
A Platform-Independent Component Modeling Language for Distributed

Real-time and Embedded Systems∗

Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons

Aniruddha Gokhale, Douglas C. Schmidt

Dept. of EECS, Vanderbilt University, Nashville

{kitty,jai,parsons,gokhale,schmidt}@dre.vanderbilt.edu

Abstract

This paper provides two contributions to the study of de-

veloping and applying domain-specific modeling languages

(DSMLS) to distributed real-time and embedded (DRE) sys-

tems – particularly those systems using standards-based

QoS-enabled component middleware. First, it describes

the Platform-Independent Component Modeling Lan-

guage (PICML), which is a DSML that enables devel-

opers to define component interfaces, QoS parameters

and software building rules, and also generates descrip-

tor files that facilitate system deployment. Second, it

applies PICML to an unmanned air vehicle (UAV) appli-

cation portion of an emergency response system to show

how PICML resolves key component-based DRE system de-

velopment challenges. Our results show that the capa-

bilities provided by PICML – combined with its design-

and deployment-time validation capabilities – elimi-

nates many common errors associated with conventional

techniques, thereby increasing the effectiveness of apply-

ing QoS-enabled component middleware technologies to

the DRE system domain.

1. Introduction

Emerging trends and challenges Reusable components and

standards-based component models are increasingly replac-

ing the use of monolithic and proprietary technologies as

the platform for developing large-scale, mission-critical dis-

tributed real-time and embedded (DRE) systems [1]. This

paradigm shift is motivated by the need to (1) reduce life-

cycle costs by leveraging standards-based and commercial-

off-the-shelf (COTS) technologies and (2) enhance software

quality by amortizing validation and optimization efforts

over many users and testing cycles. Component technolo-

gies, such as the OMG’s Lightweight CORBA Component

∗ This work was sponsored in part by AFRL Contract# F33615-03-C-
4112 for DARPA PCES Program, Raytheon, and a grant from Siemens
CT.

Model (CCM) and Boeing’s Boldstroke PRiSm, are estab-

lishing themselves as effective middleware platforms for de-

veloping component-based DRE software systems in do-

mains ranging from software-defined radio to avionics mis-

sion computing and total ship computing environments.

The trend towards developing and reasoning about DRE

systems via components provides many advantages com-

pared with earlier forms of infrastructure software. For ex-

ample, components provide higher-level abstractions than

operating systems, third-generation programming lan-

guages, and earlier generations of middleware, such as

distributed object computing (DOC) middleware. In par-

ticular, component middleware, such as CCM, J2EE, and

.NET, supports multiple views per component, transpar-

ent navigation, greater extensibility, and a higher-level

execution environment based on containers, which allevi-

ate many limitations of prior middleware technologies. The

additional capabilities of component-based platforms, how-

ever, also introduce new complexities associated with com-

posing and deploying DRE systems using components,

including (1) the need to design consistent component in-

terface definitions, (2) the need to specify valid interactions

and connections between components, (3) the need to gen-

erate valid component deployment descriptors, (4) the need

to ensure that requirements of components are met by tar-

get nodes where components are deployed, and (5) the need

to guarantee that changes to a system do not leave it in an in-

consistent state. The lack of simplification and automation

in resolving the challenges outlined above can signifi-

cantly hinder the effective transition to – and adoption of

– component middleware technology to develop DRE sys-

tems.

Solution approach → Model-driven development of

component-based DRE systems To address the needs of

DRE system developers outlined above, we have devel-

oped the Platform-Independent Component Modeling Lan-

guage (PICML). PICML is an open-source domain-specific

modeling language (DSML) available for download at

www.dre.vanderbilt.edu/cosmic that enables develop-

ers of component-based DRE systems to define application

interfaces, QoS parameters, and system software build-



ing rules, as well as generate valid XML descriptor files that

enable automated system deployment. PICML also pro-

vides capabilities to handle complex component engineer-

ing tasks, such as multi-aspect visualization of components

and the interactions of their subsystems, component de-

ployment planning, and hierarchical modeling of compo-

nent assemblies.

PICML is designed to help bridge the gap between

design-time verification and model-checking tools (such as

Cadena, VEST, and AIRES) and the actual deployed com-

ponent implementations. PICML also provides higher-level

abstractions for describing DRE systems, using compo-

nent models that provides a base for (1) integrating analy-

sis tools that reason about DRE systems and (2) platform-

independent generation capabilities, i.e., generation that can

be targeted at multiple component middleware technolo-

gies, such as CCM, J2EE, and ICE.

2. Evaluating QoS-enabled Component Mid-

dleware for DRE Systems

This section (1) describes an emergency response system

that uses multiple unmanned air vehicles (UAVs) to perform

aerial imaging, survivor tracking, and damage assessment

as a motivating example and (2) explains the problems en-

countered with developing the UAV application portion of

this example DRE system using component middleware.

2.1. Applying QoS-enabled Component Middle-

ware to a DRE System

To motivate and explain the features in PICML, we use a

running example of a representative DRE system designed

for emergency response situations (such as disaster recovery

efforts stemming from floods, earthquakes, hurricanes) and

consists of a number of interacting subsystems with a vari-

ety of DRE QoS requirements. Our focus in this paper is on

the unmanned aerial vehicle (UAV) portion of this system,

which is used to monitor terrain for flood damage, spot sur-

vivors that need to be rescued, and assess the extent of dam-

age. The UAV transmits this imagery to various other emer-

gency response units, including the national guard, law en-

forcement agencies, health care systems, firefighting units,

and utility companies.

