call). Initially, the
only bit enabled in theread handles descriptor set corre-
sponds to the I/O descriptor that “listens” for new incoming
connection requests to arrive from client logging daemons.

After the initialization is complete, the main loop invokes
select with temp handles as its only descriptor set ar-
gument (since the server is not interested in either “write” or
“exception” events). Since the final argument is a NULL
struct timeval * NULL pointer, the select call
blocks until one or more clients send logging records or
request new connections (note that select must be man-
ually restarted if interrupts occur). When select returns,
the temp handles variable is modified to indicate which
descriptors have pending logging record data or new client
connection requests. Logging records are handled first by
iterating through the temp handles set checking for de-
scriptors that are now ready for reading (note that the se-
mantics of select guarantee that recv will not block on
this read). The recv function returns 0 when a client shuts
the connection down. This informs the main server loop to
clear the particular bit representing that connection in the
read handles set.

After all the pending logging records have been processed,
the server checks whether new connection requests have ar-
rived on the listening I/O descriptor. If one or more requests
have arrived, they are all accepted and the corresponding
bits are enabled in the read handles descriptor set. This
section of code illustrates the “polling” feature of select.
For example, if both fields in the struct timeval argu-
ment are set to 0, select will check the enabled descriptor
and return immediately to notify the application if there are
any pending connection requests. Note how the server uses
the width variable to keep track of the largest I/O descrip-
tor value. This value limits the number of descriptors that
select must inspect upon each invocation.

7

int
main (void)
{

// Create a server end-point.
ACE_SOCK_Acceptor acceptor ((ACE_INET_Addr) LOGGER_PORT);
ACE_SOCK_Stream new_stream;

ACE_HANDLE s_handle = acceptor.get_handle ();
ACE_HANDLE maxhandlep1 = s_handle + 1;

fd_set temp_handles;
fd_set read_handles;

FD_ZERO (&temp_handles);
FD_ZERO (&read_handles);
FD_SET (s_handle, &read_handles);

// Loop forever performing logging server processing.
for (;;) {

temp_handles = read_handles; // structure assignment.

// Wait for client I/O events.
ACE_OS::select (maxhandlep1, &temp_handles, 0, 0);

// Handle pending logging records first (s_handle + 1
// is guaranteed to be lowest client descriptor).
for (ACE_HANDLE handle = s_handle + 1;

handle < maxhandlep1;
handle++)

if (FD_ISSET (handle, &temp_handles)) {
ssize_t n = handle_logging_record (handle);
// Guaranteed not to block in this case!
if (n == -1)

ACE_DEBUG ((LM_DEBUG, "logging failed"));
else if (n == 0) {

// Handle client connection shutdown.
FD_CLR (handle, &read_handles);
ACE_OS::close (handle);
if (handle + 1 == maxhandlep1) {

// Skip past unused descriptors.
while (!FD_ISSET (--handle, &read_handles))

continue;
maxhandlep1 = handle + 1;

}
}

}

if (FD_ISSET (s_handle, &temp_handles)) {

// Handle all pending connection requests
// (note use of "polling" feature).
while (ACE_OS::select

(s_handle + 1, &temp_handles, 0, 0,
ACE_Time_Value::zero) > 0)

if (acceptor.accept (new_stream) == -1)
ACE_DEBUG ((LM_DEBUG, "accept"));

else {
handle = new_stream.get_handle ();
FD_SET (handle, &read_handles);
if (handle >= maxhandlep1)

maxhandlep1 = handle + 1;
}

}
}
/* NOTREACHED */

}

Figure 13: An Event Demultiplexing Server Using the select
API

// Maximum per-process open I/O descriptors.
const int MAX_HANDLES = 200;

int
main (void)
{
// Create a server end-point.
ACE_SOCK_Acceptor acceptor
((ACE_INET_Addr) LOGGER_PORT);

ACE_SOCK_Stream new_stream;

struct pollfd poll_array[MAX_HANDLES];
ACE_HANDLE s_handle = acceptor.get_handle ();

poll_array[0].fd = s_handle;
poll_array[0].events = POLLIN;

for (int nhandles = 1;;) {
// Wait for client I/O events.
ACE_OS::poll (poll_array, nhandles);

// Handle pending logging messages first
// (poll_array[i = 1].fd is guaranteed to be
// lowest client descriptor).

for (int i = 1; i < nhandles; i++) {
if (ACE_BIT_ENABLED (poll_array[i].revents, POLLIN))
{
char buf[BUFSIZ];
ssize_t n_logging_record (poll_array[i].fd);
// Guaranteed not to block in this case!.
if (n == -1)
ACE_DEBUG ((LM_DEBUG, "read failed"));

else if (n == 0) {
// Handle client connection shutdown.
ACE_OS::close (poll_array[i].fd);
poll_array[i].fd = poll_array[--nhandles].fd;

