
Software Architectures for Reducing Priority Inversion
and Non-determinism in Real-time Object Request Brokers

Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and Aniruddha Gokhale
fschmidt,sumedh,sergio,gokhaleg@cs.wustl.edu

Department of Computer Science, Washington University
St. Louis, MO 63130, USA�

Abstract

There is increasing demand to extend Object Request Bro-
ker (ORB) middleware to support applications with stringent
real-time requirements. However, conventional ORBs, such
as OMG CORBA, exhibit substantial priority inversion and
non-determinism, which makes them unsuitable for applica-
tions with deterministic real-time requirements. This paper
provides two contributions to the study and design of real-time
ORB middleware. First, it illustrates empirically why conven-
tional ORBs do not yet support real-time quality of service.
Second, it describes software architectures that reduce prior-
ity inversion and non-determinism in real-time CORBA ORBs.
The results presented in this paper demonstrate the feasibil-
ity of using standard OO middleware like CORBA over COTS
hardware and software.

Keywords: Real-time CORBA Object Request Broker, QoS-
enabled OO Middleware, Performance Measurements

1 Introduction

1.1 Emerging Trends in Distributed Real-time
Systems

Next-generation distributed and real-time applications, such
as video-on-demand, teleconferencing, and avionics, require
endsystems that can provide statistical and deterministic qual-
ity of service (QoS) guarantees for latency [1], bandwidth, and
reliability [2]. The following trends are shaping the evolution
of software development techniques for these distributed real-
time applications and endsystems:

Increased focus on middleware and integration frame-
works: There is a general industry trend away frompro-
gramming real-time applications from scratch tointegrat-

�This work was supported in part by Boeing, CDI, DARPA contract
9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, and US
Sprint.

ing applications using reusable components based on object-
oriented (OO) middleware [3].

Increased focus on QoS-enabled components and open sys-
tems: There is increasing demand for remote method invo-
cation and messaging technology to simplify the collaboration
of open distributed application components [4] that possess
stringent QoS requirements.

Increased focus on standardizing real-time middleware:
Several international efforts are currently addressing QoS for
OO middleware. The most prominent is the OMG CORBA
standardization effort [5]. CORBA is OO middleware that al-
lows clients to invoke operations on objects without concern
for where the objects reside, what language the objects are
written in, what OS/hardware platform they run on, or what
communication protocols and networks are used to intercon-
nect distributed objects [6].

There has been recent progress towards standardizing [7, 8]
real-time CORBA. Several OMG groups, most notably the
Real-Time Special Interest Group (RT SIG), are actively inves-
tigating standard extensions to CORBA to support distributed
real-time applications. The intent of the real-time CORBA
standardization effort is to enable real-time applications to in-
terwork throughout embedded systems and heterogeneous dis-
tributed environments.

Notwithstanding the significant efforts of the OMG RT SIG,
however, developing and standardizing distributed real-time
CORBA ORBs remains hard. There are few successful exem-
plars of standard, commercially available distributed real-time
ORB middleware. In particular, conventional CORBA ORBs
are not well suited for performance-sensitive, distributed real-
time applications due to (1) lack of QoS specification inter-
faces, (2) lack of QoS enforcement, (3) lack of real-time pro-
gramming features, and (4) general lack of performance and
predictability [9].

Although some operating systems, networks, and protocols
now support real-time scheduling, they do not provide inte-
grated end-to-end real-time ORB endsystem solutions [10].
Moreover, relatively little systems research has focused on

1

strategies and tactics for real-time CORBA. In particular, QoS
research at the network and OS layers has not addressed key
requirements and programming aspects of CORBA middle-
ware. For instance, research on QoS for ATM networks has
focused largely on policies for allocating bandwidth on a vir-
tual circuit basis [11]. Likewise, research on real-time op-
erating systems has focused largely on avoiding priority in-
versions in synchronization and dispatching mechanisms for
multi-threaded applications [12].

1.2 Towards Real-time CORBA

We believe that developing real-time OO middleware requires
a systematic, measurement-driven methodology to identify
and alleviate sources of ORB endsystem overhead, priority
inversion, and non-determinism. The ORB software archi-
tectures presented in this paper are based on our experience
developing, profiling, and optimizing next-generation avion-
ics [13] and telecommunications [14] systems using real-time
OO middleware such as ACE [15] and TAO [10].

ACE is an OO framework that implements core concurrency
and distribution patterns [16] for communication software. It
provides reusable C++ wrapper facades and framework com-
ponents that support high-performance, real-time applications.
ACE runs on a wide range of OS platforms, including Win32,
most versions of UNIX, and real-time operating systems like
VxWorks, Chorus Classix, pSoS, and LynxOS.

TAO is a highly extensible, ORB endsystem written using
ACE. It is targeted for applications with deterministic and sta-
tistical QoS requirements, as well as best effort requirements.
TAO is fully compliant with the latest OMG CORBA specifi-
cations [17] and is the first standard CORBA ORB endsystem
that can support end-to-end QoS guarantees over ATM net-
works.

The TAO project focuses on the following topics related to
real-time CORBA and ORB endsystems:

� Identifying enhancements to standard ORB specifica-
tions, such as OMG CORBA, that will enable applica-
tions to specify their QoS requirements concisely to ORB
endsystems [18].

� Empirically determining the features required to build
real-time ORB endsystems that can enforce determinis-
tic and statistical end-to-end applications QoS guaran-
tees [10].

� Integrating the strategies for I/O subsystem architectures
and optimizations [19] with ORB endsystems to provide
end-to-end bandwidth, latency, and reliability guarantees
to distributed applications.

� Capturing and documenting the key design patterns [20]
necessary to develop, maintain, configure, and extend

real-time ORB endsystems.

Our earlier work on CORBA and TAO explored several di-
mensions of real-time ORB endsystem design including real-
time scheduling [10], real-time request demultiplexing [21],
real-time event processing [13], and real-time I/O subsystem
integration [19]. This paper focuses on a previously unexam-
ined point in the real-time ORB endsystem design space:soft-
ware architectures that significantly reduce priority inversion
and non-determinism in CORBA ORB Core implementations.

An ORB Core is the component in the CORBA reference
model that manages transport connections, delivers client re-
quests to an Object Adapter, and returns responses (if any) to
clients. The ORB Core also typically implements the transport
endpoint demultiplexing and concurrency architecture used by
applications. Figure 1 illustrates how an ORB Core interacts
with other CORBA components. Appendix A describes each

DIIDII ORBORB
INTERFACEINTERFACE

ORBORB
CORECORE

operation()operation()

OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON

DSIDSI

in argsin args

out args + return valueout args + return value

CLIENTCLIENT

GIOPGIOP//IIOPIIOP

SERVANTSERVANT

STANDARD INTERFACESTANDARD INTERFACE STANDARD LANGUAGESTANDARD LANGUAGE

MAPPINGMAPPING

ORB-ORB-SPECIFIC INTERFACESPECIFIC INTERFACE STANDARD PROTOCOLSTANDARD PROTOCOL

IDLIDL
STUBSSTUBS

Figure 1: Components in the CORBA Reference Model

of these components in more detail.

This paper is organized as follows: Section 2 outlines the
general factors that impact real-time ORB endsystem perfor-
mance and predictability; Section 3 describes software archi-
tectures for real-time ORB Cores, focusing on alternative ORB
Core concurrency and connection architectures; Section 4
presents empirical results from systematically measuring the
efficiency and predictability of alternative ORB Core architec-
tures in four contemporary CORBA implementations: COR-
BAplus, miniCOOL, MT-Orbix, and TAO; Section 5 compares
our research with related work; and Section 6 presents con-
cluding remarks.

2

2 Factors Impacting Real-time ORB
Endsystem Performance

Meeting the QoS needs of next-generation distributed appli-
cations requires much more than defining IDL interfaces or
adding preemptive real-time scheduling into an OS. It requires
a vertically and horizontally integratedORB endsystem archi-
tecturethat can deliver end-to-end QoS guarantees at multi-
ple levels throughout a distributed system. The key levels
in an ORB endsystem include the network adapters, OS I/O
subsystems, communication protocols, ORB middleware, and
higher-level services.

The main thrust of this paper is on software architectures
that are suitable for real-time ORB Cores. For complete-
ness, Section 2.1 briefly outlines the general sources of over-
head in ORB endsystems. Section 2.2 then describes the key
sources of priority inversion and non-determinism that affect
real-time ORB endsystems. After this overview, Section 3 fo-
cuses specifically on alternative ORB Core concurrency and
connection architectures.

2.1 General Sources of ORB Endsystem Over-
head

Our prior experience [21, 22, 23] measuring the throughput
and latency of CORBA ORBs indicated that the performance
overhead of real-time ORB endsystems stems from inefficien-
cies in the following components:

1. Network connections and network adapters: These
endsystem components handle heterogeneous network con-
nections and bandwidths, which can significantly affect laten-
cies and cause variability in performance. Inefficient design
of network adapters can cause queueing delays and lost pack-
ets [24], which are unacceptable in many real-time systems.

2. Communication protocol implementations and integra-
tion with the I/O subsystem and network adapters: Ineffi-
cient protocol implementations and improper integration with
I/O subsystems can adversely affect endsystem performance.
Specific factors that cause problems include the protocol over-
head caused by flow control, congestion control, retransmis-
sion strategies, and connection management. Likewise, lack of
proper I/O subsystem integration yields excessive data copy-
ing, fragmentation, reassembly, context switching, synchro-
nization, checksumming, demultiplexing, marshaling, and de-
marshaling overhead [25].

3. ORB transport protocol implementations: Inefficient
implementations of ORB transport protocols such as the
CORBA Internet inter-ORB protocol (IIOP) [5] and Simple
Flow Protocol (SFP) [26] can cause performance overhead and

priority inversions. Specific factors responsible for these in-
versions include improper connection management strategies,
inefficient sharing of endsystem resources, and excessive syn-
chronization overhead in ORB protocol implementations.

4. ORB Core implementations and integration with
OS services: The design of an ORB Core can yield
excessive memory accesses, cache misses, heap alloca-
tions/deallocations, and context switches [27]. In turn, these
factors can increase latency and jitter, which is unaccept-
able for distributed systems with deterministic real-time re-
quirements. Specific factors that can cause problems include:
data copying, fragmentation/reassembly, context switching,
synchronization, checksumming, socket demultiplexing, timer
handling, request demultiplexing, marshaling/demarshaling,
framing, error checking, connection and concurrency archi-
tectures. Many of these problems are similar to those listed in
bullet 2 above. Because they occur at the user-level rather than
at the kernel-level, however, it can be easier for ORB imple-
menters to solve them portably.