Developing and deploying emergency response systems

is hard. For example, there are multiple modes of opera-

tions for the UAVs, including aerial imaging, survivor track-

ing, and damage assessment. Each of these modes is asso-

ciated with a different set of QoS requirements. For exam-

ple, a key QoS criteria involves the latency requirements

in sending images from the flying UAVs to ground stations

under varying bandwidth availability. Similar QoS require-

ments manifest themselves in the traffic management, res-

cue missions, and fire fighting operations.

In conjunction with colleagues at BBN Technologies and

Washington University, we have developed a prototype of

the UAV portion of the emergency response system de-

scribed above using the CCM and Real-time CORBA capa-

bilities provided by CIAO [2]. CIAO extends our previous

work on The ACE ORB (TAO) [3] by providing more pow-

erful component-based abstractions using the specification,

validation, packaging, configuration, and deployment tech-

niques defined by the OMG CCM [4] and D&C [5] spec-

ifications. Moreover, CIAO integrates the CCM capabili-

ties outlined above with TAO’s Real-time CORBA [3] fea-

tures, such as thread-pools, lanes, and client-propagated and

server-declared policies. The components in this UAV ap-

Figure 1. Emergency Response System compo-

nents

plication are shown in Figure 1 and the steps involved in

this effort are described below:

1. Identify the components in the system, and de-

fine their interfaces, which involves defining component

ports and attributes, using the CORBA 3.x IDL fea-

tures provided by CCM. In the UAV example, each

UAV is associated with a stream of images. Each im-

age stream is composed of Sender, Qosket, and Receiver

components. Sender components are responsible for col-

lecting the images from each image sensor on the UAV. The

Sender passes the images to a series of Qosket [2] com-

ponents that perform operations on the images to ensure

that the QoS requirements are satisfied. Some Qos-

ket components include CompressQosket, ScaleQosket,



CropQosket, PaceQosket, and a DiffServQosket. The fi-

nal Qosket then passes the images to a Receiver compo-

nent, which collects the images from the UAV and passes

them on to a display in the control room of the emer-

gency response team.

Each Sender, Receiver, and the various Qosket com-

ponents pass images via CCM event source and sink

ports. There are also manager components that define poli-

cies, such as the relative importance of the different mission

modes of each UAV. These policies in turn modify exist-

ing resource allocations by the Qosket components. For

example, the global SystemResourceManager compo-

nent monitors resource allocation across all the UAVs that

are operational at any moment, and is responsible for com-

municating policy decisions from the control center to

each UAV by triggering mode changes. The per-stream

LocalResourceManager component is responsible for in-

structing the Qosket components to adapt their inter-

nal QoS requirements according to the mode in which the

UAV is currently operating.

2. Define interactions between components, which in-

volves keeping track of the types of each component’s

ports and ensuring that components which must be inter-

connected have matching ports defined. In the UAV exam-

ple, this involves connecting the different components that

comprise a single stream in the correct order since some

components (such as DeCompressQosket) do the reverse

of an operation performed by another component (such as

CompressQosket). The manager components need to be

connected to receive monitoring information about the ex-

isting QoS in each stream of image data.

3. Compose the UAV application by defining CCM de-

ployment descriptors, which involves selecting a set of

component implementations from a library of available im-

plementations, describing how to instantiate component in-

stances using these component implementations, and spec-

ifying connections between component instances. In the

UAV example, this first involves combining the different

components that comprise a single stream of images into

a single assembly, represented by an XML descriptor. The

complete UAV application is then created by making copies

of this file to represent each UAV in flight.

4. Deploy the UAV application onto its runtime plat-

form, which involves ensuring that the implementation ar-

tifacts and the associated deployment descriptors are avail-

able on the actual target platform, and initiating the deploy-

ment process using the standard OMG D&C [5] framework

and tools. In the UAV example, this involves taking the

hand-written XML descriptors and deploying the applica-

tion using these descriptors as input.

5. Refine the component-based UAV application, which

involves making changes to existing component interface

definitions or adding new component types, as part of en-

hancing the initial UAV application prototype. In the UAV

example, this involves adding or removing a Qosket com-

ponent in the pipeline for a single stream depending on re-

sults from empirical evaluation of the system.

2.2. Challenges of Developing the UAV Applica-

tion using QoS-enabled Component Middle-

ware

As discussed in [6], the use of QoS-enabled component

middleware to develop the UAV application significantly

improved upon an earlier DOC middleware prototype of

this application [7]. In the absence of model-driven devel-

opment (MDD) tool support, however, a number of signif-

icant challenges remain unresolved when using component

middleware. For concreteness, the remainder of this section

describes five key challenges that arose when the UAV ap-

plication was developed using CCM and CIAO.

We use CCM and CIAO as the basis for our research be-

cause it is layered on top of Real-time CORBA, which pro-

vides significant capabilities for satisfying end-to-end QoS

requirements of DRE systems [3]. There is nothing inherent

in PICML, however, that limits it to CCM or CIAO. Like-

wise, the challenges described below are generic to com-

ponent middleware, and not deficiencies of CCM or CIAO.