}
}

}
if (ACE_BIT_ENABLED (poll_array[0].revents, POLLIN))
{
// Handle all pending connection requests
// (note use of "polling" feature).
while (ACE_OS::poll (poll_array, 1,

ACE_Time_Value::zero) > 0)
if (acceptor.accept (new_stream, &client) == -1)
ACE_DEBUG ((LM_DEBUG, "accept"));

else {
poll_array[nhandles].fd = POLLIN;
poll_array[nhandles++].fd
= new_stream.get_handle ();

}
}

}
/* NOTREACHED */

}

Figure 14: An Event Demultiplexing Server Using the poll
API

3.4.3 Poll-based Logging Server Example

Figure 14 reimplements the main processing loop of the
server logging daemon using the System V UNIX poll sys-
tem call in place of select. Note that the overall structure
of the two servers is almost identical. However, a number
of minor modifications must be made to accommodate the
poll interface. For example, unlike select (which uses
separate fd set bitmasks for reading, writing, and excep-
tion events) poll uses a single array of pollfd structures.
In general, the pollAPI is more versatile than select, al-
lowing applications to wait for a wider-range of events (such
as “priority-band” I/O events and signals). However, the
overall complexity and total number of source lines in the
two examples is approximately the same.

8

3.4.4 Limitations with Existing Event Demultiplexing
Services

The event demultiplexing services solve several limitations
with the alternative approaches presented above. For exam-
ple, the event demultiplexing-based server logging daemon
requires neither “busy-waiting” nor separate process creation.
However, there are still a number of problems associated
with using either select or poll directly. This section
describes some of the remaining problems and explains how
the Reactor is designed to overcome these problems.

� Complicated and Error-Prone Interfaces: The inter-
faces for select and poll are very general, combining
several services such as “timed-waits” and multiple I/O event
notification within a single system call entry point. This gen-
erality increases the complexity of learning and using the
I/O demultiplexing facilities correctly. The Reactor, on
the other hand, provides a less cryptic API consisting of
multiple member functions, each of which performs a single
well-defined activity.

In addition, as with many OS APIs, the I/O demultiplex-
ing facilities are weakly-typed. This increases the potential
for making common mistakes such as not zeroing-out the
fd set structure before enabling the I/O descriptor bits,
forgetting that the width argument to select or poll
is actually the “maximum enabled I/O descriptor plus 1,”
or neglecting to set the value of the fd field of a struct
pollfd to�1 if that I/O descriptor value should be ignored
when calling poll.

Since applications built upon the Reactor framework
do not access select or poll directly, it is not possible to
accidentally misuse these underlying system calls. Moreover,
the Reactor may be used in conjunction with the strongly-
typed local and remote communication services provided by
the IPC SAP wrapper library [2]. This further reduces the
likelyhood for type errors to arise at run-time.

� Low-Level Interfaces: The select interface is rather
low-level, requiring programmers to manipulate up to three
different descriptor set bit-masks. Moreover, these bit-masks
are passed to theselect call using “value/result” parameter
semantics. Therefore, as shown in Figure 13, the server code
must explicitly store the original descriptor set in a scratch
variable, pass this variable to the select call (which may
modify it), examine the results to determine which descriptors
became enabled, and potentially update the original descrip-
tor set. The code to implement this logic tends to be tedious
and prone to subtle errors such as mistakenly updating bits
in the wrong descriptor set.

The Reactor, on the other hand, completely shields
application programmers from such low-level details. As
shown in Figure 15, instead of manipulating descriptor set bit-
masks, inheritance is used to derive and instantiate composite
objects (called “Event Handlers”) that perform certain
application-defined actions when certain types of events oc-
cur. Once instantiated, these Event Handler objects are
registered with the Reactor. The Reactor arranges to

:: Reactor Reactor

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

OS EVENT DEMULTIPLEXING INTERFACE

:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Logging: Logging
HandlerHandler

1: handle_input()1: handle_input()

: Event: Event
HandlerHandler

: Logging: Logging
HandlerHandler

: Event: Event
HandlerHandler

: Logging: Logging
AcceptorAcceptor

Figure 15: Registering Objects with the Reactor

“call-back” the appropriate member function(s) when (1) I/O
events occur on the descriptor associated with the registered
object or (2) when timer-based events expire.

Figure 16 depicts the main event-loop of the Reactor-
based logging server. In this example, a com-
posite class called Logging Acceptor is derived
from the Event Handler base class. An instance
of this class is then constructed and registered with
the Reactor. After registration, the server ini-
tiates an event-loop that automatically dispatches the
Logging Acceptor::handle input member func-
tion when connection requests arrive. A subsequent ar-
ticle [3] describes the design and implementation of the
Logging Acceptor and Logging Handler classes
and other components used to implement the Reactor in
greater detail.