Figure 2 pinpoints where these various factors impact ORB
performance and where optimizations can be applied to reduce
key sources of ORB endsystem overhead, priority inversion,
and non-determinism. Below, we focus on the sources of over-

NETWORK

OS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

ORBORB
INTERFACEINTERFACE

ORBORB
CORECORE

operation()operation()

IDLIDL
STUBSSTUBS

OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON

in args

out args + return value

CLIENT

GIOP

SERVANT

CONNECTIONCONNECTION

MANAGEMENTMANAGEMENT

CONCURRENCYCONCURRENCY

MODELSMODELS

TRANSPORTTRANSPORT

PROTOCOLSPROTOCOLS

I/OI/O
SUBSYSTEMSUBSYSTEM

NETWORKNETWORK

ADAPTERADAPTER

PRESENTATIONPRESENTATION

LAYERLAYER

SCHEDULINGSCHEDULING,,
DEMUXINGDEMUXING,, &&
DISPATCHINGDISPATCHING

DATADATA

 COPYING COPYING

Figure 2: Optimizing Real-time ORB Endsystem Performance

head in ORB endsystems that are chiefly responsible for pri-
ority inversions and non-determinism.

2.2 Sources of Priority Inversion and Non-
determinism in ORB Endsystems

Sources of priority inversion and non-determinism in ORB
endsystems generally stem from resources that are shared by
multiple threads or processes. Common examples of shared
ORB endsystem resources include (1) TCP connections used
by CORBA IIOP, (2) threads used to transfer requests through
client and server end-points, (3) process-wide dynamic mem-

3

ory managers, and (4) internal ORB data structures like con-
nection tables and socket/request demultiplexing maps. Be-
low, we describe key sources of priority inversion and non-
determinism in conventional ORB endsystems.

2.2.1 I/O Subsystem

The I/O subsystems of general-purpose operating systems,
such as Solaris and Windows NT, do not perform preemptive,
prioritizedprotocol processing [19]. In particular, the protocol
processing of lower priority packets isnotdeferred due to the
arrival of higher priority packets. Instead, incoming packets
are processed by their arrival order rather than by their prior-
ity.

For instance, if a low-priority request arrives immediately
before a high priority request, the I/O subsystem will process
the lower priority packet and pass it to an application servant
before the higher priority packet. The time spent in the low-
priority servant represents the degree of ORB priority inver-
sion.

[19] examines key issues that cause priority inversion in I/O
subsystems and describes how TAO’s real-time I/O subsystem
avoids priority inversion by co-scheduling pools of user-level
and kernel-level real-time threads. Interestingly, the results in
Section 4 illustrate that the majority of the overhead, priority
inversion, and non-determinism in ORB endsystems doesnot
stem from the I/O subsystem but instead from the software
architecture of the ORB Core.

2.2.2 ORB Core

A CORBA ORB Core implements the general inter-ORB pro-
tocol (GIOP) [5], which defines a standard format for inter-
operating between (potentially heterogeneous) ORBs. ORB
Core mechanisms establish connections and implement the
concurrency architecture to process GIOP requests. The fol-
lowing discussion outlines common sources of priority inver-
sion and non-determinism in conventional ORB Core imple-
mentations.

Connection architecture: The ORB Core’s architecture for
managing connections has a major impact on real-time ORB
behavior. Therefore, a key challenge for developers of real-
time ORBs is to select a connection architecture that can ef-
ficiently and predictably utilize the transport mechanisms of
an ORB endsystem. The following discussion outlines the key
sources of priority inversion and non-determinism exhibited
by conventional ORB Core connection architectures:

� Dynamic connection management: Conventional
ORBs typically create connections dynamically in response
to client requests. However, dynamic connection manage-
ment can incur significant run-time overhead and priority in-

version. For instance, a high-priority client may need to wait
for the connection establishment of a lower-priority client. In
addition, the time required to establish connections can vary
widely, ranging from hundreds of microseconds to millisec-
onds, depending on endsystem load and network congestion.

Connection establishment overhead is hard to bound. For
instance, if an ORB needs to dynamically establish connec-
tions between the client and server, it is hard to provide a
reasonable guarantee of the worst-case execution time since
this time also includes the (variable) connection establishment
time. Moreover, connection establishment often occurs out-
side the scope of general end-to-end OS QoS enforcement
mechanisms [28]. To support applications with deterministic
real-time QoS requirements, therefore, it is generally neces-
sary for ORB endsystems to pre-allocate connectionsa priori.

� Connection multiplexing: Conventional ORB Cores
typically use a single TCP connection for all object references
to a server process that are accessed by threads in a client
process. Thisconnection multiplexingis shown in Figure 3.
The goal of connection multiplexing is to minimize the num-

SERVERSERVER
ORBORB CORECORE

II//OO SUBSYSTEMSUBSYSTEM

II//OO SUBSYSTEMSUBSYSTEM

COMMUNICATIONCOMMUNICATION LINKLINK

II//OO SUBSYSTEMSUBSYSTEM

SERVANTSSERVANTS

ONEONE TCPTCP

CONNECTIONCONNECTION

CLIENTCLIENT
ORB CORE

 APPLICATION

Figure 3: A Multiplexed Connection Architecture

ber of connections open to each server, which is commonly
used to build scalable servers over TCP. However, connec-
tion multiplexing can yield substantial packet-level priority
inversions and synchronization overhead, as shown in Sec-
tions 4.2.1 and 4.2.2.

Concurrency architecture: The ORB Core’s concurrency
architecture has a substantial impact on its real-time behavior.
Therefore, another key challenge for developers of real-time
ORBs is to select a concurrency architecture that correctly
shares the aggregate processing capacity of an ORB endsys-
tem and its application operations in one or more threads of
control. The following outlines the key sources of priority in-
version and non-determinism exhibited by conventional ORB
Core concurrency architectures:

� Twoway operation reply processing: On the client-
side, conventional ORB Core concurrency architectures for
twoway operations can incur significant priority inversion. For
instance, multi-threaded ORB Cores that use connection mul-
tiplexing incur priority inversions when low-priority threads

4

awaiting replies from a server block out higher priority threads
awaiting replies from the same server.

� Thread pools: On the server-side, ORB Core concur-
rency architectures often usethread poolsto select a thread to
process an incoming request. However, conventional ORBs do
not provide programming interfaces to allow real-time appli-
cations to determine the priority of threads in this pool. There-
fore, the priority of a thread in the pool is often inappropriate
for the priority of the servant that ultimately executes the re-
quest, thereby increasing the potential for priority inversion.

2.2.3 Object Adapter

A standard GIOP-compliant client request contains the iden-
tity of its remote object and remote operation. A remote ob-
ject is represented by an object keyoctet sequence and a
remote operation is represented as astring . Conventional
ORBs demultiplex client requests to the appropriate operation
of the servant implementation using the steps shown in Fig-
ure 4.

2:2: DEMUX TO DEMUX TO

 I/OI/O HANDLE HANDLE

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

KK

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

22

.........

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

11

.........

.........IDL

SKEL 1
IDLIDL

SKEL SKEL 22
IDLIDL

SKEL SKEL MM

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

SERVANT SERVANT 11 SERVANT SERVANT 22 SERVANT SERVANT NN

5:5: DEMUX TO DEMUX TO

 SKELETON SKELETON

6:6: DEMUX TO DEMUX TO

 OPERATION OPERATION

1:1: DEMUX THRU DEMUX THRU

 PROTOCOL STACK PROTOCOL STACK

4:4: DEMUX TO DEMUX TO

 SERVANT SERVANT

LAYERED

DEMUXING

ORB COREORB CORE

OBJECT ADAPTER

3:3: DEMUX TO DEMUX TO

 OBJECT ADAPTER OBJECT ADAPTER

Figure 4: Layered CORBA Request Demultiplexing

These steps perform the following tasks:

Steps 1 and 2: The OS protocol stack demultiplexes the in-
coming client request multiple times,e.g., through the data
link, network, and transport layers up to the user/kernel bound-
ary and the ORB core.

Steps 3, 4, and 5: The ORB core uses the addressing in-
formation in the client’s object key to locate the appropriate
Object Adapter, servant, and the skeleton of the target IDL op-
eration.

Step 6: The IDL skeleton locates the appropriate operation,
demarshals the request buffer into operation parameters, and
performs the operation upcall.

In general, layered demultiplexing is inappropriate for high-
performance and real-time applications for the following rea-
sons [29]:

Decreased efficiency: Layered demultiplexing reduces per-
formance by increasing the number of internal tables that must
be searched while incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing
client requests through all these layers is expensive, particu-
larly when a large number of operations appear in an IDL in-
terface and/or a large number of servants are managed by an
ORB.

Increased priority inversion and non-determinism: Lay-
ered demultiplexing can cause priority inversions because
servant-level QoS information is inaccessible to the lowest-
level device drivers and protocol stacks in the I/O subsystem
of an ORB endsystem. Therefore, the Object Adapter may
demultiplex packets according to their FIFO order of arrival.
FIFO demultiplexing can cause higher priority packets to wait
for an indeterminate period of time while lower priority pack-
ets are demultiplexed and dispatched.

Conventional implementations of CORBA incur significant
demultiplexing overhead. For instance, [22, 30] show that con-
ventional ORBs spend�17% of the total server time process-
ing demultiplexing requests. Unless this overhead is reduced
and demultiplexing is performed predictably, ORBs cannot
provide uniform quality of service guarantees to applications.

[21] presents alternative ORB demultiplexing techniques
and describes how TAO’s real-time Object Adapter provides
optimal demultiplexing strategies that execute deterministi-
cally in constant time and avoid priority inversion via de-
layered demultiplexing.

3 Alternative ORB Core Concurrency
and Connection Architectures

This section describes alternative ORB Core concurrency and
connection architectures. Each of these architectures is used
by one or more commercial or research CORBA implementa-
tions. Below, we qualitatively evaluate how each architecture
manages the aggregate processing capacity of ORB endsys-
tem components and application operations. Section 4 then
presents quantitative results that illustrate how efficient and
predictable these alternatives are in practice.

5

3.1 Alternative ORB Core Connection Archi-
tectures

There are two general strategies for structuring connection ar-
chitecture in an ORB Core:multiplexedandnon-multiplexed.
We describe and evaluate various design alternatives for each
approach below, focusing on client-side connection architec-
tures for our examples.

3.1.1 Multiplexed Connection Architectures

Many ORBs multiplex client requests from a single process
through one TCP connection to its corresponding server pro-
cess. This architecture is commonly used to build scalable
ORBs by minimizing the number of TCP connections open to
each server. When multiplexing is used, the key challenge is
to design an efficient ORB Core connection architecture that
supports concurrent reads and writes.

Multiple threads cannot portably read or write from the
same socket concurrently because TCP provides untyped
bytestream data transfer semantics. Therefore, concurrent
write requests to a socket shared within an ORB process must
be serialized. Serialization is typically implemented by having
all client threads in a process acquire a lock before writing to
a shared socket.