For example, both J2EE and Microsoft .NET use XML to

describe component assemblies, so the challenges we de-

scribe apply to them, as well.

2.2.1. Accidental Complexities in Component Interface

Definition. IDL for CCM (i.e., CORBA 3.x IDL) defines

extensions to the syntax and semantics of CORBA 2.x IDL.

Every developer of CCM-based applications must there-

fore master the differences between CORBA 2.x IDL and

CORBA 3.x IDL. For example, while CORBA 2.x inter-

faces can have multiple inheritance, CCM components can

have only a single parent, so equivalent units of composition

(i.e., interfaces in CORBA 2.x and components in CCM)

can have subtle semantic differences. Moreover, any com-

ponent interface that needs to be accessed by component-

unaware CORBA clients should be defined as a supported

interface as opposed to a provided interface.

In any system that transitions from an object-based ar-

chitecture to a component-based architecture, there is like-

lihood of simultaneous existence of simple CORBA objects

and more sophisticated CCM components. Design of com-

ponent interfaces must therefore be done with extra care. In

the UAV application, for example, though the Qosket com-

ponents receive both allocation events from the resource

managers and images from the Sender and other Qosket

components, they cannot inherit from base components

implementing each functionality. Similarly, the Receiver

component interface needs to be defined as a supported in-

terface, rather than a provided interface.



2.2.2. Defining Consistent Component Interactions.

Even if a DRE system developer is well-versed in

CORBA 3.x IDL, it is hard to keep track of compo-

nents and their types using plain IDL files, which are

text-based and hence provide no visual feedback, i.e., to al-

low visual comparison to identify differences between com-

ponents. Type checking with text-based files involves man-

ual inspection, which is error-prone and non-scalable.

Moreover, an IDL compiler will not be able to catch mis-

matches in the port types of two components that need to

be connected together, since component connection in-

formation is not defined in IDL. This problem only be-

comes worse as the number of component types in a

DRE system increases. In our UAV application for exam-

ple, enhancing the UAV with new capabilities can increase

the number of component types and inter-component in-

teractions. If a problem arises, developers of DRE sys-

tems may need to revise the interface definitions un-

til the types match, which is a tedious and error-prone

process.

2.2.3. Generating Valid Deployment Descriptors.

Component developers must not only ensure type com-

patibility between interconnected component types as part

of interface definition, but also ensure the same compati-

bility between instances of these component types in the

XML descriptor files needed for deployment. This prob-

lem is of a larger scale than the one above, since the num-

ber of component instances typically dwarfs the number

of component types in a large-scale DRE system. More-

over, a CCM assembly file written using XML is not

well-suited to manual editing.

In addition to learning IDL, DRE system developers

must also learn XML to compose component-based DRE

systems. In our example UAV application, simply increas-

ing the number of UAVs increases the number of compo-

nent instances and hence the component interconnections.

The increase in component interconnections is typically not

linear with respect to increase in number of component in-

stances. Any errors in this step are likely to go undetected

until the deployment of the system at run-time.

2.2.4. Associating Components with the Deployment

Target. In component-based systems there is often a dis-

connect between software implementation-related activities

and the actual target system since (1) the software arti-

facts and the physical system are developed independently

and (2) there is no way to associate these two entities us-

ing standard component middleware features. This discon-

nect typically results in failures at run-time due to the tar-

get environment lacking the capabilities to support the de-

ployed component’s requirements. These mismatches can

also often be a source of missed optimization opportunities

since knowledge of the target platform can help optimize

component implementations and customize the middleware

accordingly. In our UAV application, components that re-

side on a single UAV can use collocation facilities provided

by ORBs to eliminate unnecessary (de)marshaling. Without

the ability to associate components with targets, errors due

to incompatible component connections and incorrect XML

descriptors are likely to show up only during actual deploy-

ment of the system.

2.2.5. Automating Propagation of Changes Throughout

a DRE System. Making changes to an existing component

interface definition can be painful since it may involve re-

tracing all the steps of the initial development. It also does

not allow any automatic propagation of changes made in a

base component type to other portions of the existing in-

frastructure, such as the component instances defined in the

descriptors. Moreover, it is hard to test parts of the system

incrementally, since it requires hand-editing of XML de-

scriptors to remove or add components, thereby potentially

introducing more problems. The validity of such changes

can be ascertained only during deployment, which increases

the time and effort required for the testing process. In our

component-based UAV application, for example, changes to

the basic composition of a single image stream are followed

by laborious changes to each individual stream, impeding

the benefits of reuse commonly associated with component-

based development.

3. Building DRE Systems with PICML

A common theme underlying the challenges of compo-

nent middleware discussed in Section 2.2 is that errors of-

ten go undetected until late in the development cycle. When

these errors are eventually detected, moreover, repairing

them often involves backtracking to multiple prior lifecycle

steps, which impedes productivity and increases the level

of effort. As a result, the advantages of transitioning from

DOC middleware to component middleware can be signif-

icantly obstructed, without support from higher-level tools

and techniques.