Non-Portable Interfaces: Although event demultiplexing
is not part of the POSIX standard, System V Release 4,
BSD UNIX, and WINSOCK all support the select API.
However, BSD UNIX and WINSOCK do not support poll.
Likewise, versions of System V prior to Release 4 do not
support select. Therefore, it is difficult to write portable
code that uses event demultiplexing since there are several
competing “standards” to choose from,(i.e., BSD and System
V UNIX). This often increases the complexity of develop-
ing and maintaining application source code since achieving
portability may require the use of conditional compilation
that is parameterized by the host OS type.

The Reactor, on the other hand, provides a consistent
API available across OS platforms. This API not only pro-
vides a higher level programming abstraction,but also shields
application programs from lexical and syntactic incompati-
bilities exhibited by the select and poll demultiplex-
ing mechanisms. Therefore, applications need not maintain
multiple source versions or try to merge the event demulti-

9

class Logging_Acceptor : public ACE_Event_Handler
{
public:

// The following two member functions override
// the virtual functions in the ACE_Event_Handler.
virtual ACE_HANDLE get_handle (void) const
{

return this->acceptor_->get_handle ();
}
virtual int handle_input (ACE_HANDLE handle);
// See next article for additional details...

private:
ACE_SOCK_Acceptor acceptor_;

};

const int LOGGER_PORT = 10000;

int
main (void)
{

// Reactor object.
ACE_Reactor reactor;

Logging_Acceptor
acceptor ((ACE_INET_Addr) LOGGER_PORT);

reactor.register_handler (&acceptor);

// Loop forever handling logging events.
for (;;)

reactor.handle_events ();
}

Figure 16: Main Event Loop for Reactor-Based Server Log-
ging Daemon

NETWORK

: Logging: Logging
AcceptorAcceptor

: Logging: Logging
HandlerHandler : Logging: Logging

HandlerHandler

SERVER

LOGGING DAEMON

LOGGING

RECORDS

LOGGING

RECORDS

CONNECTION

REQUEST
CLIENTCLIENT

SERVERSERVER

: Reactor: Reactor

CLIENTCLIENT
CLIENTCLIENT

Figure 17: Reactor-based Server

plexing functionality illustrated in Figure 13 and Figure 14
within a single subroutine-based API. Instead, the Reactor
enables developers to write applications that utilize a single
uniform and extensible OO API, which is then mapped onto
the appropriate underlying event demultiplexing interface.
In this approach, conditional linking may be used in place of
conditional compilation to support both select and poll
implementations simultaneously.

Non-Extensible Interfaces: With the event demultiplex-
ing solutions shown in Figure 13 and Figure 14, it is nec-
essary to directly modify the original demultiplexing loop
in order to modify or extend application services. With the
Reactor, on the other hand, the existing infrastructure code
is not modified when applications change their behavior. In-
stead, inheritance is used to create a new derived class that
is instantiated, registered, and invoked automatically by the
Reactor to perform the appropriate operations.

4 Summary

This article presents the background material necessary to
understand the behavior, advantages, and disadvantages of
existing UNIX mechanisms for handling multiple sources of
I/O in a network application. An OO wrapper called the
Reactor has been developed to encapsulate and overcome
the limitations with the select and poll event demulti-
plexing system calls. The object-oriented design and imple-
mentation of the Reactor is explored in greater detail in
part two of this article (appearing in the next C++ Report). In
addition to describing the class relationships and inheritance
hierarchies, the follow-up article presents an extended ex-
ample involving the distributed logging facility. This exam-
ple illustrates how the Reactor simplifies the development
of event-driven network servers that manage multiple client
connections simultaneously.

References

[1] D. C. Schmidt, “Systems Programming with C++ Wrap-
pers: Encapsulating Interprocess Communication Ser-
vices with Object-Oriented Interfaces,” C++ Report,
vol. 4, September/October 1992.

[2] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface
to Interprocess Communication Services,” C++ Report,
vol. 4, November/December 1992.

[3] D. C. Schmidt, “The Object-Oriented Design and Im-
plementation of the Reactor: A C++ Wrapper for UNIX
I/O Multiplexing (Part 2 of 2),” C++ Report, vol. 5,
September 1993.

[4] W. R. Stevens, UNIX Network Programming. Engle-
wood Cliffs, NJ: Prentice Hall, 1990.

[5] D. E. Comer and D. L. Stevens, Internetworking with
TCP/IP Vol III: Client – Server Programming and Ap-
plications. Englewood Cliffs, NJ: Prentice Hall, 1992.

10

[6] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shiv-
alingiah, M. Smith, D. Stein, J. Voll, M. Weeks, and
D. Williams, “Beyond Multiprocessing... Multithread-
ing the SunOS Kernel,” in Proceedings of the Summer
USENIX Conference, (San Antonio, Texas), June 1992.

[7] A. D. Birrell, “An Introduction to Programming with
Threads,” Tech. Rep. SRC-035, Digital Equipment Cor-
poration, January 1989.

[8] W. R. Stevens, Advanced Programming in the UNIX En-
vironment. Reading, Massachusetts: Addison Wesley,
1992.

11