For oneway operations, there is no need for additional lock-
ing or processing once a request is sent. Implementing twoway
operations over a shared connection is more complicated,
however. In this case, the ORB Core must support concurrent
read access to a shared socket endpoint.

If server replies are multiplexed through a single connec-
tion then multiple threads cannot read simultaneously from
that socket endpoint. Instead, the ORB Core must demultiplex
incoming replies to the appropriate client thread by using the
GIOP sequence number sent with the original client request
and returned with the servant’s reply.

Several common ways of implementing connection mul-
tiplexing to allow concurrent read and write access are de-
scribed below.

Active connection architecture: One approach is theactive
connectionarchitecture shown in Figure 5. An application
thread (1) invokes a twoway operation, which enqueues the
request in the ORB (2). A separate thread in the ORB Core
services this queue (3) and performs a write operation on the
multiplexed socket. The ORB threadselect s1 (4) on the
socket waiting for the server to reply, reads the reply from the
socket (5), and enqueues the reply in a message queue (6). Fi-
nally, the application thread retrieves the reply from this queue
(7) and returns back to its caller.

1Theselect call is typically used since a client may have multiple mul-
tiplexed connections to multiple servers.

II//OO SUBSYSTEMSUBSYSTEM

 APPLICATIONAPPLICATION

4: select()4: select()

7: dequeue()7: dequeue()
& return& return

6: enqueue()6: enqueue()

5: read()5: read()

1: invoke_twoway()1: invoke_twoway()

REQUESTREQUEST

QUEUESQUEUES

2: enqueue()2: enqueue()

3: dequeue()3: dequeue()
& write()& write()

Figure 5: Active Connection Architecture

The advantage of the active connection architecture is that
it simplifies the ORB connection architecture implementation
by using a uniform queueing mechanism. In addition, if every
socket handles packets of the same priority level,i.e., pack-
ets of different priorities are not received on the same socket,
the active connection can handle these packets in FIFO order
without causing priority inversion.

The disadvantage with this architecture, however, is that the
active connection forces an extra context switch on all out-
going/incoming operations. As a result, many ORBs use a
variant of this model called theleader/followerconnection ar-
chitecture, which is described next.

Leader/followers connection architecture: An alternative
to the active connection approach is theleader/followersar-
chitecture shown in Figure 6. As before, an application thread

II//OO SUBSYSTEMSUBSYSTEM

 APPLICATIONAPPLICATION

ORBORB CORECORE

SEMAPHORESSEMAPHORES

LEADERLEADER FOLLOWERSFOLLOWERS

3: select()3: select()

6: return()6: return()

5: release()5: release()

4: read()4: read()

B
O

R
R

O
W

E
D

 T
H

R
E

A
D

B
O

R
R

O
W

E
D

 T
H

R
E

A
D

S

1: invoke_twoway()

2: write()

Figure 6: Leader/Follower Connection Architecture

6

invokes a twoway operation call (1). Rather than enqueueing
the request in an ORB message queue, however, the request is
sent across the socket immediately (2), using the thread of the
application to perform the write. Moreover, no single thread
in the ORB Core is dedicated to handling all the socket I/O in
the leader/follower architecture. Instead, the first thread that
attempts to wait for a reply on the multiplexed connection will
block inselect waiting for a reply (3). This thread is called
the leader.

To avoid corrupting the socket bytestream, only the one
leader thread canselect on the socket(s). Thus, all client
threads that “follow the leader” to read replies from the shared
socket will block on semaphores managed in FIFO order by
the ORB Core. If replies return from the server in FIFO order
this strategy is optimal since there is no unnecessary process-
ing or context switching. However, replies may arrive in non-
FIFO order. For instance, the next reply arriving from a server
could be for any one of the threads blocked on semaphores.

When the next reply arrives from the server, the leader reads
the reply (4). It uses the sequence number returned in the
GIOP reply header to identify the correct thread to receive the
reply. If the reply is for the leader’s own request, the leader
releases the semaphore of the next follower (5) and returns to
its caller (6). The next follower becomes the new leader and
blocks onselect .

If the reply isnot for the leader, however, the leader must
signal the semaphore of the appropriate thread. The signaled
thread then wakes up, retrieves its reply, and returns to its
caller. Meanwhile, the leader thread continues toselect for
the next reply.

Compared with active connections, the advantage of the
leader/follower connection architecture is that it minimizes the
number of context switches incurredif replies arrive in FIFO
order. The drawback, however, is that the complex implemen-
tation logic can yield significant locking overhead and prior-
ity inversion. The locking overhead stems from the need to
acquire mutexes when sending requests and to block on the
semaphores while waiting for replies. The priority inversion
occurs if the priority of the waiting threads is not considered
by the leader thread when it demultiplexes replies to client
threads.

3.1.2 Non-multiplexed Connection Architectures

One technique for minimizing ORB Core priority inversion is
to use a non-multiplexed connection architecture, such as the
one shown in Figure 7. In this connection architecture, each
client thread maintains a table of pre-established connections
to servers in thread-specific storage. A separate connection is
maintained in each thread for every priority level,e.g.,P1, P2,
P3, etc. As a result, when a twoway operation is invoked (1)
it shares no socket endpoints with other threads. Therefore,

II//OO SUBSYSTEMSUBSYSTEM

PP11 PP22 PP33 PP44

1: invoke_twoway()1: invoke_twoway()
 APPLICATIONAPPLICATION

3: select()3: select()

4: read()4: read()

B
O

R
R

O
W

E
D

 T
H

R
E

A
D

B
O

R
R

O
W

E
D

 T
H

R
E

A
D

ORBORB CORECORE
5: return()5: return()

PP11 PP22 PP33 PP44

2: write()2: write()

Figure 7: Non-multiplexed Connection Architecture

the write operation (2) and theselect (3), read (4), and re-
turn (5) operations can occur without contending for ORB re-
sources with other threads in the process.

The primary benefit of a non-multiplexed connection archi-
tecture is that it enables clients to preserve end-to-end pri-
orities and prevent priority inversion while sending requests
through ORB endsystems and across communication links. In
addition, this design incurs low synchronization overhead be-
cause no additional locks are required in the ORB Core when
sending/receiving twoway requests since connections are not
shared.

The drawback with a non-multiplexed connection architec-
ture is that it can use a larger number of socket endpoints
than the multiplexed connection model, which may increase
the ORB endsystem memory footprint. Therefore, it is most
effective when used for statically configured real-time applica-
tions, such as avionics mission computing systems [19], which
possess a small, fixed number of connections.

3.2 Alternative ORB Core Concurrency Archi-
tectures

There are several strategies for structuring the concurrency ar-
chitecture in an ORB Core. The most common design for real-
time ORBs is some variant ofthread pool. This architecture
spawns a pool of threads to service incoming client requests.
In this subsection, we describe and evaluate several alternative
thread pool designs, focusing largely on server-side concur-
rency architectures.

7

3.2.1 Worker Thread Pool Architecture

This ORB concurrency architecture uses a design similar to
the active connection architecture described in Section 3.1.1.
The structure of this design is illustrated in Figure 8. The pri-

SERVANTS

ORB CORE

1: select()

I/O SUBSYSTEM

5: dispatch upcall()

2: read()

3: enqueue()

4: dequeue()

Figure 8: Server-side Worker Thread Pool Concurrency Ar-
chitecture

mary components in this design include an I/O thread, a re-
quest queue, and a pool of worker threads. The I/O thread
select s (1) on the socket endpoints, reads (2) new client re-
quests, and (3) inserts them into the tail of the request queue.
A worker thread in the pool dequeues (4) the next request from
the head of the queue and dispatches it (5).

The chief advantage of the worker thread pool concurrency
architecture is that it is straightforward to implement. The
disadvantages of this model stem from the excessive context
switching and synchronization required to manage the request
queue, as well as priority inversion caused due to connection
multiplexing. Since different priority requests share the same
transport connection, a high priority request may wait until a
lower priority request that arrived earlier is processed. More-
over, additional priority inversions can occur if the priority of
the thread that dispatches the request is different than the pri-
ority of the servant that processes the request.

3.2.2 Leader/Follower Thread Pool Architecture

This ORB concurrency architecture is an optimization of the
worker thread pool model. Its design, which is similar to
the leader/follower connection architecture discussed in Sec-
tion 3.1.1 is shown in Figure 9. A pool of threads is allocated
and a leader thread is chosen toselect (1) on connections
for all servants in the server process. When a request arrives,
this thread reads (2) it into an internal buffer. If this is a valid
request for a servant, a follower thread in the pool is released to

SERVANTSSERVANTS

ORBORB CORECORE

SEMAPHORESEMAPHORE

LEADERLEADER FOLLOWERSFOLLOWERS

1: select()1: select()
3: release()3: release()

II//OO SUBSYSTEMSUBSYSTEM

4: dispatch upcall()4: dispatch upcall()

2: read()2: read()

Figure 9: Server-side Leader/Follower Concurrency Architec-
ture

become the new leader (3) and the leader thread dispatches the
upcall (4). After the upcall is dispatched, the original leader
thread becomes a follower and returns to the thread pool. New
requests are queued in socket endpoints until a thread in the
pool is available to execute the requests.

Compared with the worker thread design, the chief advan-
tage of the leader/follower concurrency architecture is that it
minimizes context switching overhead incurred by incoming
requests. This is because it is not necessary to transfer the
request from the thread that read it from the socket endpoint
to another thread in the pool that processes it. The disadvan-
tages of the leader/follower architecture are the same as with
the worker thread design.

3.2.3 Threading Framework Architecture

A more flexible way to implement an ORB concurrency archi-
tecture is to allow application developers to customize hooks
provided by a generalthreading framework. One way of struc-
turing this approach is shown in Figure 10. The design in
this figure is based on the MT-Orbix thread filter concurrency
framework, which is a variant of the Chain of Responsibility
pattern [16]. In MT-Orbix, an application can install a thread
filter at the top of a chain of filters. Filters are application-
programmable hooks that can perform a number of tasks such
as intercepting, modifying, or examining each request sent to
and from the ORB.

A thread in the ORB Core reads (1) a request from a socket
endpoint and enqueues the request on a request queue in the
ORB Core (2). Another thread then dequeues the request (3)
and passes it through each filter in the chain successively. The
topmost filter (i.e., the thread filter) determines which thread
should handle this request. In thethread-poolmodel, the
thread filter enqueues the request into a queue serviced by a

8

OBJECTOBJECT
ADAPTERADAPTER

SERVANTSERVANT DEMUXERDEMUXER

SERVANTSERVANT
SKELETONSSKELETONS

U

ORBORB CORECORE

FILTERFILTER

FILTERFILTER

FILTERFILTER

SERVANTSERVANT
SKELETONSSKELETONS

U

2: enqueue(data)2: enqueue(data)

3: dequeue,3: dequeue,
filterfilter

request,request,
&enqueue&enqueue

4: dispatch4: dispatch
upcall()upcall()

II//OO SUBSYSTEMSUBSYSTEM

THREADTHREAD

FILTERFILTER

1: recv()1: recv()

Figure 10: Server-side Thread Pool Framework Concurrency
Architecture

thread with the appropriate priority. This thread then passes
control back to the ORB, which performs operation demulti-
plexing and dispatches the upcall (4).