These observations underscore the importance of en-

hancing design-time support for DRE systems built us-

ing component middleware, as well as the importance of

automating the deployment of such systems. This section

presents an overview of PICML and shows how it helps re-

solve the challenges described in Section 2.2 that arise when

developing large-scale DRE systems, such as the UAV-

driven application, using QoS-enabled component middle-

ware.

3.1. Overview of PICML

Section 2.2 illustrated the need for a tool support that

simplifies development of DRE systems and providing the



means to automate several of the tedious and error-prone

activities. Model-Driven Development (MDD) [8] is a par-

adigm that can provide these capabilities. MDD focuses on

using models in most system development activities, i.e.,

models provide input and output at all stages of system de-

velopment until the final system itself is generated.

A key capability supported by the MDD paradigm is

the definition and implementation of domain-specific mod-

eling languages (DSMLs), which can be viewed as a five-

tuple [9] consisting of: (1) concrete syntax (C), which de-

fines the notation used to express domain entities, (2) ab-

stract syntax (A), which defines the concepts, relationships

and integrity constraints available in the language, (3) se-

mantic domain (S), which defines the formalism used to

map the semantics of the models to a particular domain,

(4) syntactic mapping (MC: A→C), which assigns syntac-

tic constructs (e.g., graphical and/or textual) to elements of

the abstract syntax, and (5) semantic mapping (MS: A→S),

which relates the syntactic concepts to those of the seman-

tic domain.

Crucial to the success of DSMLs is metamodel-

ing and auto-generation. A metamodel defines the el-

ements of a DSML, which is tailored to a particular

domain, such as the domain of avionics mission com-

puting or emergency response systems. Auto-generation

involves automatically synthesizing artifacts from mod-

els, thereby relieving DSML users from the specifics of the

artifacts themselves, including their format, syntax, or se-

mantics. Examples of such artifacts includes (but are not

limited to), code in some programming language and/or de-

scriptors, in formats such as XML, that can serve as input

to other tools.

To support development of DRE systems using MDD,

we have defined the Platform-Independent Compo-

nent Modeling Language (PICML) DSML using the

Generic Modeling Environment (GME) [10]. GME is

a meta-programmable modeling environment with a

general-purpose editing engine, separate view-controller

GUI, and a configurable persistence engine. Since GME

is meta-programmable, the same environment used to de-

fine PICML is also used to build models, which are in-

stances of the PICML metamodel.

At the core of PICML is a DSML (defined as a meta-

model using GME) for describing components, types of al-

lowed interconnections between components, and types of

component metadata for deployment. The PICML meta-

model defines ∼115 different types of basic elements, with

57 different types of associations between these elements,

grouped under 14 different folders. The PICML metamodel

also uses the OMG’s Object Constraint Language (OCL) to

define ∼222 constraints that are enforced by GME’s con-

straint manager during the design process.

Using GME tools, the PICML metamodel can be

compiled into a modeling paradigm, which defines a

domain-specific modeling environment. From this meta-

model, ∼20,000 lines of C++ code (which represents

the modeling language elements as equivalent C++
types) is generated. This generated code allows ma-

nipulation of modeling elements, i.e., instances of the

language types using C++, and forms the basis for writ-

ing model interpreters, which traverse the model hier-

archy to perform various kinds of generative actions,

such as generating XML-based deployment plan descrip-

tors. PICML currently has ∼8 interpreters using ∼222 gen-

erated C++ classes and ∼8,000 lines of hand-written

C++ code that traverse models to generate the XML de-

ployment descriptors (described in Sidebar 2) needed

to support the OMG D&C specification [5]. Each in-

terpreter is written as a DLL that is loaded at run-time

into GME and executed to generate the XML descrip-

tors based on models developed by the component devel-

opers using PICML.

3.2. Case Study: Resolving UAV Application Chal-

lenges with PICML

We now examine how key features of PICML can be ap-

plied to address the limitations discussed in Section 2.2

associated with developing QoS-enabled component

middleware-based DRE systems, such as the UAV ap-

plication, without tool support. The remainder of this

section presents a case study where we applied the fol-

lowing features of PICML to the UAV application de-

scribed in Section 2.1: (1) visual component interface

definition, (2) semantically compatible component interac-

tion definition, (3) valid deployment descriptor generation,

(4) model-driven association of components with deploy-

ment targets, and (5) hierarchical composition of compo-

nent assemblies.

3.2.1. Visual Component Interface Definition. A set of

component, interface, and other datatype definitions may

be created in PICML using either of the following ap-

proaches:

• Adding to existing definitions imported from IDL.

In this approach, existing CORBA software systems

can be easily migrated to PICML using its IDL Im-

porter, which takes any number of CORBA IDL files

as input, maps their contents to the appropriate PICML

model elements, and generates a single XML file that

can be imported into GME as a PICML model. This

model can then be used as a starting point for model-

ing assemblies and generating deployment descriptors.

• Creating IDL definitions from scratch. In this ap-

proach, PICML’s graphical modeling environment

provides support for designing the interfaces us-



ing an intuitive “drag and drop” technique, making

this process largely self-explanatory and indepen-

dent of platform-specific technical knowledge. Most

of the grammatical details are implicit in the vi-

sual language, e.g., when the model editor screen is

showing the “scope” of a definition, only icons repre-

senting legal members of that scope will be available

for dragging and dropping.