The main advantage of a threading framework is its flexibil-
ity. The thread filter mechanism can be programmed by server
applications to support various concurrency strategies. For in-
stance, to implement athread-per-requestconcurrency policy,
the filter can spawn a new thread and pass the request to this
new thread.2

There are several disadvantages with this design, however.
First, since there is only a single chain of filters, extensive
priority inversion can occur since each request must traverse
the filter chain in FIFO order. Second, there may be FIFO
queueing at multiple levels in the ORB endsystem. Therefore,
a high priority request may only be processed after several
lower priority requests that arrived earlier. Third, the thread-
ing framework may increase locking overhead,e.g., the thread
filter must acquire locks to enqueue requests into the queue of
the appropriate thread.

3.2.4 Thread-per-Priority Thread Pool Architecture

In this approach, the server associates each servant with a
thread using the thread-per-priority concurrency architecture
shown in Figure 11. The ORB Core can be configured to pre-
allocate a real-time thread for each priority level. For instance,
avionic mission computing systems commonly execute their

2The thread-per-request architecture is generally unsuited for real-time ap-
plications since the overhead of creating a thread for each request is excessive
and non-deterministic.

ORBORB CORECORE

REACTORREACTOR

((PP11))

REACTORREACTOR

((PP22))

REACTORREACTOR

((PP33))

REACTORREACTOR

((PP44))

CC

OO

NN

NN

EE

CC

TT

22

AA

CC

CC

EE

PP

TT

OO

RR

CC

OO

NN

NN

EE

CC

TT

11

CC

OO

NN

NN

EE

CC

TT

33

II//OO SUBSYSTEMSUBSYSTEM

CC

OO

NN

NN

EE

CC

TT

22

AA

CC

CC

EE

PP

TT

OO

RR

CC

OO

NN

NN

EE

CC

TT

11

CC

OO

NN

NN

EE

CC

TT

33

CC

OO

NN

NN

EE

CC

TT

22

AA

CC

CC

EE

PP

TT

OO

RR

CC

OO

NN

NN

EE

CC

TT

11

CC

OO

NN

NN

EE

CC

TT

33

CC

OO

NN

NN

EE

CC

TT

22

AA

CC

CC

EE

PP

TT

OO

RR

CC

OO

NN

NN

EE

CC

TT

11

CC

OO

NN

NN

EE

CC

TT

33

SERVANTSSERVANTS

1: select()1: select()

2: read()2: read()

3: dispatch upcall()3: dispatch upcall()

Figure 11: Server-side Thread-per-Priority Concurrency Ar-
chitecture

tasks in fixed priority threads corresponding to therates(e.g.,
20 Hz, 10 Hz, 5 Hz, and 1 Hz) at which operations are called
by clients.

To minimize context switching, each thread in the ORB
Core can be configured with aReactor [31]. A Reactor
demultiplexes (1) all incoming client requests to the appro-
priate connection handler,i.e., connect1, connect2, etc. The
connection handler reads (2) the request and dispatches (3) it
to a servant that execute at its thread priority.

Each Reactor in a server is also associated with an
Acceptor [32]. TheAcceptor is a factory that listens on
a particular port number for clients to connect to that thread
priority and creates a connection handler to process the GIOP
requests. In the example in Figure 11, there is a listener port
per priority. Thus, ports 10020, 10010, 10005, 10001 corre-
spond to the 20 Hz, 10 Hz, 5 Hz, and 1 Hz rate group thread
priorities, respectively.

The advantage of the thread-per-priority concurrency ar-
chitecture is that it minimizes priority inversion and non-
determinism. Moreover, it reduces context switching and syn-
chronization overhead by only locking the state of servants
if they interact across different thread priorities. In addition,
this concurrency model supports scheduling and analysis tech-
niques that associate priority with rate, such as Rate Mono-
tonic Scheduling (RMS) and Rate Monotonic Analysis (RMA)
[33, 34].

The thread-per-priority concurrency model can be inte-
grated seamlessly with the non-multiplexed connection model
described in Section 3.1.2 to provide end-to-end priority
preservation in real-time ORB endsystems, as shown in Fig-
ure 12. Once a client connects, theAcceptor creates a new
socket queue and connection handler to service that queue.
The I/O subsystem uses the port number contained in arriv-

9

CLIENTCLIENT ORBORB CORECORE

20 10 5 120 10 5 1

HZHZ HZHZ HZHZ HZHZ

CONNECTORCONNECTOR

20 10 5 120 10 5 1

HZHZ HZHZ HZHZ HZHZ

CONNECTORCONNECTOR

20 10 5 120 10 5 1

HZHZ HZHZ HZHZ HZHZ

CONNECTORCONNECTOR

SERVERSERVER ORBORB CORECORE

REACTORREACTOR

(20 (20 HZHZ))

REACTORREACTOR

(10 (10 HZHZ))

REACTORREACTOR

(5 (5 HZHZ))

REACTORREACTOR

(1 (1 HZHZ))

CC

OO

NN

NN

EE

CC

TT

22

AA

CC

CC

EE

PP

TT

OO

RR

CC

OO

NN

NN

EE

CC

TT

11

CC

OO

NN

NN

EE

CC

TT

33

II//OO SUBSYSTEMSUBSYSTEMI/O SUBSYSTEM

C

O

N

N

E

C

T

2

A

C

C

E

P

T

O

R

C

O

N

N

E

C

T

1

C

O

N

N

E

C

T

3

C

O

N

N

E

C

T

2

A

C

C

E

P

T

O

R

C

O

N

N

E

C

T

1

C

O

N

N

E

C

T

3

C

O

N

N

E

C

T

2

A

C

C

E

P

T

O

R

C

O

N

N

E

C

T

1

C

O

N

N

E

C

T

3

COMMUNICATION LINK

CLIENT APPLICATION

STUB STUB STUB

Figure 12: End-to-end Real-time ORB Core Software Archi-
tecture

ing requests as a demultiplexing key to associate requests with
the appropriate socket queue. This design minimizes prior-
ity inversion through the entire distributed ORB endsystem by
eagerly demultiplexing [11] incoming requests onto the ap-
propriate real-time thread that services the priority level of the
target servant.

4 Real-time ORB Core Performance
Experiments

This section describes the results of experiments that mea-
sure the real-time behavior of several commercial and research
ORBs, including IONA’s MT-Orbix 2.2, Sun miniCOOL 4.33,
Expersoft CORBAplus 2.1.1 and TAO 1.0. MT-Orbix and
CORBAplus are not real-time ORBs,i.e., they were not ex-
plicitly designed to support applications with real-time QoS
requirements. Sun miniCOOL is a subset of the COOL ORB
that is specifically designed for embedded systems with small
memory footprints. TAO was designed at Washington Univer-
sity to support real-time applications with deterministic and
statistical quality of service requirements, as well as best ef-
fort requirements.

4.1 Benchmarking Testbed

This section describes the experimental testbed we designed
to systematically measure sources of latency and throughput
overhead, priority inversion, and non-determinism in ORB
endsystems. The architecture of our testbed is depicted in Fig-
ure 13. The hardware and software components in the experi-
ments are described briefly below.

3COOL was previously developed by Chorus, which was recently acquired
by Sun.

C 1C 0

Requests

C n

������������ ����������������������

Client Server
ORB Core

Services

...

...

2

Object Adapter

ATM Switch
Ultra 2 Ultra 2

Figure 13: Testbed for ORB Endsystem Evaluation

4.1.1 Hardware Configuration

The experimental testbed is depicted in Figure 13. The experi-
ments were conducted using a Bay Networks LattisCell 10114
ATM switch connected to two dual-processor UltraSPARC-
2s running SunOS 5.5.1. The LattisCell 10114 is a 16-Port,
OC3 155 Mbps/port switch. Each UltraSPARC-2 contains
2 168 MHz CPUs4 with a 1 Megabyte cache per-CPU, 256
Megabytes of RAM, and an ENI-155s-MF ATM adaptor card
that supports 155 Megabits per-sec (Mbps) SONET multi-
mode fiber. The Maximum Transmission Unit (MTU) on the
ENI ATM adaptor is 9,180 bytes. Each ENI card has 512
Kbytes of on-board memory. A maximum of 32 Kbytes is
allotted per ATM virtual circuit connection for receiving and
transmitting frames (for a total of 64 K). This allows up to
eight switched virtual connections per card.

4.1.2 Client/Server Configuration and Benchmarking
Methodology

Server benchmarking configuration: As shown in Fig-
ure 13, our testbed server consists of two servants within the
Object Adapter. One servant runs in a higher priority thread
than the other. Each thread processes requests that are sent to
its servant by client threads on the other UltraSPARC-2.

Solaris real-time threads [35] are used to implement ser-
vant priorities. The high-priority servant thread has thehighest
real-time priority available on Solaris and the low-priority ser-
vant has thelowestreal-time priority.

The server benchmarking configuration is implemented in
the various ORBs as follows:

� CORBAplus: which uses the worker thread pool archi-
tecture described in Section 3.2.1. In version 2.1.1. of COR-

4To ensure that all the real-time threads were competing for the same CPU,
the second CPU was disabled using the Solarispsradm(1M) utility.

10

BAplus, by default, every multi-threaded application has at
least two threads: an initial (main) thread of execution, and
an event dispatching thread. The latter receives the requests
and passes them on to the user threads, that processes them.

�miniCOOL: which uses the leader/follower thread pool
architecture described in Section 3.2.2. Version 4.3 of mini-
COOL allows application-level concurrency control. The ap-
plication developer can choose between thread-per-request or
thread-pool. The thread-pool concurrency architecture was
used for our benchmarks since it is better suited than thread-
per-request for deterministic real-time applications. In the
thread-pool concurrency architecture, the developer initially
spawns a fixed number of threads. In addition, miniCOOL dy-
namically spawns threads on behalf of server applications to
handle requests, whenever the initial threads are insufficient,
as shown in Figure 9.

� MT-Orbix: which uses the thread pool architecture
based on the Chain of Responsibility pattern described in Sec-
tion 3.2.3. The server creates two threads at startup time. The
high-priority thread is associated with the high-priority servant
and the low-priority thread is associated with the low-priority
servant. Incoming requests are assigned to these threads us-
ing the Orbix thread filter mechanism, as shown in Figure 10.
Each priority has its own queue of requests, to avoid prior-
ity inversion within the queue, which can otherwise occur if
a high priority servant and a low-priority servant dequeue re-
quests from the same queue.