CORBA IDL can be generated from PICML, en-

abling generation of software artifacts in languages having

a CORBA IDL mapping. For each logically separate de-

finition in PICML, the generated IDL is also split into

logical file-type units. PICML’s interpreter will trans-

late these units into actual IDL files with #include state-

ments based on the inter-dependencies of the units detected

by the interpreter. PICML’s interpreter will also detect re-

quirements for the inclusion of canonical CORBA IDL files

and generate them as necessary.

Application to the UAV example scenario. By modeling

the UAV components using PICML, the problems associ-

ated with multiple inheritance, semantics of IDL, etc. are

flagged at design time. By providing a visual environment

for defining the interfaces, PICML therefore resolves many

problems described in Section 2.2.1 associated with defini-

tion of component interfaces. In particular, by modeling the

interface definitions, PICML alleviates the need to model

a subset of interfaces for analysis purposes, which has the

added advantage of preventing skew between the models

of interfaces used by analysis tools and the interface used in

implementations. It also removes the effort needed to ensure

that the IDL semantics are satisfied, resulting in a ∼50% re-

duction in effort associated with interface definition.

3.2.2. Semantically Compatible Component Interac-

tion Definition. PICML defines the static semantics of a

system using a constraint language and enforces these se-

mantics early in the development cycle, i.e., at design-time.

This type checking can help identify system configura-

tion errors similar to how a compiler catches syntactic

errors early in the programming cycle. Static semantics re-

fer to the “well-formedness” rules of the language. The

well-formedness rules of a traditional compiler are nearly

always based on a language grammar defining valid syn-

tax. By elevating the level of abstraction via MDD tech-

niques, however, the corresponding well-formedness rules

of DSMLs like PICML actually capture semantic informa-

tion, such as constraints on composition of models, and

constraints on allowed interactions.

There is a significant difference in the early detection

of errors in the MDD paradigm compared with traditional

object-oriented or procedural development using a conven-

tional programming language compiler. In PICML, OCL

constraints are used to define the static semantics of the

modeling language, thereby disallowing invalid systems to

be built using PICML. In other words, PICML enforces the

paradigm of “correct-by-construction.” Sidebar 1 shows an

example of a constraint defined in the PICML metamodel.

Sidebar 1: Example PICML Constraint

Below is an example of a constraint defined in PICML:

let concrete_parents = sel f .parts(“Inherits′′) →

select (x : gme :: Model |

x.oclAsType(Event).abstract = f alse) in

i f (sel f .abstract = true) then

concrete_parents → size = 0

else

concrete_parents → size < 2

endi f

This constraint is applied to a PICML model element called

Event. An Event has a boolean attribute called abstract and

may inherit from 0 or more other Events, by containing PICML

model elements called Inherits, which are references to defin-

itions of other Events. The constraint shown above ensures that

if an Event is “concrete” (i.e., its abstract attribute is false), it

cannot be derived from more than a single concrete Event; and

if an Event is “abstract”, it cannot be derived from another “con-

crete” Event. This constraint places no limit on the number of

abstract parents in either case.

By using GME’s constraint manager, PICML constraints

can be (1) evaluated automatically (triggered by a specified

modeling event) or on demand, (2) prioritized to control or-

der of evaluation and severity of violation, and/or (3) ap-

plied globally or to one or more individual model elements

Application to the UAV example scenario. In the con-

text of our UAV application, the components of a single

stream can be modeled as a CCM assembly. PICML enables

the visual inspection of types of ports of components and

the connection between compatible ports, including flag-

ging error when attempting connection between incompati-

ble ports. PICML also differentiates different types of con-

nections using visual cues, such as dotted lines and color,

to quickly compare the structure of an assembly. By provid-

ing a visual environment coupled with rules defining valid

constructs, PICML therefore resolves many problems de-

scribed in Section 2.2.2 with ensuring consistent compo-

nent interactions. By enforcing the constraints during cre-

ation of component models and interconnections – and by

disallowing connections to be made between incompatible

ports – PICML completely eliminates the manual effort re-

quired to perform these kinds of checks.



3.2.3. Valid Deployment Descriptor Generation. In ad-

dition to ensuring design-time integrity of systems built us-

ing OCL constraints, PICML also generates the complete

set of deployment descriptors that are needed as input to the

component deployment mechanisms. The descriptors gen-

erated by PICML conform to the descriptors defined by the

standard OMG D&C specification [5]. Sidebar 2 shows an

example of the types of descriptors that are generated by

PICML, with a brief explanation of the purpose of each type

of descriptor.

Sidebar 2: Generating Deployment Meta-
data

PICML generates the following types of deployment descriptors

based on the OMG D&C specification:

• Component Interface Descriptor (.ccd) – Describes the

interfaces – ports, attributes of a single component.

• Implementation Artifact Descriptor (.iad) – Describes

the implementation artifacts (e.g., DLLs, executables etc.)

of a single component.

• Component Implementation Descriptor (.cid) – De-

scribes a specific implementation of a component interface;

also contains component inter-connection information.

• Component Package Descriptor (.cpd) – Describes

multiple alternative implementations (e.g., for different

OSes) of a single component.

• Package Configuration Descriptor (.pcd) – Describes

a component package configured for a particular require-

ment.