� TAO: which uses the thread-per-priority concurrency
architecture described in Section 3.2.4. Version 1.0 of TAO in-
tegrates the thread-per-priority concurrency architecture with
the non-multiplexed connection architecture, as shown in Fig-
ure 12. In contrast, the other three ORBs multiplex all client
requests over a single connection to the server.

Client benchmarking configuration: Figure 13 shows how
the benchmarking test used one high-priority clientC0 andn
low-priority clients,C1 . . . Cn. The high-priority client runs
in a high-priority real-time OS thread and invokes operations
at 20 Hz, i.e., it invokes 20 CORBA twoway calls per sec-
ond. The low-priority clients run in lower-priority OS threads5

and invoke operations at 10 Hz,i.e., they invoke 10 CORBA
twoway calls per second. In each call, the client sends a value
of typeCORBA::Octet to the servant. The servant cubes the
number and returns it to the client.

When the test program creates the client threads, they block
on a barrier lock so that no client begins work until the others
are created and ready to run. When all threads inform the main
thread they are ready to begin, the main thread unblocks all

5All low-priority clients have the same OS thread priority.

client threads, which then execute in an arbitrary order deter-
mined by the Solaris real-time thread dispatcher. Each client
invokes 4,000 CORBA twoway requests at the prescribed rate.

4.2 Performance Results

Two categories of tests were used in our benchmarking exper-
iments:blackboxandwhitebox.

Blackbox benchmarks: We computed the average twoway
response time incurred by various clients. In addition, we
computed twoway operation jitter, which is the standard de-
viation from the average twoway response time. High levels
of latency and jitter are undesirable for deterministic real-time
applications since they complicate the computation of worst-
case execution time and reduce CPU utilization. Section 4.2.1
explains the blackbox results.

Whitebox benchmarks: To precisely pinpoint thesourceof
priority inversion and performance non-determinism, we em-
ployed whitebox benchmarks. These benchmarks used pro-
filing tools such as UNIXtruss(1) andQuantify [36].
These tools trace and log the activities of the ORBs and mea-
sure the time spent on various tasks, as explained in Sec-
tion 4.2.2.

Together, the blackbox and whitebox benchmarks indicate
the end-to-end latency/jitter incurred by CORBA clients and
help explain the reason for these results, respectively. In
general, the results reveal why ORBs like MT-Orbix, COR-
BAplus, and miniCOOL are not yet suited for applications
with deterministic real-time performance requirements. Like-
wise, the results illustrate empirically how and why the ORB
Core architecture used by TAO is more suited for these types
of applications.

4.2.1 Blackbox Results

As the number of low-priority clients increases, the number
of low-priority requests sent to the server also increases. Ide-
ally, a real-time ORB endsystem should show no variance in
the latency observed by the high-priority client, irrespective
of the number of low-priority clients. However, our measure-
ments of end-to-end twoway ORB latency yielded the results
in Figure 14. This figure also shows that as the number of
low-priority clients increases, MT-Orbix and CORBAplus in-
cur significantly higher latencies,i.e., 7 times as much as TAO.
In addition, the MT-Orbix and miniCOOL low priority clients
exhibit very high levels of jitter,i.e., 100 times as much as
TAO in the worst case, as shown in Figure 15.

The blackbox results for each ORB are explained below.

CORBAplus results: The excessive use of user-level locks
in CORBAplus, as shown in Figure 24, caused it to incur the

11

0

4

8

12

16

20

24

1 5 10 15 20 25 30 35 40 45 50

Number of Low Priority Clients

L
at

en
cy

 p
er

 T
w

o
-w

ay
 R

eq
u

es
t

in
 M

ill
is

ec
o

n
d

s

CORBAplus High Priority ORBIX High Priority COOL High Priority

CORBAplus Low Priority ORBIX Low Priority COOL Low Priority

TAO High Priority TAO Low Priority

Figure 14: Comparative Latency for CORBAplus, MT-Orbix,
miniCOOL, and TAO

1 5 10 15 20 25 30 35 40 45 50

TAO High Priority

TAO Low Priority

COOL High Priority

COOL Low Priority

ORBIX High Priority

ORBIX Low Priority

0

10

20

30

40

50

60

70

80

90

100

Ji
tt

er
 (

m
ill

is
ec

)

Number of Low Priority Clients

Figure 15: Comparative Jitter for MT-Orbix, miniCOOL and
TAO

highest overhead of the ORBs we tested. Moreover, COR-
BAplus incurs priority inversion at various points in the graph.
After displaying a high amount of latency for a small num-
ber of low-priority clients, the latency drops suddenly at 10
clients, then rises gradually. Clearly, this behavior is unsuit-
able for deterministic real-time applications. Section 4.2.2 re-
veals how the poor performance and priority inversions stem
largely from CORBAplus’ concurrency architecture.6

MT-Orbix results: MT-Orbix incurs substantial priority in-
version as the number of low-priority clients increase. Af-
ter the number of clients exceeds 10, the high-priority client
performs increasingly worse than the low-priority clients.
Clearly, this behavior is not conducive to deterministic real-
time applications. Section 4.2.2 reveals how these inversions
stem largely from the MT-Orbix concurrency architecture on
the server. In addition, the MT-Orbix ORB produces high lev-
els of jitter, as shown in Figure 15. This behavior is caused
by priority inversions in its ORB Core, as explained in Sec-
tion 4.2.2.

miniCOOL results: As the number of low-priority clients
increase, the latency observed by the high-priority client in-
creases, reaching�10 msec, at 20 clients, at which point it
decreases suddenly to 2.5 msec at the 25 client round. This
erratic behavior becomes more evident as the number of low-
priority clients increase. Although the latency of the high-
priority client is smaller than the low-priority clients, the non-
linear behavior of the clients makes miniCOOL unsuitable for
deterministic real-time applications.

The difference in latency between the high- and the low-
priority client is also non-deterministic. For instance, it
evolves from 0.55 msec to 10 msec. Section 4.2.2 reveals how
this behavior stems largely from the connection architecture
used by the miniCOOL client and server.

The jitter incurred by miniCOOL is also fairly high, as
shown in Figure 15. This jitter is not as high as that observed
with the MT-Orbix ORB, however, since miniCOOL’s concur-
rency architecture does not perform as much locking overhead
or use as many FIFO queues.

TAO results: Figure 14 reveals that as the number of low-
priority clients increases from 1 to 50, the latency observed
by TAO’s high-priority client grows by�0.7 msecs. However,
the difference between the low and the high priority clients
starts at 0.05 msec and ends at 0.27 msec. In contrast, in mini-
COOL, it evolves from 0.55 msec to 10 msec. Also, TAO’s
rate of increase is significantly lower than both MT-Orbix and
Sun miniCOOL. In particular, when there are 50 low-priority
clients competing for the CPU and network bandwidth, the la-
tency observed with MT-Orbix is more than 7 times that of

6Note to reviewers: due to bugs with the latest version of CORBAplus,
jitter results for this ORB are not yet available. We plan to include them in
Figure 15 for the final version of this paper.

12

TAO and the miniCOOL latency is�3 times that of TAO in
the low priority clients.

TAO’s high-priority client always performs better than its
lower priority clients. This indicates that connection and con-
currency architectures in TAO’s ORB Core are well suited for
maintaining real-time request priorities end-to-end. The key
difference between TAO and the other ORBs are that TAO’s
GIOP protocol processing is performed on a dedicated con-
nection by a dedicated real-time thread with a suitable end-to-
end real-time priority. Thus, TAO shares the minimal amount
of ORB endsystem resources, which substantially reduces op-
portunities for priority inversion and overhead.

The TAO ORB produces very low jitter (less than 11 msecs)
for the low-priority requests and negligible jitter (less than 1
msec) for the high-priority requests. The stability of TAO’s
latency is clearly desirable for applications that require pre-
dictable end-to-end performance. In addition, these results il-
lustrate that improper choice of ORB Core concurrency and
connection software architectures can play a larger role in ex-
acerbating priority inversion and non-determinism than the I/O
subsystem.

4.2.2 Whitebox Results

For the whitebox tests, we used a configuration of ten con-
current clients similar to the one described in Section 4.1.
Nine clients were low-priority and one was high-priority. Each
client sent 4,000 twoway requests to the server, which had a
low-priority servant and high-priority servant thread.

Our previous performance studies suggested that locks
constitute a significant source of overhead, non-determinism
and potential priority inversion for real-time ORBs. Using
Quantify and truss , we measured the time consumed
by the ORBs performing tasks like synchronization, I/O,
and protocol processing. In addition, we computed a met-
ric that records the number of calls made to user-level locks
(i.e., mutex lock and mutex unlock) and kernel-level
locks (i.e., lwp mutex lock , lwp mutex unlock ,
lwp sema post and lwp sema wait). This metric

computes the average number of lock operations per request.
In general, kernel-level locks are considerably more expensive
since they incur mode switching overhead.

These whitebox results are presented below.

CORBAplus whitebox results: Our whitebox analysis
reveals that synchronization overhead from mutex and
semaphore operations at the user-level consume a large per-
centage of the total CORBAplus ORB processing time, as
shown in Figure 24. Synchronization overhead arises from
mutex and semaphore locking operations that implement
the connection and concurrency architecture used by COR-
BAplus.

As shown in Figure 16 CORBAplus displays synchroniza-
tion overhead using kernel-level locks in the client side.7

ORB
Processing

35%

Getmsg
7%

Writes
6%Reads

0%

Mutexes
28%

Semaphores
24%

Figure 16: Client-side Whitebox Results for CORBAplus

Reads
0% Writes

16%

Getmsg
12%

ORB
Processing

72%

Figure 17: Server-side Whitebox Results for CORBAplus

For each CORBA request/response, CORBAplus’s client
ORB performs 199 lock operations, whereas the server per-
forms 216 user-level lock operations. This locking overhead
stems largely from excessive dynamic memory allocation, as
described in Section 4.3. Each dynamic allocation causes two
user-level lock operations,i.e., one acquire and one release.

The CORBAplus connection and concurrency architectures
are outlined briefly below.

� CORBAplus connection architecture: The COR-
BAplus ORB connection architecture uses a simple model of
the active connection architecture described in Section 3.1.1
and depicted in Figure 8. This design multiplexes all requests
through one TCP connection.

� CORBAplus concurrency architecture: The COR-
BAplus ORB concurrency architecture uses the thread pool
architecture described in Section 3.2.1 and depicted in Fig-
ure 8. This architecture uses a single I/O thread to accept and

7Note to reviewers: due to bugs with the latest version of CORBAplus,
overhead from locks in the server side for CORBAplus are not yet available.
We plan to include them in Figure 17 for the final version of this paper.

13

read requests from socket endpoints. This thread enqueues the
request on a queue that is serviced by a pool of worker threads.

The CORBAplus connection architecture and the server
concurrency architecture work well to reduce the number of
simultaneous open connections and simplify the implementa-
tion. However, concurrent requests to the shared connection
incur high-levels of synchronization and context switching, as
well as cause priority inversion. For instance, on the client-
side, threads of different priorities can share the same transport
connection. Therefore, a high-priority thread may be blocked
until a lower priority thread finishes sending its request. In ad-
dition, the priority of the thread that blocks on the semaphore
to receive a reply from a twoway connection may not reflect
the priority of therequestthat arrives from the server, thereby
causing additional priority inversion.

miniCOOL whitebox results: Our whitebox analysis
reveals that synchronization overhead from mutex and
semaphore operations consume a large percentage of the total
miniCOOL ORB processing time. Synchronization overhead
arises from mutex and semaphore locking operations that im-
plement the connection and concurrency architecture used by
miniCOOL.

Locking overhead accounted for�50% on the client-side
(shown in Figure 18) and more than 40% on the server-side
(shown in Figure 19).

ORB
Processing

16%

Semaphores
26%

Mutexes
24%

Reads
23%

Writes
11%

Figure 18: Client-side Whitebox Results for miniCOOL

For each CORBA request/response, miniCOOL’s client
ORB performs 94 lock operations at the user-level, whereas
the server performs 231 lock operations, as shown in Fig-
ure 24. As with CORBAplus, this locking overhead stems
from excessive dynamic memory allocation. Each dynamic
allocation causes two user-level lock operations,i.e., one ac-
quire and one release.

In addition, the number of calls per request to kernel-level
locking mechanisms at the server, (shown in Figure 25) are
unusually high, due to the fact that miniCOOL uses “bound”

ORB
Processing

12%

Writes
16%

Reads
29%

Mutexes
8%

Semaphores
35%

Figure 19: Server-side Whitebox Results for miniCOOL

threads on Solaris, which require kernel intervention for all
synchronization operations.

The miniCOOL connection and concurrency architectures
are outlined briefly below.

� miniCOOL connection architecture: The mini-
COOL ORB connection architecture uses a variant of the
leader/followers architecture described in Section 3.1.1. This
architecture allows the first thread to perform the read on the
shared socket,i.e., the leader blocks inread . All following
threads block on semaphores waiting for one of two condi-
tions: (1) the leader thread will read their reply message and
signal their semaphore or (2) the leader thread will read its own
reply and signal another thread to enter and block inread ,
thereby becoming the new leader.

Thus, miniCOOL multiplexes multiple object references in
one client process to a server process through a single con-
nection. This leader/follower connection architecture min-
imizes the number of simultaneous connections. However,
miniCOOL’s connection architecture also increases overhead
and potential for priority inversion. These problems arise
since connection multiplexing requires multiple threads to
read/write to a single socket connection shared by the threads.

� miniCOOL concurrency architecture: The Sun
miniCOOL ORB concurrency architecture uses the
leader/followers thread pool architecture described in
Section 3.2.2. This architecture initially uses a single thread
to wait for connections. Whenever a request arrives and
validation of the request is complete, the leader thread (1)
signals a follower thread in the pool to wait for incoming
requests and (2) services the request.

The miniCOOL connection architecture and the server con-
currency architecture help reduce the number of simultaneous
open connections and the amount of context switching when
replies arrive in FIFO order. However, this design yields high
levels of priority inversion. For instance, threads of differ-
ent priorities can share the same transport connection on the

14

client-side. Therefore, a high-priority thread may block until a
lower priority thread finishes sending its request. In addition,
the priority of the thread that blocks on the semaphore to ac-
cess a connection may not reflect the priority of theresponse
that arrives from the server, which yields additional priority
inversion.

MT-Orbix whitebox results: Figure 20 shows the whitebox
results for the client-side and Figure 21 shows the whitebox
results for the server-side of MT-Orbix.

ORB
Processing

14%
Writes

4%

Reads
13%

Mutexes
36%

Semaphores
33%

Figure 20: Client-side Whitebox Results for MT-Orbix

ORB
Processing

13%

Semaphores
39%

Mutexes
40%

Reads
6%

Writes
2%

Figure 21: Server-side Whitebox Results for MT-Orbix

� MT-Orbix connection architecture: Like miniCOOL,
MT-Orbix uses the leader/follower connection architecture,
described in Section 3.2.2. Although this model minimizes
context switching overhead, it causes intensive priority inver-
sions, as explained in Section 3.2.2.

� MT-Orbix concurrency architecture: In the MT-
Orbix implementation of our benchmarking testbed, multiple

servant threads were created, each with the appropriate prior-
ity, i.e., high-priority servants had a high-priority thread. A
thread filter was then installed to look at each request, deter-
mine the priority of the request (by examining the target ob-
ject), and pass the request to the thread with the correct pri-
ority. The thread filter mechanism is implemented by a high-
priority real-time thread to minimize the dispatch time.

The thread pool instantiation of the MT-Orbix mechanism
described in Section 3.2.3 is flexible and easy to use. How-
ever, it suffers from high levels of priority inversion and syn-
chronization overhead. The MT-Orbix ORB provides onlyone
thread filter chain. Therefore, all incoming requests must be
sequentially processed by the filter before they are passed to
the servant thread with an appropriate real-time priority. As
a result, if a high-priority request arrives after a low-priority
request, it must wait until the low-priority request has been
dispatched before it can be processed.

In addition, a filter can only be called after (1) IIOP process-
ing has completed and (2) the Object Adapter has determined
the target object for this request. This ORB processing is se-
rialized since the MT-Orbix protocol engine is unaware of the
request priority. Thus, a higher priority request that arrived
after a low-priority request must wait until the lower priority
request has been processed by the ORB Core.

The concurrency architecture is chiefly responsible for the
substantial priority inversion exhibited by MT-Orbix, as shown
in Figure 14. This figure shows how the latency observed by
the high-priority client increases rapidly, from�2 msecs to
�14 msecs as the number of low-priority clients increase from
1 to 50.

In addition, the MT-Orbix filter mechanism causes an in-
crease in synchronization overhead. Because there is just one
filter chain, concurrent requests must acquire and release locks
to be processed by the filter. The MT-Orbix client-side per-
forms 175 user-level lock operations per request, while the
server-side performs 599 user-level lock operations per re-
quest, as shown in Figure 24. Moreover, MT-Orbix also dis-
plays a high number of kernel-level locks per request as shown
in Figure 25.

TAO whitebox results: As shown in Figures 22 and 23,
TAO exhibits negligible synchronization overhead. TAO per-
forms 41 user-level lock operations per request on the client-
side, and 100 user-level lock operations per request on the
server-side. This low amount of synchronization results from
the design of TAO’s ORB Core, which allocates a separate
connection for each priority, as shown in Figure 12. Therefore,
TAO’s ORB Core minimizes additional user-level locking op-
erations per request and uses no kernel-level locks in its ORB
Core.

� TAO connection architecture: TAO uses a non-
multiplexed connection architecture, which pre-establishes

15

ORB
Processing

49%

Reads
36%

Writes

Figure 22: Client-side Whitebox Results for TAO

ORB
Processing

42%

Writes
34%

Reads
24%

Figure 23: Server-side Whitebox Results for TAO

connections to servants, as described in Section 3.1.2. One
connection is pre-established per priority level, thereby avoid-
ing the non-deterministic delay involved in dynamic connec-
tion setup. In addition, different priority levels have their own
connection, thus avoiding priority inversion due to the FIFO
ordering of packet transmission by the network and I/O sub-
system.

� TAO concurrency architecture: TAO supports a vari-
ety of concurrency architectures, as described in [19]. The
thread-per-priorityarchitecture was used for the benchmarks
described in this paper. In this concurrency architecture, a sep-
arate thread is created for each priority leveli.e., each rate
group. Thus, the low-priority client issues CORBA requests
at a lower rate (10 Hz) than the high-priority client (20 Hz).

On the server-side, client requests sent to the high-priority
servant are processed by a high-priority real-time thread. Like-
wise, client requests sent to the low-priority servant are han-
dled by the low-priority real-time thread. Locking overhead
is minimized since these two servant threads share minimal
ORB resources. In addition, the two threads service separate
client connections, thereby eliminating the priority inversion
that otherwise arises from connection multiplexing, as exhib-
ited by the other ORBs we tested.

Locking overhead: Our whitebox tests measured user-level
locking overhead (shown in Figure 24) and kernel-level lock-

41

94

199

175

100

231
216

599

0

100

200

300

400

500

600

700

TAO miniCOOL CORBAplus MT ORBIX

ORBs Tested

U
se

r
L

ev
el

 L
o

ck
 O

p
er

at
io

n
s

p
er

 R
eq

u
es

t

client
server

Figure 24: User-level Locking Overhead in ORBs

ing overhead (shown in Figure 25) in the CORBAplus, MT-
Orbix, miniCOOL and TAO ORBs. User-level locks are typ-
ically used to protect shared resources within a process. A
common example is dynamic memory allocation since mem-
ory is allocated from a global per-process heap.

Kernel-level locks are more expensive since they typically
require mode switches between user-level and the kernel. The
semaphore and mutex operations depicted in the whitebox re-
sults for the ORBs arise from kernel-level lock operations.

TAO limits user-level locking by using pre-allocated
buffers. A single buffer is allocated per request. This buffer is
subdivided to accommodate the various fields of the request.
Kernel-level locking is limited due to the fact that ORB re-
sources are not shared between the threads.

4.3 Evaluation and Recommendations

The results of our benchmarks illustrate the non-deterministic
performance incurred by applications running atop conven-
tional ORBs. In addition, the results show that priority inver-

16

0 0 0

4

0

13

0

14

0

2

4

6

8

10

12

14

16

TAO miniCOOL CORBAplus MT ORBIX

ORBs Tested

K
er

n
el

 L
ev

el
 L

o
ck

 O
p

er
at

io
n

s
p

er
 R

eq
u

es
t

client
server

Figure 25: Kernel-level Locking Overhead in ORBs

sion and non-determinism are significant problems in conven-
tional ORBs. As a result, these ORBs are currently unsuitable
for applications with deterministic real-time requirements.
Based on our results, and our past experience [21, 22, 23, 30]
measuring the performance of CORBA ORB endsystems,
we suggest the following recommendations to decrease non-
determinism and limit priority inversion in real-time ORB end-
systems.

1. Real-time ORBs should avoid dynamic connection es-
tablishment: ORBs that establish connections dynamically
suffer from high jitter. Thus, performance seen by individ-
ual clients can vary significantly from the average. Neither
CORBAplus, miniCOOL, nor MT-Orbix provide APIs for
pre-establishing connections, though TAO does provide these
APIs as extensions to CORBA.

We recommend that APIs to control the pre-establishment
of connections should be defined as an OMG standard.