• Component Deployment Plan (.cdp) – Plan which

guides the run-time deployment.

• Component Domain Descriptor (.cdd) – Describes the

deployment target i.e., nodes, networks on which the com-

ponents are to be deployed.

Since the rules determining valid assemblies are encoded

into PICML via its metamodel, and enforced using con-

straints, PICML ensures that the generated XML describes

a valid system. Generation of XML is done in a program-

matic fashion by writing a Visitor class that uses the Visi-

tor pattern to traverse the elements of the model and gener-

ate XML. The generated XML descriptors also ensure that

the names associated with instances are unique, so that in-

dividual component instances can be identified unambigu-

ously at run-time.

Application to the UAV example scenario. In the con-

text of the UAV application, the automated generation of

deployment descriptors using PICML not only removes the

burden of knowing XML from DRE system developers, it

also ensures that the generated files are valid. Adding (or

removing) components is as easy as dragging and drop-

ping (or deleting) an element, making the necessary con-

nections, and regenerating the descriptors, instead of hand-

modifying the existing XML files as would be done with-

out such tool support. This automation resolves many prob-

lems mentioned in Section 2.2.3, where the XML files were

hand-written and modified manually in case of errors with

the initial attempts.

For example, it is trivial to make the ∼100 connections

in a graphical fashion using PICML, as opposed to hand-

writing the XML. All the connections between components

for the UAV application were made in a few hours, and the

XML was then generated instantaneously, i.e. at the click

of a button. In contrast, it required several days to write

the same XML descriptors manually. PICML also has the

added advantage of ensuring that the generated XML files

are syntactically valid, which is a task that is very tedious

and error-prone to perform manually.

3.2.4. Deployment Planning. In order to satisfy multiple

QoS requirements, DRE systems are often deployed in het-

erogeneous execution environments. To support such envi-

ronments, component middleware strives to be largely in-

dependent of the specific target environment in which ap-

plication components will be deployed. The goal is to sat-

isfy the functional and systemic requirements of DRE sys-

tems by making appropriate deployment decisions that ac-

count for key properties of the target environment, and re-

tain flexibility by not committing prematurely to physical

resources.

To support these needs, PICML can be used to specify

the target environment where the DRE system will be de-

ployed, which includes defining: (1) Nodes, where the in-

dividual components and component packages are loaded

and used to instantiate those components, (2) Interconnects

among nodes, to which inter-component software connec-

tions are mapped, to allow the instantiated components to

communicate, and (3) Bridges among interconnects, where

interconnects provide a direct connection between nodes

and bridges to provide routing capability between intercon-

nects. Nodes, interconnects, and bridges collectively repre-

sent the target environment.

Once the target environment is specified via PICML, al-

location of component instances onto nodes of the target

target environment can be performed. This activity is re-

ferred to as component placement, where systemic require-

ments of the components are matched with capabilities of

the target environment and suitable allocation decisions are

made. Allocation can either be: (1) Static, where the do-

main experts know the functional and QoS requirement of

each of the components, as well as knowledge about the

nodes of the target environment. In such a case, the job of

the allocation is to create a deployment plan comprising the

components→node mapping specified by the domain ex-

pert, or (2) Dynamic, where the domain expert specifies the



constraints on allocation of resources at each node of the tar-

get environment, and the job of the allocation is to choose

a suitable component→node mapping that meets both the

functional and QoS requirement of each of the components,

as well as the constraints on the allocation of resources.

PICML currently provides facilities for specifying sta-

tic allocation of components. As shown in Figure 2, domain

experts can visually map the components with the respec-

tive target nodes, as well as provide additional hints, such

as whether the components need to be process-collocated

or host-collocated, provided two components are deployed

in the same target node. PICML generates a deployment

Figure 2. Component Deployment Planning

plan from this information, which is used by the CIAO run-

time deployment engine to perform the actual deployment

of components to nodes.

Application to the UAV example scenario. In the con-

text of the UAV example, PICML can be used to specify

the mapping between the different Qosket components and

the target environment, i.e., the UAVs, in the path from each

UAV to the Receiver component at the control center. By

modeling the target environment in the UAV example using

PICML, therefore, the problem with a disconnect between

components and the deployment target described in Sec-

tion 2.2.4 can be resolved. In case there are multiple possi-

ble component→node mappings, PICML can be used to ex-

periment with different combinations since it generates de-

scriptors automatically. PICML thus completely eliminates

the manual effort involved in writing the deployment plan.

3.2.5. Hierarchical Composition. In a complex DRE

system with thousands of components, visualization be-

comes an issue because of the practical limitations of

displays, and the limitations of human cognition. With-

out some form of support for hierarchical composition,

observing and understanding system representations in a vi-

sual medium does not scale. To increase scalability, PICML

defines a hierarchy construct, which enables the abstrac-

tion of certain details of a system into a hierarchical

organization, such that developers can view their sys-

tem at multiple levels of detail depending upon their

needs.

The support for hierarchical composition in PICML not

only allows DRE system developers to visualize their sys-

tems, but also allows them to compose systems from a set of

smaller subsystems. This feature supports unlimited levels

of hierarchy (constrained only by the physical memory of

the system used to build models) and promotes the reuse of

component assemblies. PICML therefore enables the devel-

opment of repositories of predefined components and sub-

systems.