2. Real-time ORBs should avoid multiplexing requests
of different priorities over a shared connection: Sharing
connections requires synchronization. Thus, high-priority re-
quests can be blocked until low-priority threads release the
shared connection lock.

We recommend that real-time ORBs should allow applica-
tion developers to determine whether requests with different
priorities are multiplexed over shared connections. Currently,
neither miniCOOL, CORBAplus, nor MT-Orbix supports this
level of control, though TAO provides this flexibility.

3. Real-time ORBs should minimize dynamic memory al-
location: Thread-safe implementations of dynamic memory
allocators require user-level locking. For instance, the C++
new operator allocates memory from a global pool shared by
all threads in a process. Likewise, the C++delete opera-
tion, that releases allocated memory, also requires user-level
locking to update the global shared pool. This lock sharing
contributes to the overhead shown in Figure 24.

We recommend that real-time ORBs avoid excessive shar-
ing of dynamic memory locks via the use of OS features such
as thread-specific storage [37], which allocates memory from
heaps that are unique in each thread.

4. Real-time ORB concurrency architectures should be
flexible, yet efficient and predictable: Many ORBs, such
as miniCOOL and CORBAPlus, create threads on behalf of
server applications. This design prevents application develop-
ers from customizing ORB performance by selecting an ap-
propriate concurrency architecture. Conversely, other ORB
concurrency architectures are flexible, but inefficient and non-
deterministic, as shown in the Section 4.2.2 explanation of the
MT-Orbix performance results. Thus, a balance is needed be-
tween flexibility and efficiency.

We recommend that real-time ORBs provide APIs that al-
low application developers to select concurrency architectures
that are flexible, efficient,andpredictable. For instance, TAO
offers a range of concurrency architectures (such as thread-
per-priority, thread pool, and thread-per-connection) that are
carefully designed using thread-specific storage to minimize
unnecessary sharing of ORB resources.

5. The real-time ORB endsystem architecture should be
guided by empirical performance benchmarks: Our prior
research on pinpointing performance bottlenecks and opti-
mizing middleware like Web servers [38, 39] and CORBA
ORBs [22, 21, 30, 23] demonstrates the efficacy of this
measurement-driven research methodology.

We recommend that the OMG adopt standard real-time
CORBA benchmarking techniques and metrics. These bench-
marks will simplify the communication and comparison of
performance results and real-time ORB behavior patterns.

5 Related Work

An increasing number of research efforts are focusing on in-
tegrating QoS into CORBA. The work presented in this paper

17

is based on the TAO project [10]. This section compares TAO
with related work.

Krupp,et al, at MITRE Corporation were among the first to
elucidate the needs of real-time CORBA systems [40]. They
identified key requirements and outlined mechanisms for sup-
porting end-to-end timing constraints [41]. A system consist-
ing of a commercial off-the-shelf RTOS, a CORBA-compliant
ORB, and a real-time object-oriented database management
system is under development [42]. Similar to the TAO ap-
proach, the initial static scheduling approach is rate mono-
tonic, but a strategy for dynamic deadline monotonic schedul-
ing support has been designed [41]. Other dynamic scheduling
approaches may be considered in the future.

Wolfe, et al, are developing a real-time CORBA system at
the US Navy Research and Development Laboratories (NRaD)
and the University of Rhode Island (URI) [43]. The sys-
tem supports expression and enforcement of dynamic end-
to-end timing constraints through timed distributed operation
invocations (TDMIs) [44]. A TDMI corresponds to TAO’s
RT Operation [19] and anRT Environment structure
contains QoS parameters similar to those in TAO’sRT Info
[10].

One difference between TAO and the URI approaches
is that TDMIs [41] express required timing constraints,
e.g., deadlines relative to the current time, whereas TAO’s
RT Operation s publish their resource,e.g., CPU time, re-
quirements. The difference in approaches may reflect the dif-
ferent time scales, seconds versus milliseconds, respectively,
and scheduling requirements, dynamic versus static, of the ini-
tial application targets. However, the approaches should be
equivalent with respect to system schedulability and analysis.

The QuO project at BBN [45] has defined a model for com-
municating changes in QoS characteristics between applica-
tions, middleware, and the underlying endsystems and net-
work. The QuO model uses the concept of a connection be-
tween a client and an object to define QoS characteristics, and
treats these characteristics as first-class objects. These objects
can then be aggregated to enable the characteristics to be de-
fined at various levels of granularity,e.g., for a single method
invocation, for all method invocations on a group of objects,
and similar combinations. The model also uses several QoS
definition languages (QDLs) that describe the QoS charac-
teristics of various objects, such as expected usage patterns,
structural details of objects, and resource availability.

The QuO architecture differs from our work on real-time
QoS provision since QuO does not provide hard real-time
guarantees of ORB endsystem CPU scheduling. Furthermore,
the QuO programming model involves the use of several QDL
specifications, in addition to OMG IDL, based on the separa-
tion of concerns advocated by Aspect-Oriented Programming
(AOP) [46]. We believe that while the AOP paradigm is quite
powerful, the proliferation of definition languages may be

overly complex for common application use-cases. Therefore,
the TAO programming model focuses on theRT Operation
andRT Info QoS specifiers, which can be expressed in stan-
dard OMG IDL.

The Epiq project [47] defines an open real-time CORBA
scheme that provides QoS guarantees and runtime scheduling
flexibility. Epiq extends TAO’s off-line scheduling model to
provide on-line scheduling. In addition, Epiq allows clients to
be added and removed dynamically via an admission test at
runtime. The Epiq project is work-in-progress and does not
yet have empirical results.

The ARMADA project [48] defines a set of communication
and middleware services that supports fault-tolerant and end-
to-end guarantees for real-time distributed applications. AR-
MADA provides real-time communication services based on
the X-kernel and the Open Group’s MK microkernel. This
infrastructure serves as a foundation for constructing higher-
level real-time middleware services. TAO differs from AR-
MADA in that most of the real-time features in TAO are built
using TAO’s ORB Core. In addition, TAO implements the
OMG’s CORBA standard, while also providing the hooks that
are necessary to integrate with an underlying real-time I/O
subsystem. Thus, the real-time services provided by AR-
MADA’s communication system can be utilized by TAO’s
ORB Core to support a vertically integrated real-time system.

6 Concluding Remarks

Conventional CORBA ORBs exhibit substantial priority in-
version and non-determinism. Consequently, they are not yet
suited for distributed, real-time applications with determinis-
tic QoS requirements. Meeting these demands requires that
ORB Core software architectures be designed to reduce pri-
ority inversion. The TAO ORB Core described in this paper
minimizes priority inversion by using a priority-based concur-
rency architecture and non-multiplexed connection architec-
ture that share a minimal amount of resources among ORB
Core threads. The architectural principles used in TAO can be
applied to other ORBs and other real-time software systems.

TAO has been used to develop a real-time ORB endsys-
tem for avionics mission computing applications. These
applications manage sensors and operator displays, navi-
gate the aircraft’s course, and control weapon release. To
meet the scheduling demands of mission computing appli-
cations, TAO supports real-time scheduling and dispatch-
ing of periodic processing operations, as well as effi-
cient event filtering and correlation mechanisms [13]. The
C++ source code for TAO and ACE is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html . This re-
lease also contains the real-time ORB benchmarking test suite
described in Section 4.1.

18

Acknowledgments

We gratefully acknowledge Expersoft, IONA, and Sun for
providing us with their ORB software for the benchmarking
testbed. In addition, we would like to thank Frank Buschmann
for extensive comments on this paper.

References
[1] R. Gopalakrishnan and G. Parulkar, “Bringing Real-time Scheduling

Theory and Practice Closer for Multimedia Computing,” inSIGMET-
RICS Conference, (Philadelphia, PA), ACM, May 1996.

[2] S. Landis and S. Maffeis, “Building Reliable Distributed Systems with
CORBA,” Theory and Practice of Object Systems, Apr. 1997.

[3] R. Johnson, “Frameworks = Patterns + Components,”Communications
of the ACM, vol. 40, Oct. 1997.

[4] Z. Deng and J. W.-S. Liu, “Scheduling Real-Time Applications in an
Open Environment,” inProceedings of the 18th IEEE Real-Time Systems
Symposium, IEEE Computer Society Press, Dec. 1997.

[5] Object Management Group,The Common Object Request Broker: Ar-
chitecture and Specification, 2.0 ed., July 1995.

[6] S. Vinoski, “CORBA: Integrating Diverse Applications Within Dis-
tributed Heterogeneous Environments,”IEEE Communications Maga-
zine, vol. 14, February 1997.

[7] Object Management Group,Minimum CORBA - Request for Proposal,
OMG Document orbos/97-06-14 ed., June 1997.

[8] Object Management Group,Realtime CORBA 1.0 Request for Propos-
als, OMG Document orbos/97-09-31 ed., September 1997.

[9] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar, “A High-
Performance Endsystem Architecture for Real-time CORBA,”IEEE
Communications Magazine, vol. 14, February 1997.

[10] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request Brokers,”Computer Communica-
tions, vol. 21, pp. 294–324, Apr. 1998.

[11] Z. D. Dittia, G. M. Parulkar, and J. Jerome R. Cox, “The APIC Approach
to High Performance Network Interface Design: Protected DMA and
Other Techniques,” inProceedings of INFOCOM ’97, (Kobe, Japan),
IEEE, April 1997.

[12] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchronization
Protocols for Multiprocessors,” inProceedings of the Real-Time Systems
Symposium, (Huntsville, Alabama), December 1988.

[13] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), ACM, October 1997.

[14] D. C. Schmidt, “A Family of Design Patterns for Application-level Gate-
ways,” The Theory and Practice of Object Systems (Special Issue on
Patterns and Pattern Languages), vol. 2, no. 1, 1996.

[15] D. C. Schmidt, “ACE: an Object-Oriented Framework for Develop-
ing Distributed Applications,” inProceedings of the6th USENIX C++
Technical Conference, (Cambridge, Massachusetts), USENIX Associa-
tion, April 1994.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[17] Object Management Group,Specification of the Portable Object
Adapter (POA), OMG Document orbos/97-05-15 ed., June 1997.

[18] A. Gokhale and D. C. Schmidt, “Design Principles and Optimizations
for High-performance ORBs,” in12th OOPSLA Conference, poster
session, (Atlanta, Georgia), ACM, October 1997.

[19] D. C. Schmidt, R. Bector, D. Levine, S. Mungee, and G. Parulkar, “An
ORB Endsystem Architecture for Statically Scheduled Real-time Appli-
cations,” inProceedings of the Workshop on Middleware for Real-Time
Systems and Services, (San Francisco, CA), IEEE, December 1997.

[20] D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop Extensi-
ble and Maintainable ORB Middleware,”Communications of the ACM,
to appear, 1998.

[21] A. Gokhale and D. C. Schmidt, “Evaluating the Performance of Demul-
tiplexing Strategies for Real-time CORBA,” inProceedings of GLOBE-
COM ’97, (Phoenix, AZ), IEEE, November 1997.