The hierarchical composition capabilities provided by

PICML are only a logical abstraction, i.e., deployment

plans generated from PICML (described in 3.2.4) flatten out

the hierarchy to connect the two destination ports directly

(which if not done will introduce additional overhead in

the communication paths between the two connected ports),

thereby ensuring that at run-time there is no extra overhead

that can be attributed to this abstraction. This feature ex-

tends the basic hierarchy feature in GME, which allows a

user to double-click to view the contents of container ob-

jects called “models.”

Figure 3. Single Image Stream Assembly

Application to the UAV example scenario. In the UAV

example, the hierarchy abstraction in PICML allows the

composition of components into a single stream assembly

as shown in Figure 3, as well as the composition of mul-

tiple such assemblies into a top-level scenario assembly as

shown in Figure 4.

As a result, large portions of the UAV application sys-

tem can be built using reusable component assemblies. In

turn, this increased reuse allows for automatic propagation

of changes made to an subsystem to all portions of the sys-

tem where this subsystem is used, resolving many problems

mentioned in Section 2.2.5. PICML therefore helps prevent



Figure 4. UAV Application Assembly Scenario

mismatches and removes duplication of subsystems.

Hierarchical assemblies in PICML also help reduce the

effort involved in modeling of component assemblies by a

factor of N:1, since N usages of a basic assembly can be

replaced with N instances of the same assembly, as well

as providing for automatic generation of descriptors corre-

sponding to the N instances. This technique was used to

model a single stream of image from a UAV, and this sin-

gle assembly was used to instantiate all the four streams of

data, as shown in Figure 4.

4. Related Work

This section summarizes related efforts associated with

developing DRE systems using an MDD approach and com-

pares these efforts with our work on PICML.

Cadena Cadena [11] is an integrated environment devel-

oped at Kansas State University (KSU) for building and

modeling component-based DRE systems, with the goal of

applying static analysis, model-checking, and lightweight

formal methods to enhance these systems. Cadena also

provides a component assembly framework for visualizing

and developing components and their connections. Unlike

PICML, however, Cadena does not support activities such

as component packaging and generating deployment de-

scriptors, component deployment planning, and hierarchi-

cal modeling of component assemblies. To develop a com-

plete MDD environment that seamlessly integrates com-

ponent development and model checking capabilities, we

are working with KSU to integrate PICML with Cadena’s

model checking tools, so we can accelerate the development

and verification of DRE systems.

VEST and AIRES The Virginia Embedded Systems

Toolkit (VEST) [12] and the Automatic Integration of

Reusable Embedded Systems (AIRES) [13] are MDD

analysis tools that evaluate whether certain timing, mem-

ory, power, and cost constraints of real-time and embed-

ded applications are satisfied. Components are selected

from pre-defined libraries, annotations for desired real-time

properties are added, the resulting code is mapped to a hard-

ware platform, and real-time and schedulability analysis

is done. In contrast, PICML allows component model-

ers to model the complete functionality of components and

intra-component interactions, and doesn’t rely on prede-

fined libraries. PICML also allows DRE system developers

the flexibility in defining the target platform, and is not re-

stricted to just processors.

ESML The Embedded Systems Modeling Language

(ESML) [14] was developed at the Institute for Soft-

ware Integrated Systems (ISIS) to provide a visual meta-

modeling language based on GME that captures multi-

ple views of embedded systems, allowing a diagrammatic

specification of complex models. The modeling build-

ing blocks include software components, component

interactions, hardware configurations, and scheduling poli-

cies. The user-created models can be fed to analysis

tools (such as Cadena and AIRES) to perform schedu-

lability and event analysis. Using these analyses, design

decisions (such as component allocations to the target exe-

cution platform) can be performed. Unlike PICML, ESML

is platform-specific since it is heavily tailored to the Boeing

Boldstroke PRiSm QoS-enabled component model [1, 15].

ESML also does not support nested assemblies and the al-

location of components are tied to processor boards,

which is a proprietary feature of the Boldstroke compo-

nent model. We are working with the ESML team at ISIS

to integrate the ESML and PICML metamodels to pro-

duce a unified DSML suitable for modeling a broad range

of QoS-enabled component models.

Ptolemy II Ptolemy II [16] is a tool-suite from the Univer-

sity of California Berkeley (UCB) that supports heteroge-

neous modeling, simulation, and design of concurrent sys-

tems using an actor-oriented design. Actors are similar to

components, but their interactions are controlled by the se-

mantics of models of computation, such as discrete systems.

The set of available actors is limited to the domains that

are natively defined in Ptolemy. Using an actor specializa-

tion framework, code is generated for embedded systems.

In contrast, PICML does not define a particular model of

computation. Also, since PICML is based on the metamod-

eling framework of GME, it can be customized to support a

broader range of domains than those supported by Ptolemy

II. Finally, PICML targets component middleware for DRE

systems and can be used with any middleware technology,

as well as any programming language, whereas Ptolemy II

is based on Java, with preliminary support for C.

5. Concluding Remarks

Although component middleware represents an advance

over previous generations of middleware technologies, its



additional complexities threaten to negate many of its bene-

fits without proper tool support. To address this problem, we

describe the capabilities of the Platform-Independent Com-

ponent Modeling Language (PICML) in this paper. PICML

is a domain-specific modeling language (DSML) that sim-

plifies and automates many activities associated with devel-

oping, and deploying component-based DRE systems. In

particular, PICML provides a graphical DSML-based ap-

proach to define component interface definitions, specify

component interactions, generate deployment descriptors,

define elements of the target environment, associate com-

ponents with these elements, and compose complex DRE

systems from such basic systems in a hierarchical fashion.

To showcase how PICML helps resolve the complexi-

ties of QoS-enabled component middleware, we applied it

to model key aspects of an unmanned air vehicle (UAV) ap-

plication that is representative of emergency response sys-

tems. Using this application as a case study, we showed how

PICML can support design-time activities, such as specify-

ing component functionality, interactions with other compo-

nents, and the assembly and packaging of components, and

deployment-time activities, such as specification of target

environment, and automatic deployment plan generation.

Acknowledgments

Portions of the work in this paper was done during Krish-

nakumar’s internship at BBN Technologies, in Cambridge,

MA. We would like to thank Prakash Manghwani, Matt

Gillen, Praveen Sharma, Jianming Ye, Joe Loyall, Richard

Schantz, and George Heineman at BBN for providing us

with the component-based UAV application used as the mo-

tivating example in this paper. We would also like to thank

Nanbor Wang, Venkita Subramonian, and Christopher Gill

from Washington University for their efforts in implement-

ing the original CIAO, and subsequent extensions that sup-

port Real-time CORBA features with CCM.

References

[1] D. C. Sharp and W. C. Roll, “Model-Based Integration of

Reusable Component-Based Avionics System,” in Proceed-

ings of the Workshop on Model-Driven Embedded Systems

in RTAS 2003, May 2003.

[2] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues,

B. Natarajan, J. P. Loyall, R. E. Schantz, and C. D. Gill,

“QoS-enabled Middleware,” in Middleware for Communica-

tions (Q. Mahmoud, ed.), pp. 131–162, New York: Wiley and

Sons, 2003.

[3] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design

and Performance of Real-Time Object Request Brokers,”

Computer Communications, vol. 21, pp. 294–324, Apr. 1998.

[4] Object Management Group, CORBA Components, OMG

Document formal/2002-06-65 ed., June 2002.

[5] Object Management Group, Deployment and Configuration

Adopted Submission, OMG Document ptc/03-07-08 ed., July

2003.

[6] N. Wang, C. Gill, D. C. Schmidt, and V. Subramonian, “Con-

figuring Real-time Aspects in Component Middleware,” in

Proceedings of the International Symposium on Distributed

Objects and Applications (DOA’04), (Agia Napa, Cyprus),

pp. 1520–1537, Oct. 2004.

[7] R. Schantz and J. Loyall and D. Schmidt and C. Rodrigues

and Y. Krishnamurthy and I. Pyarali, “Flexible and Adaptive

QoS Control for Distributed Real-time and Embedded Mid-

dleware,” in Proceedings of Middleware 2003, 4th Interna-

tional Conference on Distributed Systems Platforms, (Rio de

Janeiro, Brazil), IFIP/ACM/USENIX, June 2003.

[8] J. Greenfield, K. Short, S. Cook, and S. Kent, Software

Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools. New York: John Wiley & Sons,

2004.

[9] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-

integrated development of embedded software,” Proceedings

of the IEEE, vol. 91, pp. 145–164, Jan. 2003.

[10] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,

J. Sprinkle, and G. Karsai, “Composing Domain-Specific

Design Environments,” IEEE Computer, Nov. 2001.

[11] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Ca-

dena: An Integrated Development, Analysis, and Verifica-

tion Environment for Component-based Systems,” in Pro-

ceedings of the 25th International Conference on Software

Engineering, (Portland, OR), May 2003.

[12] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,

M. Humphrey, and B. Ellis, “VEST: An Aspect-based Com-

position Tool for Real-time Systems,” in Proceedings of

the IEEE Real-time Applications Symposium, (Washington,

DC), IEEE, May 2003.

[13] S. Kodase, S. Wang, Z. Gu, and K. G. Shin, “Improving Scal-

ability of Task Allocation and Scheduling in Large Distrib-

uted Real-time Systems using Shared Buffers,” in Proceed-

ings of the 9th Real-time/Embedded Technology and Appli-

cations Symposium (RTAS), (Washington, DC), IEEE, May

2003.

[14] G. Karsai, S. Neema, B. Abbott, and D. Sharp, “A Modeling

Language and Its Supporting Tools for Avionics Systems,”

in Proceedings of 21st Digital Avionics Systems Conf., Aug.

2002.

[15] W. Roll, “Towards Model-Based and CCM-Based Appli-

cations for Real-Time Systems,” in Proceedings of the In-

ternational Symposium on Object-Oriented Real-time Dis-

tributed Computing (ISORC), (Hakodate, Hokkaido, Japan),

IEEE/IFIP, May 2003.

[16] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,

“Ptolemy: A Framework for Simulating and Prototyping

Heterogeneous Systems,” International Journal of Computer

Simulation, Special Issue on Simulation Software Develop-

ment Component Development Strategies, vol. 4, Apr. 1994.