[22] A. Gokhale and D. C. Schmidt, “Measuring the Performance of Com-
munication Middleware on High-Speed Networks,” inProceedings of
SIGCOMM ’96, (Stanford, CA), pp. 306–317, ACM, August 1996.

[23] A. Gokhale and D. C. Schmidt, “The Performance of the CORBA Dy-
namic Invocation Interface and Dynamic Skeleton Interface over High-
Speed ATM Networks,” inProceedings of GLOBECOM ’96, (London,
England), pp. 50–56, IEEE, November 1996.

[24] Z. D. Dittia, J. Jerome R. Cox, and G. M. Parulkar, “Design of the APIC:
A High Performance ATM Host-Network Interface Chip,” inIEEE IN-
FOCOM ’95, (Boston, USA), pp. 179–187, IEEE Computer Society
Press, April 1995.

[25] N. C. Hutchinson and L. L. Peterson, “Thex-kernel: An Architecture
for Implementing Network Protocols,”IEEE Transactions on Software
Engineering, vol. 17, pp. 64–76, January 1991.

[26] Object Management Group,Control and Management of A/V Streams
Request For Proposals, OMG Document telecom/96-08-01 ed., August
1996.

[27] A. Gokhale and D. C. Schmidt, “Principles for Optimizing CORBA
Internet Inter-ORB Protocol Performance,” inHawaiian International
Conference on System Sciences, January 1998.

[28] W. R. Stevens,TCP/IP Illustrated, Volume 2. Reading, Massachusetts:
Addison Wesley, 1993.

[29] D. L. Tennenhouse, “Layered Multiplexing Considered Harmful,” in
Proceedings of the1st International Workshop on High-Speed Net-
works, May 1989.

[30] A. Gokhale and D. C. Schmidt, “Evaluating Latency and Scalability of
CORBA Over High-Speed ATM Networks,” inProceedings of the In-
ternational Conference on Distributed Computing Systems, (Baltimore,
Maryland), IEEE, May 1997.

[31] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Concur-
rent Event Demultiplexing and Event Handler Dispatching,” inPattern
Languages of Program Design(J. O. Coplien and D. C. Schmidt, eds.),
pp. 529–545, Reading, MA: Addison-Wesley, 1995.

[32] D. C. Schmidt, “Acceptor and Connector: Design Patterns for Initializ-
ing Communication Services,” inPattern Languages of Program Design
(R. Martin, F. Buschmann, and D. Riehle, eds.), Reading, MA: Addison-
Wesley, 1997.

[33] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment,”JACM, vol. 20, pp. 46–61, January
1973.

[34] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour,A
Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Mono-
tonic Analysis for Real-Time Systems. Norwell, Massachusetts: Kluwer
Academic Publishers, 1993.

[35] S. Khanna and et. al., “Realtime Scheduling in SunOS 5.0,” inProceed-
ings of the USENIX Winter Conference, pp. 375–390, USENIX Associ-
ation, 1992.

[36] P. S. Inc.,Quantify User’s Guide. PureAtria Software Inc., 1996.

[37] D. C. Schmidt, T. Harrison, and N. Pryce, “Thread-Specific Storage
– An Object Behavioral Pattern for Accessing per-Thread State Effi-
ciently,” in The 4

th Pattern Languages of Programming Conference
(Washington University technical report #WUCS-97-34), September
1997.

19

[38] J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact of Event
Dispatching and Concurrency Models on Web Server Performance Over
High-speed Networks,” inProceedings of the2nd Global Internet Con-
ference, IEEE, November 1997.

[39] J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Developing and
Measuring High-performance Web Servers over ATM,” inProceeedings
of INFOCOM ’98, March/April 1998.

[40] B. Thuraisingham, P. Krupp, A. Schafer, and V. Wolfe, “On Real-Time
Extensions to the Common Object Request Broker Architecture,” in
Proceedings of the Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA) Workshop on Experiences with CORBA,
ACM, Oct. 1994.

[41] G.Cooper, L. C. DiPippo, L. Esibov, R. Ginis, R. Johnston, P. Kortman,
P. Krupp, J. Mauer, M. Squadrito, B. Thurasignham, S. Wohlever, and
V. F. Wolfe, “Real-Time CORBA Development at MITRE, NRaD, Tri-
Pacific and URI,” inProceedings of the Workshop on Middleware for
Real-Time Systems and Services, (San Francisco, CA), IEEE, December
1997.

[42] “Statement of Work for the Extend Sentry Program, CPFF Project,
ECSP Replacement Phase II,” Feb. 1997. Submitted to OMG in re-
sponse to RFI ORBOS/96-09-02.

[43] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever, I. Zykh,
and R. Johnston, “Real-Time CORBA,” inProceedings of the Third
IEEE Real-Time Technology and Applications Symposium, (Montréal,
Canada), June 1997.

[44] V. Fay-Wolfe, J. K. Black, B. Thuraisingham, and P. Krupp, “Real-
time Method Invocations in Distributed Environments,” Tech. Rep. 95-
244, University of Rhode Island, Department of Computer Science and
Statistics, 1995.

[45] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,”Theory and Practice of Object
Systems, vol. 3, no. 1, 1997.

[46] G. Kiczales, “Aspect-Oriented Programming,” inProceedings of the
11th European Conference on Object-Oriented Programming, June
1997.

[47] W. Feng, U. Syyid, and J.-S. Liu, “Providing for an Open, Real-Time
CORBA,” in Proceedings of the Workshop on Middleware for Real-Time
Systems and Services, (San Francisco, CA), IEEE, December 1997.

[48] T. Abdelzaher, S. Dawson, W.-C.Feng, F.Jahanian, S. Johnson,
A. Mehra, T. Mitton, A. Shaikh, K. Shin, Z. Wang, and H. Zou, “AR-
MADA Middleware Suite,” inProceedings of the Workshop on Middle-
ware for Real-Time Systems and Services, (San Francisco, CA), IEEE,
December 1997.

[49] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A
Flexible, Optimizing IDL Compiler,” inProceedings of ACM SIGPLAN
’97 Conference on Programming Language Design and Implementation
(PLDI), (Las Vegas, NV), ACM, June 1997.

A Overview of the CORBA ORB Ref-
erence Model

CORBA Object Request Brokers (ORBs) allow clients to in-
voke operations on distributed objects without concern for:

� Object location: CORBA objects can be located locally
with the client or remotely on a server, without affecting their
implementation or use;

� Programming language: The languages supported by
CORBA include C, C++, Java, Ada95, and Smalltalk, among
others.

� OS platform: CORBA runs on many OS platforms, in-
cluding Win32, UNIX, MVS, and real-time embedded sys-
tems like VxWorks, Chorus, and LynxOS.

� Communication protocols and interconnects: The com-
munication protocols and interconnects that CORBA can run
on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-
ernet, and embedded system backplanes.

� Hardware: CORBA shields applications from differences
in hardware such as RISC vs. CISC instruction sets.

The components in the CORBA reference model shown in
Figure 26 provide the transparency described above. The com-

DIIDII ORBORB
INTERFACEINTERFACE

ORBORB
CORECORE

operation()operation()

OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON

DSIDSI

in argsin args

out args + return valueout args + return value

CLIENTCLIENT

GIOPGIOP//IIOPIIOP

SERVANTSERVANT

STANDARD INTERFACESTANDARD INTERFACE STANDARD LANGUAGESTANDARD LANGUAGE

MAPPINGMAPPING

ORB-ORB-SPECIFIC INTERFACESPECIFIC INTERFACE STANDARD PROTOCOLSTANDARD PROTOCOL

IDLIDL
STUBSSTUBS

Figure 26: Components in the CORBA Reference Model

ponents in CORBA include the following:

Servant: This component implements the operations de-
fined by an OMG Interface Definition Language (IDL) in-
terface. In languages like C++ and Java that support object-
oriented (OO) programming, servants are implemented using
one or more objects. A servant is identified by itsobject refer-
ence, which uniquely identifies the servant in a server process.

Client: This program entity performs application tasks by
obtaining object references to servants and invoking opera-
tions on the servants. Servants can be remote or co-located rel-
ative to the client. Ideally, accessing a remote servant should
be as simple as calling an operation on a local object,i.e.,
object->operation(args) . Figure 26 shows the com-
ponents that ORBs use to transmit requests transparently from
client to servant for remote operation invocations.

ORB Core: When a client invokes an operation on a servant,
the ORB Core is responsible for delivering the request to the
servant and returning a response, if any, to the client. For ser-
vants executing remotely, a CORBA-compliant [5] ORB Core
communicates via the General Inter-ORB Protocol (GIOP)

20

and the Internet Inter-ORB Protocol (IIOP), which runs atop
the TCP transport protocol. An ORB Core is typically im-
plemented as a run-time library linked into client and server
applications.

ORB Interface: An ORB is a logical entity that may be im-
plemented in various ways,e.g., one or more processes or a
set of libraries. To decouple applications from implementation
details, the CORBA specification defines an abstract interface
for an ORB. This ORB interface provides standard operations
that convert object references to strings and back. The ORB
interface also creates argument lists for requests made through
the dynamic invocation interface (DII) described below.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as the “glue” between the client and servants, respec-
tively, and the ORB. Stubs provide a strongly-typed, static
invocation interface (SII) that marshals application data into
a common packet-level representation. Conversely, skeletons
demarshal the packet-level representation back into typed data
that is meaningful to an application. An IDL compiler au-
tomatically transforms OMG IDL definitions into an applica-
tion programming language like C++ or Java. IDL compil-
ers eliminate common sources of network programming errors
and provide opportunities for automated compiler optimiza-
tions [49].

Dynamic Invocation Interface (DII): The DII allows a
client to access the underlying request transport mechanisms
provided by the ORB Core. The DII is useful when an ap-
plication has no compile-time knowledge of the interface it
is accessing. The DII also allows clients to makedeferred
synchronouscalls, which decouple the request and response
portions of twoway operations to avoid blocking the client un-
til the servant responds. In contrast, SII stubs only support
twoway (i.e., request/response) and oneway (i.e., request only)
operations.

Dynamic Skeleton Interface (DSI): The DSI is the server’s
analogue to the client’s DII. The DSI allows an ORB to deliver
requests to a servant that has no compile-time knowledge of
the IDL interface it is implementing. Clients making requests
need not know whether the server ORB uses static skeletons
or dynamic skeletons.

Object Adapter: An Object Adapter associates a servant
with an ORB, demultiplexes incoming requests to the servant,
and dispatches the appropriate operation upcall on that servant.
While current CORBA implementations are typically limited
to a single Object Adapter per ORB, recent CORBA porta-
bility enhancements [17] define the Portable Object Adapter
(POA), which supports multiple nested POAs per ORB.

21

